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Institut de Quı́mica Computacional, Universitat de Girona, Girona, Catalunya, Spain

Y. Cohen
Dept. of Chemical Engineering, University of California, Los Angeles, CA 90095

DOI 10.1002/aic.10116
Published online in Wiley InterScience (www.interscience.wiley.com).

A new approach is presented for the development of quantitative structure–property
relations (QSPR) based on the extraction of relevant molecular features with self-organizing
maps and the use of a modified fuzzy-ARTMAP classifier for variable prediction. The present
methodology is demonstrated for the development of a QSPR for the aqueous-phase infinite
dilution activity coefficient ��, based on a data set of 325 diverse organic compounds. The
QSPR was developed using a set of 11 molecular descriptors (four connectivities v�1–4,
Coulomb self-similarity measure, electron–nuclear attraction, dipole moment, sum of atomic
numbers, number of filled levels, average polarizability, and nuclear–nuclear repulsion). The
final set of molecular descriptors was selected from an initial pool of 23 topological and
quantum chemical descriptors, including six molecular quantum similarity measures, by
means of a topological analysis of self-organization of the data set. Additional interpolated
information to enhance the training of the neural system was obtained from the self-organi-
zation analysis. The resulting fuzzy-ARTMAP–based QSPRs performed with errors that were
on the average seven times smaller compared to previous published models. The use of only
four molecular quantum similarity measures proved to be sufficient for building a ln��

fuzzy-ARTMAP–based QSPR with reasonable accuracy. © 2004 American Institute of Chemical
Engineers AIChE J, 50: 1315–1343, 2004
Keywords: self-organizing maps, fuzzy-ARTMAP neural classifier, QSPR, infinite dilution
activity

Introduction

The distribution of organic chemicals in the environment is
affected by their physicochemical and thermodynamic proper-

ties, among which air–water partitioning (or Henry’s law con-
stant) and aqueous solubility are of particular importance
(Mackay et al., 1992; Yalkowsky, 1999; Yalkowsky and He,
2003). Knowledge of the above parameters is of fundamental
interest and also of importance in various industrial processes
(Fredenslund et al., 1975; Mackay et al., 1992) and in ground-
water remediation by air stripping. The Henry’s law constant of
sparingly water soluble organics is directly proportional to the
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infinite dilution activity coefficient ��, which in turn is essen-
tially inversely proportional to the aqueous solubility. The
infinite dilution activity coefficient is a fundamental thermo-
dynamic parameter important for the estimation of aqueous
solubility and Henry’s law constant (Fredenslund et al., 1975;
Mackay et al., 1992).

Various theoretical models and group contribution methods
for predicting activity coefficients in dilute solutions have been
proposed in the literature (Fredenslund et al., 1975; Lazaridis
and Paulaitis, 1993; Mackay and Shiu, 1977; Mackay et al.,
1992; Medir and Giralt, 1982; Mitchell and Jurs 1998; Sher-
man et al., 1996; Tochigi et al., 1990). These predictions have
been successful when dealing with athermal systems and, to a
lesser extent, with polar systems. For example, it has been
shown that the combinatorial term in UNIFAC is underesti-
mated, whereas the residual is overestimated (Voutsas and
Tassios, 1996) when dealing with aqueous mixtures and with
increasing polarity of the organic solute. The modification of
the combinatorial and residual terms in the original UNIFAC
model has significantly improved predictions for athermal sys-
tems but such modifications have been less satisfactory for
polar systems (Voutsas and Tassios, 1997). Alternative ap-
proaches that are specifically designed for aqueous solutions,
such as the linear solvation energy relationship (LSER; Sher-
man et al., 1996), might be more accurate (average absolute
deviation of 0.294 ln�� units for 336 organics in aqueous
systems).

Improvements of group contribution methods by direct cal-
culations of interaction energies are possible by means of
quantum chemical or variational methods; however, such
methods are typically computationally demanding and re-
stricted to relatively small molecules (Sandler, 2002). A brief
review on the application of computational quantum chemistry
methods, either to obtain the interaction energy surface for a
pair of molecules or to improve current group contribution
methods by less intensive calculations, can be found elsewhere
(Sandler, 2002).

Over the last three decades various quantitative structure–
property relationships (QSPRs) have been proposed to estimate
�� for organics in water. The premise of QSPRs is that there is
a unique relationship between molecular chemical descriptors
and a target physicochemical property. Given a selected set of
molecular descriptors, one searches for optimized correlations
between the descriptors and the desired chemical specific prop-
erty. For example, Mackay and Shiu (1977) correlated the
aqueous phase ln�� for hydrocarbons with the number of
carbon atoms. Medir and Giralt (1982) correlated ln �� for
aliphatic and aromatic hydrocarbons using molecular descrip-
tors that included the first-order molecular connectivity index,
surface area, dipole moment, number of carbon atoms, total
electronic energy, and acentric factor. Mitchell and Jurs (1998)
applied several correlation techniques and perceptron neural
networks to estimate ln��. They used three topological descrip-
tors, four charged partial surface area (CPSA) indices, two
hydrogen bonding descriptors, heat of formation, and two
theoretical linear solvation energy relationship (TLSER) indi-
ces to describe the basicity of hydrogen bonding. Also noted is
a related study by Yalkowsky and Valvani (1979), in which the
aqueous solubility of organic compounds was correlated with
the molecular surface area, and a series of studies by
Yalkowsky and coworkers (Peterson and Yalkowsky, 2001;

Ran and Yalkowsky, 2001; Ran et al., 2001; Yang et al., 2002)
that contributed significantly to this area of aqueous solubility
estimation with models based on group contribution or frag-
ment structural information.

Backpropagation neural networks have recently emerged as
an alternative for the development of QSPRs and quantitative
structure–activity relationships (QSARs) to predict physico-
chemical properties and biological activities, respectively
(Bünz et al., 1998; Chow et al., 1995; Egolf and Jurs, 1993;
Espinosa et al., 2000, 2001a,b; Gakh et al., 1994; Hall and
Story, 1996; Mitchell and Jurs, 1998; Simamoea et al., 1993;
Stanton and Jurs, 1990; Stanton et al., 1991; Viswanadhan et
al., 2001; Yaffe et al., 2001, 2003). This alternative modeling
strategy for QSPR development yields significantly higher
prediction accuracy compared to that of traditional regression-
based correlations. For example, the 12–6–1 neural network
model proposed by Mitchell and Jurs (1998), to estimate ln��

of organics in water, performed with an average root-mean-
square error of 0.376 ln units, 0.406 ln units, and 0.434 for the
training (271 compounds), validation (25 compounds), and test
(25 compounds) sets, respectively. Also, 92 �� values of 19
halocarbons in water and 18 organic compounds in five hy-
drofluoroparaffins solvents over a temperature range of 291–
333 K were predicted by Rani and Dutt (2002) with a feedfor-
ward network trained with 351 data points, with an average
absolute deviation of 11.8% on the basis of ��, compared with
94.3% obtained by multilinear regression. The interpretation of
results obtained with these feedforward neural architectures is
not straightforward, given that the structure–property or struc-
ture–activity relationships are embedded within the weights
distributed within the network. More recently, neural network–
based QSPRs and QSARs (Espinosa et al., 2002, 2003;
Gasteiger et al., 1994a,b) have been developed based on Ko-
honen (self-organizing or feature maps) and ARTMAP neural
network architectures. This latter approach proved to be par-
ticularly useful in the recognition of coherent structures em-
bedded in turbulent flows (Ferre-Gine et al., 1996) and in the
development of industrial virtual sensors (Rallo et al., 2002a,b)
attributed to the ability of these algorithms to classify patterns
in complex data sets, even in the presence of other correlated
information and noise.

The current study presents a comprehensive approach to
developing neural network–based QSPR for the aqueous infi-
nite dilution activity coefficient of organics based on a predic-
tive fuzzy-ARTMAP architecture and the use of self-organiz-
ing maps (SOMs), also known as a Kohonen neural network
(Kohonen, 1982, 1990), for extracting molecular features rel-
evant to the target property. The initial set of descriptors was
selected to contain topological and quantum molecular infor-
mation to capture both two- and three-dimensional (3-D) (Carbó-
Dorca and Besalú, 1998; Cramer et al., 1988) information
(such as conformational, stereochemical, electronic, and bind-
ing information). The present set of descriptors also included
molecular quantum similarity measures (MQSM; Carbó-Dorca
and Besalú, 1998). The selection of the most suitable set of
descriptors from the initial set was accomplished with a SOM
analysis, which also served to identify chemical classes and
their characteristics with respect to the molecular information
included in the set of descriptors. In addition, in the current
work we demonstrate that the integration of SOM with fuzzy
ARTMAP (Carpenter et al., 1987, 1991, 1992; Giralt et al.,
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2000) improves not only the accuracy and predictive capabil-
ities of the QSPR (Espinosa et al., 2002, 2003) but enables one
to explore the relative contribution of any given descriptor (or
group of descriptors), with respect to both chemical classifica-
tion and estimation of the target property.

Neural Network Architectures
Kohonen self-organizing maps: cluster analysis and
selection of descriptors

The Kohonen neural network is a self-organizing map suit-
able for classification analysis (Erwing et al., 1992; Kaski and
Lagus, 1996; Kohonen, 1982, 1990; Vesanto, 1999). In the
present work SOM analysis was used to: (1) select the most
suitable set of descriptors by measuring the dissimilarity of the
different maps that are formed when clustering into the nodes
of the map the complete set of compounds according to their
molecular characteristics, as specified by different sets of mo-
lecular descriptors and the target ln�� variable; and (2) use the
vectors characterizing each neuron or node in the trained map,
that is, the prototype vectors of clustered compounds into the
nodes during training, in addition to the compounds them-
selves, to train the fuzzy-ARTMAP–based QSPR.

A self-organizing map automatically adapts itself such that
similar inputs are associated with topologically close units (or
neurons) in a two-dimensional (2D) grid. During the training
process, N-dimensional input data are self-organized in a dis-
cretized 2D plane formed usually by a grid of K � K units. The
number of units is specified based on the sought population
distribution of input data among the neurons, in such a way that
close input vectors of descriptors characterizing compounds in
this N-dimensional space are mapped into close-neighborhood
neurons while minimizing the number of empty or over-
crowded classes. The SOM type of neural network is especially
useful for capturing underlying relationships within the input
data. Briefly, the main steps in the generation of a SOM are as
follows:

(1) An input vector xi of dimension N is presented to the
network. Each cycle of presentation including all input vectors
xi is called an epoch.

(2) The Euclidian distance between this input vector and all
nodes (neurons) in the network lattice is calculated, as follows

�j � �
i�0

N�1

� xi�t� � wij�t��2 (1)

where xi(t) is the ith component of the N-dimensional input
vector and wij(t) is the connection strength (weight) between
the input vector component i and the mapping array node j at
position t, in the sequence of data presentation to the network.
Initially these weights are assigned random values.

(3) Node j* with the minimum distance �j defined by Eq. 1
is selected as the winner neuron or best matching unit (BMU).

(4) The weights of node j* and those of its neighbor nodes,
identified by the neighborhood Nj*(t), are updated

wij�t � 1� � wij�t� � ��t�� xi�t� � wij�t�� (2)

for j � Nj*(t) and 1 � i � N.

The function �(t), which decreases monotonically over the
environment of the winner neuron, defines the region of influ-
ence that the input vector has on the SOM. This function is
defined by the neighborhood function �0 and the learning rate
	(t) according to

��t� � �0��rc � r�, t�	�t� (3)

where r is the location of the units or neurons on the grid of the
map. The simplest neighborhood function is the bubble func-
tion, which is constant over the whole neighborhood of the
winner neuron (node) and zero elsewhere (Kaski and Kohonen,
1994; Vesanto, 1999). However, a more convenient function is
the Gaussian neighborhood function, defined by

�0 � exp���rc � r�2

2
2�t� � (4)

where the neighborhood radius 
(t) self-adapts after each ep-
och. The type of neighborhood function and the number of
neurons determine the sensitivity and the granularity of the
map, respectively. Finally, it is noted that the learning rate 	(t)
in Eq. 3 is a decreasing function of t over the range [0, 1] and
it is usually defined by the power series

	�t� � 	0�	T

	0
� t/T

(5)

where 	0 and 	T are the initial and final learning rates, respec-
tively, and T is the size of the training set cycles (i.e., the
number of epochs selected for training).

The trained SOM can be used to visualize different features
of the data (Kaski and Kohonen, 1994; Vesanto, 1999). The
graph representations of the clustered set of data into the nodes
of the map facilitate a clearer identification of the underlying
relationships among data. This is accomplished by visualizing
either the matrix of distances between nodes (U-matrix) or the
contribution of different input information into this organiza-
tion [component planes (C-planes)]. A component plane is the
distribution over the map of the values of one of the elements
(weights wij) of the vectors (prototypes) characterizing each
neuron or node. Visualization and analysis of the SOM were
accomplished using the Matlab SOM toolbox, as reported
elsewhere (Kaski and Kohonen, 1994; Vesanto, 1999).

Identification of prototype classes of compounds and selec-
tion of relevant descriptors required setting the optimal size of
the SOM. The optimal SOM size should accommodate, during
training, the compounds characterized by the N molecular
descriptors of the pool (that is, initial set) plus the target
variable ln�� into the K � K grid units, with about 80% of the
nodes occupied by compounds to ensure both continuity of
clusters within the nodes of the map and a sufficient population
density per node. The above ensures the generation of compact
clusters in the nodes [that is, small average distance (n) be-
tween the members of each cluster], and that all nodes, whether
or not occupied by clustered compounds, are trained according
to Eqs. 2 and 3. Subsequently, a curvilinear component anal-
ysis and/or visual inspection of the component C-planes cor-
responding to all descriptors was carried out to identify simi-
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larities in clustering topology (that is, how each descriptor
clustered the compounds in the nodes in relation to the target
variable ln��). Thus, descriptors favoring a similar topology or
distribution of compounds among the nodes (clusters) in the
map could be identified as similar and grouped into a common
class of descriptors with respect to the target variable. Descrip-
tors were ordered by picking from each class of similar de-
scriptors those with the highest correlation or absolute covari-
ance, with the restriction that each absolute covariance with the
target variable was higher than the average value for the pool
of descriptors (that is, the complete set of descriptors). The
ordering process continued by sorting indices according to the
value of the absolute covariance. Following this procedure
(Espinosa et al., 2002), nonredundant information of the dif-
ferent classes of descriptors, formed by grouping their respec-
tive C-planes, as well as their correlation with respect to the
target variable, were accounted for in the construction of the
most suitable set of descriptors.

The most representative set (that is, most suitable set) of
descriptors was defined as the set with the smallest number of
descriptors that provided the highest representation of the com-
pound data set as determined by the SOM analysis. The selec-
tion was carried out by first selecting the most descriptive index
from each of the N self-organizing maps, and then successively
adding the remaining indices in the order of decreasing covari-
ance with the target variable. To determine when all relevant
information had been considered in the succession of N SOMs,
changes in topology caused by the progressive incorporation of
the molecular information were quantified. This was accom-
plished by measuring the dissimilarity between any of two
maps L and M. Dissimilarity was defined as the averaged
difference in the SOM representation of the sample vectors
used for training, as follows

D�L, M� � E�dL� x� � dM� x�

dL� x� � dM� x�� (6)

in which E is the average expectation, the subscripts L and M
designate the two different maps, and d(x) is the distance from
x to the second BMU, denoted by mc	(x), beginning at the first
BMU or winner neuron, denoted by mc(x). Of all possible paths
between mc(x) and mc	(x) the shortest continuous path

d� x� � � x � mc� x�� � min
i

�
k�0

Kc	� x��1

�mIi�k� � mIj�k
1�� (7)

between neighbor units was selected. This distance, which is
similar to that first proposed by Kaski and Lagus (1996),
reflects the continuity of the SOM. Also, it indicates the rela-
tive capacity of any map to represent the data set when trained
with compounds characterized by a given number of descrip-
tors with respect to any other map trained using more or fewer
descriptors.

The smallest average dissimilarity value calculated by ap-
plying Eq. 6 to the SOMs, corresponding to all combinations of
the ordered pool of descriptors, indicates the maximum coher-
ence and compactness of the information represented by that
particular map. Thus, the process of including indices to form
the most suitable set of molecular descriptors can conclude

when the average dissimilarity measure of the corresponding
map with the rest of maps stabilizes. The above dissimilarity
analysis provides a systematic methodology of determining
similarity among maps even when the dimension or number of
indices of the input vectors may be very different. The indices
of SOM with minimal average dissimilarity provide a good
representation of all clusters of compounds formed in the nodes
and constitute the most suitable set of molecular descriptors for
QSPR modeling (Espinosa et al., 2002).

Fuzzy ART and Fuzzy ARTMAP

The selection of a neural architecture with predictive capa-
bilities has been the subject of numerous studies in relation to
time series analyses (Cybenko, 1989; Fessant et al. 1995; Giralt
et al., 2000; Hornik et al. 1989), data mining (Agrawal et al.,
1993; Bishop, 1995; Fayyad, 1996; Hertz et al., 1991), or
pattern recognition (Agrawal et al., 1993; Ferre-Gine et al.,
1996; Gutfreund and Mézard, 1988; Hecht-Nielsen, 1995;
Hertz et al., 1991). The most commonly used architecture in
the above fields and in other engineering applications has been
the multilayer perceptron (Bishop, 1995; Hertz et al., 1991)
with the learning mechanism of backpropagation. This ap-
proach is simple to use, has a sound mathematical foundation,
and yields excellent results for most engineering applications.
However, it is not suitable when pattern recognition or feature
extraction capabilities are desired because relationships be-
tween variables in such networks are embedded within the
weights in a distributed form (Bishop, 1995; Hecht-Nielsen,
1995; Hertz et al., 1991). In difficult problems involving pat-
tern recognition, such as those found in the development of
QSPRs for data sets of heterogeneous compound classes, it is
advantageous to use neural network classifiers, as shown in a
number of recent studies (Espinosa et al., 2000, 2001b, 2002,
2003; Yaffe et al., 2001, 2003) on QSPR development.

One of the most powerful classifiers is ARTMAP, which is
based on adaptive resonance theory (ART) and has been shown
to be capable of learning the dynamics of large-scale structures
in a turbulent wake flow (Giralt et al., 2000). The application of
fuzzy ARTMAP networks for QSPR development (Espinosa et
al., 2002) has several advantages because of their capability to
classify and analyze noisy and incomplete data sets with a
reduced number of required model parameters and avoidance
of local minima trapping (Carpenter et al., 1987, 1991, 1992).
This architecture is also sufficiently transparent to allow con-
tinuous checking of the goodness of the classification during
the training process, as well as how the relationships between
the inputs and the outputs are established.

Adaptive resonance theory (ART) initially emerged from
research on human cognitive information processing (Carpen-
ter et al., 1987, 1991). Fuzzy ARTMAP (Carpenter et al., 1992) is
one of the algorithms of the ART family that overcomes the
stability–plasticity dilemma by creating as many new classes as
needed to incorporate new information presented to the network in
a stable manner while preserving the old knowledge contained in
previously created classes. It associates prototypes of input pat-
terns with their target outputs. The key feature is a control param-
eter that measures the similarity between the prototype patterns,
stored in different network categories or classes, and any current
input pattern. If the control parameter (vigilance) is not satisfied
within a given accuracy, a new class or category is created during
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learning. As a result, the number of categories (or prototype
vectors) grows until a network structure has been built that is able
to model the output based on the input data.

The architecture of fuzzy ARTMAP consists of two fuzzy
ART modules, ARTa and ARTb, interconnected by a map field,
Fab, as shown in Figure 1. The ARTa (ARTb) module has two
layers of nodes: F1a (F1b) is the input layer and F2a (F2b) is a
dynamic layer where each node (class or category) encodes a
prototype of a cluster of the input patterns. The number of such
nodes can be increased when necessary. During supervised
learning, an input pattern vector (molecular descriptors) is fed
to the ARTa module and the output vector (target variable) to
ARTb. These are independently classified in each module. A
map field (Fab) adaptively associates prototype nodes in ARTa

with their respective target classes in ARTb. The node with the
highest value of the activation function is selected as the
winner, and all other nodes are suppressed in accordance with
the winner-take-all rule (Carpenter et al., 1987, 1991, 1992).

The search cycle ends when either the current prototype is
able to satisfy the vigilance parameter criterion (accuracy in the
classification) or a new node is recruited in F2a with the input
pattern coded as its prototype pattern. During testing only the
category F2b layer is activated so that for any input presented
to F1a an output can be effected from F2b, according to the
predictive fuzzy ARTMAP system proposed by Giralt et al.
(2000). The network reaches a resonant state when a category
prototype vector matches the current input vector sufficiently

such that the orienting subsystem will not send a reset signal to
the F2 layer. The network learns only in its resonant state,
where it is capable of developing stable classification of arbi-
trary sequences of input patterns by self-organization. The
voting strategy of training the system several times, using
different orderings of the input set, not only improves predic-
tions but can also be used to assign confidence estimates to
competing predictions when dealing with small, noisy, or in-
complete training sets. Further information on this issue and on
the ART family of neural networks can be found elsewhere
(Carpenter et al., 1987, 1991, 1992).

Data Set and Molecular Descriptors

The present aqueous infinite dilution activity coefficient ��

data set consisted of 325 organic compounds, originally com-
piled by Sherman et al. (1996) and later also used by Mitchell
and Jurs (1998), to correlate the aqueous phase ln�� with
molecular descriptors. This heterogeneous data set includes
hydrocarbons, alcohols, ethers, aldehydes, ketones, acids, ha-
logenated hydrocarbons, amines, amides, nitriles, and com-
pounds containing sulfur. The complete data set, with the
corresponding ln�� values, is included in the supporting infor-
mation (see Table 5 below). A subset of 280 compounds was
selected for training (tr) and 45 compounds were used for
testing (te) the fuzzy-ARTMAP–based QSPR models. Both
data sets were selected by a fuzzy ART (Carpenter et al., 1987,

Figure 1. Fuzzy ARTMAP architecture.

AIChE Journal 1319June 2004 Vol. 50, No. 6



1991, 1992) neural system following the procedure described
by Espinosa et al. (2001b), to ensure that the training set
represented the complete data set. The 10 � 10 SOM trained to
identify the most suitable molecular information, in relation to
the target ln �� property, contained the classified information
of the input data among the prototype vectors representing the
nodes with clustered compounds (that is, the occupied nodes of
the map). The map also contained interpolated information in
the prototype vectors of empty nodes because they were also
trained as neighbors of occupied (winning) nodes by Eqs. 2 and
3. Thus, the current work also explores the benefit of using the
information of the 100 prototypes of the map for training the
current fuzzy-ARTMAP–based QSAR model, in addition to
the 280 compounds of the training set. In this latter case,
however, the 10 � 10 SOM was built from training informa-
tion only (280 compounds) to avoid contaminating these pro-
totypes with test information.

An initial set of 23 molecular descriptors was first developed
following the criteria and procedure described below. An op-
timal (that is, most suitable) subset consisting of the minimum
number of descriptors that also provided the relevant informa-
tion necessary to develop the present QSPR was then obtained.
In this systematic selection process (Espinosa et al., 2002) all
indices were classified according to the topology of their C-
planes in the SOM (i.e., according to their similar capability to
cluster compounds in the 10 � 10 nodes of the map). Thus,
both the most representative indices from these C-plane classes
and those with the highest correlation with the target variable
can be selected.

The initial pool (that is, initial set of descriptors) was formed
with the topological and quantum chemical descriptors consid-
ered in the studies of Medir and Giralt (1982) and Yaffe et al.
(2001) to respectively predict ln�� of hydrocarbons in water
and aqueous solubilities of diverse set of organic compounds.
Topological indices provide information about the adjacency of
the atoms in the molecular structure. Among those more fre-
quently used in QSPRs are the Wiener index (Wiener, 1947),
the connectivity indices used by Randic (Randic, 1975; Randic
and Trinajstic, 1993), and the connectivity indices defined by
Basak and Maguson (1988). For the present ln �� QSPR
models the selected indices included the valence connectivity
indices of order zero to four (0�v, 1�v, 2�v, 3�v, 4�v) (Kier and
Hall, 1976, 1985, 1999), the kappa index of second order (Kier
and Hall, 1976), the sum of atomic numbers, and the Hansen
indices (Hansen, 1979) of hydrogen, polarity, and dispersion.
The above molecular indices were generated from the 2D
molecular structures of the data set compounds using Molec-
ular Modeling Pro (1998) 3.01 software.

The quantum chemical descriptors included the average mo-
lecular polarizability, dipole moment, number of filled molec-
ular orbital levels, electron–nuclear attraction energy, nuclear–
nuclear repulsion energy, exchange energy, and resonance
energy. The above initial set of molecular descriptors (Yaffe et
al., 2001) describes the interactions among the atoms in a
molecule at the quantum level. These quantum indices were
calculated by semiempirical Parametric Method 3 (PM3), with
molecular structures optimized in 3-D. Additional descriptors
that quantify 3-D similarity between molecules were generated
by means of molecular quantum similarity measures (Amat and
Carbó-Dorca, 1997; Carbó-Dorca and Besalú, 1998) deter-
mined by atomic shell approximation (ASA).

Three-dimensional similarity measures can be calculated
from the scalar product of atomic density functions, as de-
scribed elsewhere (Amat and Carbó-Dorca, 1997; Carbó-Dorca
and Besalú, 1998). Briefly, quantum similarity matrices are
formed from the scalar product (or projection) of the quantum
atomic density functions of two molecules, using the metrics
given by different quantum operators. The MQSM between
two molecules A and B is given by the following integral

ZAB��	� � �� �A�r�1��	� x�1, r�2��B�r�2�dr�1dr�2 (8)

where {�A(r1), �B(r2)} are the density functions of each mole-
cule and �	(r1, r2) is a positive definite operator. The particular
operators considered in the present work constitute the overlap
operator to measure similarity of molecular shape, and the
coulomb operator to evaluate electrostatic similarities. Detailed
information on the calculation of these quantum chemical
descriptors and examples of previous applications in QSPR/
QSAR modeling can be found elsewhere (Amat and Carbó-
Dorca, 1997; Amat et al., 1998, 1999; Karelson et al., 1996;
McWeeny, 1989).

To select the most relevant information contained in the
large 325 � 325 overlap and coulomb quantum similarity
matrices for the 325 compounds of the data set, it is common
to use the diagonal elements of these matrices [that is, the
quantum self-similarity measures (Carbó-Dorca and Besalú,
1998)]. Another alternative is to apply a dimensional reduction
based on multidimensional scaling (Amat et al., 1998, 1999).
This simplification, however, implies the use of principal-
component analysis (PCA). In such an approach, it is difficult
to discriminate the influence of the different descriptors and
their relationship with the original similarity measures. It is
noted that it is also possible to reduce the dimension of the
MQS matrices, without losing relevant information, by project-
ing their respective elements onto SOMs, as explained in the
previous section. Any one of these 2-D maps retains the topol-
ogy (relationships) of the original matrix elements. Therefore,
the resulting classification allows the selection of the more
relevant elements representing each of the formed classes. This
last alternative was adopted in this study.

The selection of the more relevant elements in any of the two
overlap (Ove) and coulomb (Cou) 325 � 325 MQS matrices
involved training two SOMs formed by square grids of 5 � 5
neurons or units by using the rows of the Ove matrix or of the
Cou matrix as input patterns. After training, each class was
identified by its prototype vector. In addition to the elements of
the diagonals of both matrices (that is, the molecular self-
similarities), herein identified as Ove and Cou, the following
cross-similarities between compounds were selected: (1) those
that were prototypes in both maps, if any, because this was an
indication that they represented molecules within the set of ��

data that behave similarly in front of the two different overlap
and coulomb projections; (2) the prototypes of the classes with
the highest population density of compounds because they
represented the largest conglomerates of common behaviors.
Following the above selection procedure, 1-4-cyclohexadiene
(C6H8) was identified as the only prototype in both maps that
could represent the largest group of chemicals with similar
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behavior. The MQSM of this compound can be accurately
calculated because it contains no heavy atoms in its structure
and the ASA approach is not biased. The corresponding cross-
similarity measures or projections, using the overlap operator
or the coulomb operator of all compounds with the 1-4-cyclo-
hexadiene, have been respectively identified as molecular de-
scriptors OveC6H8 and CouC6H8.

Two additional prototypes of the more densely populated
classes were also selected: N-methyl-2-pyrrolidone (C5H9NO)
from the Ove matrix (OveC5H9NO) and 1-chloropropane
(C3H7Cl) from the Cou matrix (CouC3H7Cl). The main assump-
tion of the current approach is that descriptors from the same
class contribute similar type of information to the QSPRs.
Thus, the indices Ove, Cou, OveC6H8, CouC6H8, OveC5H9NO, and
CouC3H7Cl were included in the pool of descriptors to incorpo-
rate the more relevant information contained in the 325 � 325
MQS matrices. It should be noted that the natural logarithms of
the above six MQS indices were used in all calculations to
reduce the differences in ranges, and that values reported in
tables and figures are expressed in this format.

Following the calculation of descriptors and analysis as
specified above, the initial pool of molecular information was
formed by 23 descriptors: five valence connectivity indices of
order zero to four, kappa index of second order, sum of atomic
numbers, three Hansen indices, average polarizability, dipole
moment, number of filled levels, electron–nuclear energy, nu-
clear–nuclear repulsion energy, exchange energy, resonance
energy, and the six MQS matrix defined above.

Studies on QSPRs often involve the generation of large sets
of molecular descriptors. Although neural networks can deal
with a large set of input parameters, it is prudent to seek the
smallest possible descriptor subset that would retain a reason-
able accuracy of the QSPR. In the present study, for example,
one may argue that because the MQS matrix is calculated, for
any given chemical data set, using the metrics given by all the
relevant quantum operators, it should contain all relevant struc-
tural information. Therefore, it was hypothesized that quantum
similarity indices alone would be sufficient to establish reason-
ably accurate QSPR models. To test the above hypothesis, the
same procedure for selecting the most suitable set of descrip-
tors, from the initial pool of molecular descriptors, was applied
to the initial set formed only by the six MQS matrices extracted
from the quantum similarity matrix (that is, to Cou, CouC6H8,
CouC3H7Cl, Ove, OveC6H8, and OveC5H9NO).

Results and Discussion
Classification of chemicals

The optimal SOM grid size, which was found to be 10 � 10,
classified the 325 compounds characterized by a 24-dimen-
sional vector (the above 23 molecular descriptors plus the
target variable ln��) into 80 nodes (neurons) of the map during
training, with an adequate population density, as illustrated by
the component plane for ln�� depicted in Figure 2. This figure
identifies 13 chemical families that cluster into the 80 nodes
with clustered compounds (occupied nodes) according to both
their generic family label and molecular similarity. Gray levels
indicate the clustering compactness in each node, as measured
by the average distance (n) between the clustered compounds.
Table 1 lists the main characteristics of the 80 occupied nodes,
along with an indication on how compounds cluster into them,

according the molecular information provided by the 23 de-
scriptors and the corresponding ln�� values.

A close inspection of Figure 2 and Table 1 reveals several
important features about the data set, molecular information
embedded in the molecular descriptors, and classification pro-
cess, as listed below:

(1) The SOM captures the distinctiveness of the 13 chemical
families (A–M) as characterized by the 23 molecular descrip-
tors and the ln�� values, with a dominant presence in the nodes
of clusters formed by the two most populated chemical families
D (hydrocarbons with oxygen substituents) and E (halogenated
aliphatic hydrocarbons). The neighborhood between clusters is
also consistent with the formal segregation of the data set into
13 chemical families A–M.

(2) Nearly 70% of the 80 occupied nodes (Figure 2) contain
compounds of the same chemical family. The remaining 30%
of the occupied nodes are formed by similar compounds from
other neighbor ones. For example, clusters (nodes) 40, 46, 49,
58, and 59 are formed by chemicals from families C (aliphatic
hydrocarbons) and H (cyclic hydrocarbons).

(3) Nodes consistently cluster chemicals with similar struc-
tures. However, there are significant differences between the
degree of membership by which nodes cluster chemicals and of
the span of the corresponding ln�� values. This is clearly
observed in Table 1, where the square of the cluster average

Figure 2. Distribution of 13 families of organic com-
pounds over the component plane for ln��.
(A) Monoaromatic hydrocarbons (20 compounds); (B) pol-
yaromatic hydrocarbons (5 compounds); (C) aliphatic hydro-
carbons (36 compounds); (D) hydrocarbons with oxygen sub-
stituents (123 compounds); (E) halogenated aliphatic
hydrocarbons (66 compounds); (F) aromatic hydrocarbons
with nitrogen and/or oxygen substituents (11 compounds);
(G) hydrocarbons with sulfur substituents and/or oxygen
and/or nitrogen (19 compounds); (H) cyclic hydrocarbons (15
compounds); (I) aromatic hydrocarbons with oxygen substitu-
ents (8 compounds); (J) halogenated aromatic hydrocarbons
(9 compounds); (K) heterocyclic hydrocarbons (10 com-
pounds); (L) aliphatic hydrocarbons with halogen and oxygen
substituents (2 compounds); (M) aliphatic hydrocarbons with
nitro and halogen groups (1 compound). The gray levels
indicate the clustering intensity of the ln�� data set into the
SOM nodes measured by the average distance (n) between
members of each cluster.
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distance for each node in the U-matrix, (n2), and the corre-
sponding minimum and maximum values of ln�� are listed for
the 80 occupied nodes. The span of ln�� is very noticeable and
significant in the more populated clusters (number of com-
pounds � 5) (that is, nodes 1, 9, 12, 14, 15, 24–28, 35–40, 46,
47, 49–51, 63, and 67). It should be noted that ln�� is only one
component in the 24-dimensional vectors (23 descriptors plus
ln��) characterizing the nodes in the map. It is also well known
that it is difficult to account for heteroatoms, particularly halo-
gens, within any given chemical structure with molecular de-
scriptors (Basak and Maguson, 1988; Carbó-Dorca and Besalú,
1998). The dispersion (n2) of compounds around nodes in
Table 1 clearly illustrates this difficulty. The dispersion of
compounds is smallest (0.1093 � n2 � 0.2064) in the more
populated nodes 37, 40, 46, and 50, which cluster only families
of hydrocarbons with no substituents containing heteroatoms
(families A, B, C, H, and K). This dispersion increases
(0.0854 � n2 � 0.6353) in the populated nodes 9, 12, 15, 26,
28, 36, 39, 47, 49, 51, 63, 67, 92, 94, 95, and 97 that cluster
hydrocarbons with oxygen, nitrogen, and/or sulfur substituents
(families D, F, G, and I). The largest dispersion (0.2155 � n2 �
0.7828) is encountered in nodes 1, 14, 24, 25, 27, 35, and 91
with hydrocarbon families with halogen substituents (E, J, L,
and M).

Finally, it should be noted that the component plane for ln��

in Figure 2 is compact, given that three or more nodes with
clustered compounds (occupied nodes) usually surround the
empty ones, implying that the latter were also updated by
means of Eqs. 2 and 3 during training. Thus, vectors of the
empty nodes are bound to be a good source of additional
(interpolated) information for training the QSAR models with
the aim at increasing generalization during testing or predictive
operation mode, even at the expense of introducing some noise
in the training set. In the current study, the 100 node vectors of
a 10 � 10 SOM, built only from information of the training set,
were also used as additional information for training the fuzzy-
ARTMAP–based QSPR model. In such a way, the interpolated
information obtained from this SOM may enhance the classi-
fication capabilities of any new information presented to the
predictive fuzzy ARTMAP neural system during testing.

Selection of most suitable descriptors

The component planes of the 10 � 10 SOM, built from
molecular and target ln�� information of the complete set of
325 compounds, were used to select the most suitable set of
molecular descriptors from the initial pool of 23 topological
and quantum chemical descriptors. The selection was carried
out according to the descriptors’ contribution to the classifica-
tion of the 325 compounds in relation to ln�� and following the
methodology of index selection proposed by Espinosa et al.
(2002). Accordingly, the 23 component C-planes shown in
Figure 3 are grouped into six classes according to the similarity
in the contribution of descriptors to the topological organiza-
tion of the map. The six classes, identified with the Roman
numerals I–VI, were formed by curvilinear component analy-
sis. A visual inspection of Figure 3 shows that the classification
into six classes of similar descriptors is consistent with the
similarity shown by their respective C-planes. The first three
classes include the topological (connectivities, kappa index,
and the sum of atomic numbers) and quantum informationT
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(average polarizability, number of filled levels, and nuclear–
nuclear repulsion). Because each of these classes contains
descriptors with 2-D molecular size–related information they
should help to explain how the increase in chain length or
hydrophobicity is related with ln��. The dipole moment is
appropriately grouped in class IV with the Hansen indices,
whereas the remaining atomic energies and all MQS matrices
are classified into classes V and VI, respectively. The classifi-
cation of C-planes shown in Figure 3 is also consistent with the
covariances between descriptors and target variable listed in
Table 2. The highest covariance with ln�� corresponds to 1�v

(class I), whereas the first descriptor with a C-plane organiza-
tion is significantly different from cluster I and with a still high
covariance, is  (class IV). It is interesting to note that the use
of these two descriptors proved to be very effective in the linear
correlations of ln�� proposed by Medir and Giralt (1982) for
hydrocarbons.

The ordering of indices, selected descriptors, and the basis
for the descriptors’ selection process are summarized in Table
3. The first indices selected from the initial pool to form the
most suitable set were those with highest absolute covariance
with ln�� in each of the six classes of Figure 3 (that is, 1�v, N,
4�v, , ENA, and Cou). In this case, all six indices were
selected because their covariances are higher than the average
value for the whole pool of 23 descriptors, as may be deduced
from the information provided in Table 2. As can be verified
from Table 3, the successive addition of descriptors in the
process of selecting the most suitable set causes a decrease in
the value of the dissimilarity function, defined by Eq. 6, from
0.703 for 1�v to 0.229, when the six indices mentioned above
were incorporated. This significant decrease highlights the im-
portance of adding indices according to their topological im-
pact on the studied QSPR. Further addition of 3�v, NFL, AP,
2�v, and NNR, chosen according to their absolute covariance
with ln��, lowered the dissimilarity to the minimum value of
0.190. It is important to recognize that molecular information
beyond the point of minimum dissimilarity (Table 3) can be
redundant, it may introduce noise if added to the QSPR, and it
could also induce errors attributed to conflicting information
with the previous and more relevant indices of the most suit-
able set. Values of the 11 descriptors, included in the most
suitable set (constructed from the initial pool of descriptors),
for the compounds in the overall data set, are provided in the
supporting information (see Table 5 below). The final set of the
most suitable 11 descriptors identified in the present work
includes nine of the 11 descriptors used by Yaffe et al. (2001)
to predict the aqueous solubility of organic compounds. These
authors used a nonlinear selection method, based on a dynamic
backpropagation neural network genetic algorithm, to identify
11 suitable descriptors from an initial set of 30 descriptors. In
the present set, the RE and EE descriptors used by Yaffe et al.
(2001) were substituted here by Cou and N. Also, it is noted
that the current incorporation of the sum of atomic numbers
reinforces the well-known dependency of ln�� with chain
length (Mackay and Shiu, 1977; Medir and Giralt, 1982).

To assess QSPR performance when solely using significant
and coherent quantum chemical information, the above selec-
tion procedure was also applied to the six MQS descriptors
(Table 3), which constitute class VI shown in Figure 3. Two
classes were identified, one formed by the three coulomb
descriptors and the other including all overlap information. The

most suitable set, formed by Cou, CouC6H8, CouC3H7Cl, and
Ove, was selected based on the minimum average dissimilarity
value. It is interesting to note that the Ove descriptor is needed
despite its low covariance with ln�� (see Table 2), which is
below the average for the complete MQS set, given that it is the
only source of quantum information for molecular shape avail-
able in this set of most suitable MQS matrices.

QSPR models

Fuzzy-ARTMAP–based QSPR for ln�� were developed us-
ing either the most suitable set of 11 descriptors from the initial
set listed in Table 3 [1�v, N, 4�v, , ENA, Cou, 3�v, NFL, AP,
2�v, and NNR] or solely using the most significant MQS matrix
[Cou, CouC6H8, CouC3H7Cl, and Ove]. In each case, training was
carried out by using either the training set of 280 compounds or
this subset complemented with the interpolated information
obtained from a 10 � 10 SOM, trained only with the molecular
descriptors of these 280 compounds and the target variable
ln��, as discussed previously.

The fuzzy-ARTMAP algorithm is a neural classifier and
only the presentation of new information during training will
trigger the creation of new classes in ARTb according to the
required accuracy for the target variable ln��, and correspond-
ingly the creation of an equal or larger number of classes for
the training compounds in ARTa. This ensures the generation
of many (compounds in ARTa) to one (ln�� value in ARTb)
relationships in the network. The accuracy in ARTb is set by a
fixed vigilance parameter �b, whereas that of ARTa increases
dynamically from zero according to the needs of classification
and of the if–then relationships. Thus, overtraining in fuzzy
ARTMAP will manifest itself in the creation of an unneces-
sarily large architecture (Georgiopoulos et al., 2001) and as
degradation in generalization capabilities of the predictive
model (that is, poor performance on samples or data not present
in the training set).

In the current study the generation of a reasonable number of
classes has been monitored and reasonable generalization en-
sured by choosing a training set (Espinosa et al., 2001b) of 280
compounds that was representative of the complete set of 325
compounds. The alternative of applying cross-validation pro-
cedures (Koufakou et al., 2001) during the training stage did
not yield significantly different results since the predictive
capabilities of the current model are very demanding, that is,
the number of chemical families and the range of ln�� values
are both very large. It should be noted that the current approach
would allow the construction of a nearly zero biased network
(close to zero training error) that will also have good general-
ization capabilities and yield a finite small variance for the test
set. This is possible in the framework of the bias/variance
dilemma (Geman et al., 1992) since any test data presented to
the network that are not well represented by the current training
set (that is, test data not included in the current test set of 45
compounds) would be labeled as “unable to classify” in ARTa

within the classification error tolerance and considered as a
new candidate for training. Very large or infinite errors could
be assumed for these hypothetical, unclassifiable test data so
that the product of the error of the training set times the error
of a test set, formed by the classifiable and unclassifiable
compounds, would still be finite. In addition, the use of SOM
prototypes, for enhanced learning in a fuzzy-ARTMAP–based
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Figure 3. Topological classification of the component planes for the 23 molecular descriptors into six classes. The
gray levels indicate distances between compounds within clusters in the nodes of the SOM.
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model, does not imply weighted fitting of input data because at
most only a few extra classes in the ART modules will be
created during training. More information and discussions on
statistics and generalization in relation to neural networks can
be found elsewhere (Cheng and Titterington, 1994).

The performance of the fuzzy-ARTMAP–based QSPR with
the most suitable set of 11 descriptors is summarized in Figure
4. This fuzzy-ARTMAP–based QSPR model performed with
an average absolute error and standard deviation of 0.09
(1.21%) and 0.29 (3.65%) ln�� units, respectively, for the
complete set of 325 compounds. The remarkable generalization
capability of this model is illustrated by the prediction of ln��

for the test set of 45 chemicals, as shown in Figure 4a, with an
average absolute error and standard deviation of 0.52 (6.64%)
and 0.51 (6.23%) ln�� units, respectively. The performance of
the above QSPR for the training set of 280 compounds [Figure
4(a)] was with a very low average absolute error and standard
deviation of 0.02 (0.36%) and 0.02 (0.60%) ln�� units, respec-
tively. This high level of performance for the training set is
expected, given that fuzzy ARTMAP is a neural classifier. In
fact, errors for the training set could ultimately be reduced to
zero by increasing precision to the point where all fuzzy
ARTMAP classes are occupied each with a single compound.
However, this would hinder or prevent predictive generaliza-
tion during testing, which is the main goal of QSPR models.
Thus, a vigilance parameter of 0.999 was used in the current
study as a compromise between adequate precision for training
and reasonably accurate predictive generalization for the test-
ing phase, as illustrated in Figure 4a.

The performance of the fuzzy ARTMAP QSPR with the
most suitable set of descriptors was further increased upon
training using both the 100 prototypes (obtained from the SOM

analysis as described before) and the training set of 280 com-
pounds. In this case of enhanced training, the vigilance param-
eter of the ARTMAP algorithm was relaxed from 0.999 to
0.995 to promote generalization in the testing, despite the likely
increase in training errors that this strategy could cause. The
resulting QSPR performance for the test set was with average
absolute error and standard deviation that decreased to 0.40
(5.35%) and 0.48 (5.85%) ln�� units, respectively, relative to
the performance obtained without the prototypes [Figure 4b].
We note that, as a consequence of this strategy of enhancing
generalization during testing, the average absolute errors and
standard deviations when training with the prototypes in-
creased to 0.05 (1.07%) and 0.04 (6.42%) ln�� units. Compar-
ison of Figure 4(a) and (b) indicates that the inclusion of
prototypes in the training phase improves the classification of
12 chemicals out of the 45 test set chemicals. This is so because
11 of these chemicals were assigned during testing to fuzzy
ARTMAP classes formed by prototypes of occupied SOM
nodes and one was assigned to a class formed by a prototype of
an empty but trained node, as indicated in Figure 4(b).

In addition to the above QSPRs, the four most suitable MQS
measures alone (Cou, CouC6H8, CouC3H7Cl, and Ove) were used
to construct a QSPR using the same training set of 280 com-
pounds. The performance of the resulting QSPR, for the test set
of 45 compounds, was with an average absolute error and
standard deviation of 0.92 (11.2%) and 1.09 (11.5%) ln��

units, respectively. Although the above error and standard
deviation are approximately twice those obtained for the most
suitable set of 11 indices (Figure 4), the performance is re-
markable considering that only four MQS matrices were used.
It is also interesting to note that the inclusion of the 100 SOM
prototypes in the training phase did not improve the QSPR’s

Table 3. Initial Set of Descriptors, Covariances, and Cumulative Dissimilarity Measures Ordered According to the SOM
Variable Selection Procedure

Descriptor Abbreviation Class
Covariance with
Target Variable

Cumulative
Dissimilarity

Valence connectivity index of first order 1�v I 0.632 0.703
Sum of atomic numbers N II 0.583 0.553
Valence connectivity index of fourth order 4�v III 0.553 0.366
Dipole moment  IV �0.535 0.276
Electron–nuclear attraction ENA V �0.508 0.243
Coulomb self-similarity Cou VI 0.425 0.229
Valence connectivity index of the third order 3�v I 0.584 0.212
Number of filled levels NFL II 0.543 0.204
Average polarizability AP I 0.541 0.195
Valence connectivity index of second order 2�v II 0.527 0.191
Nuclear–nuclear repulsion energy NNR III 0.496 0.190
Hansen polarizability HP IV �0.494 0.192
Hansen hydrogen bonding HH IV �0.491 0.196
Exchange energy EE V �0.451 0.198
Resonance energy RE V �0.439 0.201
Kappa second-order index 2� III 0.437 0.211
Valence connectivity index of zero order 0�v III 0.435 0.218
Molecular quantum cross-similarity of

Coulomb with respect to C6H8 CouC6H8 VI 0.419 0.234
Molecular quantum cross-similarity of

Coulomb with respect to C3H7Cl1 CouC3H7Cl1 VI 0.334 0.253
Overlap self-similarity Ove VI 0.170 0.257
Molecular quantum cross-similarity of

Overlap with respect to C6H8 OveC6H8 VI 0.121 0.270
Molecular quantum cross-similarity of

Overlap with respect to C5H9N1O1 OveC5H9N1O1 VI �0.037 0.377
Hansen dispersivity HD IV �0.002 0.381
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performance in this case, given that errors associated with the
description halogen groups with only MQS matrices also prop-
agate over the map and thus negate the increase in interpolation
capabilities. It is noted that the errors associated with hydro-

carbon families containing halogen substituents tend to be the
largest in Table 4.

To illustrate the potential of using MQSM as the fundamen-
tal source of molecular information in QSPR building, an
additional model was developed with the set of four similarity
measures mentioned above (Cou, CouC6H8, CouC3H7Cl, and
Ove), the sum of atomic numbers, and the sum of atomics
numbers of heteroatoms, to better account for size effects and
for the presence of such atoms in the target molecules. The
performance of the above QSPR, for the test set of 45 com-
pounds, was with an average absolute error and standard de-
viation of 0.57 (7.06%) and 0.57 (7.06%) ln�� units, respec-
tively, a level of performance similar to that obtained with the
most suitable set of 11 indices [Figure 4a].

It is instructive to explore the performance of the present
QSPRs for specific families of organic compounds, as illus-
trated in Table 4. Clearly, the MQS-based model performs very
well when the training data set is large and the range of
molecular sizes (that is, number of carbon atoms) is narrow.
This is an indication of the need for more and/or improved
shape information than provided by the Overlap operator. It is
noted that the performance results given in Table 4, in terms of
the average absolute errors and standard deviations, are for the
complete data set (training plus test data); thus differences
between the different models are not as evident as with com-
parisons based on the test set (such as Figures 4 and 5). This
choice, however, facilitates comparison with previous studies,
as discussed in the next section.

Comparison with previous studies

The current fuzzy ARTMAP models were compared with
the best performing neural network–based QSPR reported by
Mitchell and Jurs (1998) and with the regression-based QSPR
of Medir and Giralt (1982) for specific chemical families. The
model of Mitchell and Jurs (1998) is a multilayer perceptron,
with an input–hidden-output layer architecture of 12–6–1
units, respectively, trained with a quasi-Newton BFGS (Broy-
den–Fletcher–Goldfarb–Shanno) algorithm. These authors
used 12 indices that included three topological descriptors, four
charged partial surface area indices, two hydrogen bonding
measures, the heat of formation, and two theoretical linear
solvation energy relationships. To consistently compare previ-
ous and current models for the different chemical families
present in the data set of 325 compounds (Mitchell and Jurs,
1998; Sherman et al., 1996), and to avoid the impediments
caused by the different training and test sets used, the results
are presented in Table 4 in terms of chemical families without
distinguishing training and test compounds. Also, the correla-
tion reported by Medir and Giralt (1982) was recalculated for
each of the chemical families A, B, and C to adapt it to the
more complete set of current data (Mitchell and Jurs, 1998;
Sherman et al., 1996).

The performance of the present fuzzy-ARTMAP–based
QSPR model was better than the neural network model of
Mitchell and Jurs (1998) for each of the 13 homogeneous
families present in the data set of 325 compounds (Table 4).
The current two models, developed with the most suitable set
of descriptors and trained by either the training set of 280
compounds or by these compounds with the 100 prototypes
from the SOM, performed with absolute mean errors and

Figure 4. Comparison between experimental ln�� val-
ues and those predicted with the two current
fuzzy ARTMAP models developed using the
most suitable set of eleven descriptors and
trained with (a) 280 compounds or (b) 280 com-
pounds complemented with 100 prototypes of
clustered compound in the SOM nodes.
Note that (b) depicts results only for the test data set of 45
compounds.

1330 AIChE JournalJune 2004 Vol. 50, No. 6



Figure 5. Comparison between experimental ln�� values and those predicted with the current fuzzy ARTMAP model
developed using only the most suitable set of four MQSM and trained with 280 compounds.

Table 4. Comparison of Performances of Current and Previous QSPR Models in Terms of Absolute Mean Error (Standard
Deviation) in the Prediction of ln�� for the 13 Families of Organic Compounds Included in the Data Set

ID Family
Number of
Compounds

Number of
Carbon
Atoms

Fuzzy
ARTMAP
Best Set

Fuzzy
ARTMAP

MQSM

Fuzzy ARTMAP
Best Sets and

SOM Prototypes

12–6–1 NN(*)

(Mitchell and
Jurs10)

Medir and
Giralt9

A Monoaraomatic hydrocarbons 21 C6–C10 0.22 (0.57) 0.53 (1.34) 0.07 (0.15) 0.54 (1.13) 0.56 (1.09)(1)

B Polyaromatic hydrocarbons 5 C9–C12 0.07 (0.10) 0.16 (0.38) 0.06 (0.10) 0.22 (0.28) 0.30 (0.15)(2)

C Aliphatic hydrocarbons 35 C4–C8 0.10 (0.25) 0.32 (0.75) 0.15 (0.38) 0.45 (0.47) 0.46 (0.32)(3)

D
Hydrocarbons with oxygen

substituents 124 C1–C18 0.06 (0.17) 0.09 (0.31) 0.09 (0.18) 0.70 (0.78) —
E Halogenated aliphatic hydrocarbons 66 C1–C6 0.12 (0.34) 0.12 (0.43) 0.12 (0.27) 0.82 (2.25) —

F

Aromatic hydrocarbons with
nitrogen and/or oxygen
substituents 16 C5–C8 0.05 (0.12) 0.06 (0.20) 0.06 (0.06) 1.12 (2.11) —

G

Hydrocarbons with sulfur
substituents and/or oxygen and/or
nitrogen 19 C1–C4 0.09 (0.14) 0.26 (0.61) 0.10 (0.16) 0.18 (0.12) —

H Cyclic hydrocarbons 15 C5–C9 0.07 (0.17) 0.10 (0.34) 0.10 (0.19) 0.51 (0.52) —

I
Aromatic hydrocarbons with oxygen

substituents 8 C7–C8 0.04 (0.03) 0.03 (0.03) 0.03 (0.04) 0.25 (0.23) —
J Halogenated aromatic hydrocarbons 9 C6–C7 0.01 (0.02) 0.06 (0.12) 0.07 (0.05) 0.27 (0.24) —
K Heterocyclic hydrocarbons 5 C4–C8 0.02 (0.03) 0.00 (0.00) 0.03 (0.04) 0.36 (0.25) —

L
Aliphatic hydrocarbons with

halogen and oxygen substituents 2 C2–C4 1.41 (1.99) 1.00 (1.42) 0.10 (0.05) 0.15 (0.11) —

M
Aliphatic hydrocarbons with nitro

and halogen groups 1 C1 0.01 (0.00) 0.01 (0.00) 0.06 (0.00) 0.08 (0.00) —

*The performance of this model by families was not reported in the original reference. The values included in this table have been currently calculated with the original
12–6–1 feedforward architecture.

(1)ln�� � 2.99 
 2.58 1�v.
(2)ln�� � �0.054 
 3.1 1�v.
(3)ln�� � 5.461 
 2.739 1�v 
 5.884.
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standard deviations that are on the average seven times smaller
than errors obtained with the model of Mitchell and Jurs
(1998). Improved QSPR performance is also noted relative to
the linear regression models of Medir and Giralt (1982). It is
interesting to note that, for the two families of aromatic hydro-
carbons A and B, this linear model with only the first-order
connectivity as descriptor yields comparable predictions to
those obtained with the model of Mitchell and Jurs (1998)
calculated for the whole data set. In the case of aliphatic
hydrocarbons (family C) the dipole moment was also included
in the linear correlation to maintain performance.

It is instructive to compare the present fuzzy ARTMAP
model, trained with the most suitable set of descriptors and 280
compounds, to the Mitchell and Jurs (1998) and Medir and
Giralt (1982) QSPRs for specific chemical families, as depicted
in Figure 6(a)–(c) for monoaromatic, polyaromatic, and ali-
phatic hydrocarbons. In the case of monoaromatic hydrocar-
bons (benzene and toluene derivatives), deviations of previous
models are observed mainly at the highest ln�� values [Figure
6(a)], whereas the polyaromatics deviations [Figure 6(b)] are
more evenly distributed over the range studied. Both previous
models deviate over the whole range of ln�� values covered for

Figure 6. Comparison of ln�� between the current fuzzy ARTMAP model (developed using the most suitable set of
eleven descriptors and trained with 280 compounds) and previous QSAR models for (a) monoaromatic
hydrocarbons, (b) polyaromatic hydrocarbons, and (c) aliphatic hydrocarbons.
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aliphatic hydrocarbons, with greater scatter in the Mitchell and
Jurs (1998) model. The current “best” model performed rea-
sonably well over the entire data range covered except for the
outlier 1-octene.

Conclusions

The integration of self-organizing maps (SOMs) with a
fuzzy ARTMAP neural system was applied to develop QSPRs
for the aqueous infinite dilution activity coefficient of organic
compounds based in a heterogeneous data set of 325 organic
compounds. The present study demonstrated that SOMs can be
effectively used to classify organic chemicals according to their
structural information (that is, in terms of molecular descrip-
tors). A SOM-based analysis was shown to be effective for
selecting the most suitable set of descriptors from an initial set,
and for generating complementary interpolated input informa-
tion for training. The QSPRs developed for ln�� performed
with remarkable predictive generalization capabilities.

The fuzzy-ARTMAP–based QSPR developed with 11 de-
scriptors, based on the data set of 325 compounds, performed
with average absolute errors of 0.02 (0.36%) and 0.52 (6.64%)
ln�� units, for the training and test sets, respectively. This
performance was superior to that of other QSPRs reported in
the literature. When the prototypes were added to the training
set, the average absolute error slightly increased to 0.05
(1.07%) ln�� units and for the training set and decreased to
0.40 (5.36%) ln�� units for the test set. The performance of the
ln�� QSPR, based only on four molecular quantum similarity
measures, also selected by means of SOMs from a limited pool
of six similarity measures, was better than that of previous
QSPR models, with average absolute errors of 0.02 (0.38%)
and 0.92 (11.2%) ln�� units for the training and test sets,
respectively. The present results suggest that it should be
possible to develop accurate QSPRs using the information
contained in the quantum similarity matrices. Such an ap-
proach, however, will require improvements in the calculation
of the quantum atomic density functions of molecules with
heteroatoms using the metrics given by different quantum
operators.

Although the present study focused on the aqueous infinite
dilution activity coefficient as a case study, the present ap-
proach of using SOM analysis for features extraction, in com-
bination with the modified fuzzy-ARTMAP classifier for vari-
able prediction, could be an effective tool in various chemical
engineering applications for the identification of critical (or
significant) variables or parameters, pattern recognition, and
establishing parameter–property relations.

Available supporting information

We provide Table 5 as supplemental, supporting data, listing
the best set of molecular descriptors and the experimental
infinity dilution activity coefficients for the 325 organic com-
pounds considered.
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