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The emergence of explosive collective phenomena has recentlytedkraach attention due to the discovery
of an explosive percolation transition in complex networks. In this Letterdemonstrate how an explosive
transition shows up in the synchronization of complex heterogeneousistly incorporating a microscopic
correlation between the structural and the dynamical properties of #hensy The characteristics of this ex-
plosive transition are analytically studied in a star graph reproducing shétsebtained in synthetic scale-free
networks. Our findings represent the first abrupt synchronizatimsition in complex networks thus providing
a deeper understanding of the microscopic roots of explosive critigaigmena.

PACS numbers: 89.20.-a, 89.75.Hc, 89.75.Kd

Synchronization is one of the central phenomena represen&nd show that the combination of heterogeneity and the above
ing the emergence of collective behavior in natural and syneorrelation between structural and dynamical featuresabire
thetic complex systems [1-3]. Synchronization processes d the core of the explosive synchronization transition.
scribe the coherent dynamics of a large ensemble of intercon Let us consider an unweighted and undirected network of
nected autonomous dynamical units, such as neurons, freflieV coupled phase-oscillators. The phase of each oscillator,
or cardiac pacemakers. The seminal works of Watts and Stratenoted by, (¢) (i = 1,..., N), evolves in time according to
gatz [4, 5] pointed out the importance of the structure adrint  the Kuramoto model [20]:
actions between units in the emergence of synchronization,
which gave rise to the modern framework of complex net-
works [6? ].

Since then, the phase transition towards synchronization
has been widely studied by considering non-trivial netwadrk wherew; stands for the natural frequency of oscillaioiThe
interaction patterns [7]. Recent results have shown that thconnections among oscillators are encoded in the adjacency
topological features of such networks strongly influencnbo matrix of the network,A, so that4,; = 1 when oscillators
the value of the critical coupling\., for the onset of synchro- i and;j are connected whilel;; = 0 otherwise. Finally, the
nization [8—12] and the stability of the fully synchronizgidte = parameter\ accounts for the strength of the coupling among
[13-16]. The case of scale-free (SF) networks has deservadterconnected nodes.
special attention as they are ubiquitously found to repriese  The original Kuramoto model assumed that the oscillators
the backbone of many complex systems. However, the topowere connected all-to-all.e. A;; = 1 Vi # j. In this setting,
logical properties of the underlying network do not appear t a synchronized statég. a state in whicld;(t) = 6;(t) Vi, j
affect the order of the synchronization phase transitidros  andv¢, shows up when the strength of the couplinig larger
second-order nature remains unaltered [8]. than a critical value [20—22]. To monitor such synchroriaat

More recently, the study of explosive phase transitions irtransition as\ grows, the following complex order parameter,
complex networks has attracted a lot of attention sinceiie d which quantifies the degree of synchronization among\he
covery of an abrupt percolation transition in random [17] an oscillators, is used [23]:
SF networks [18]. However, several questions about the mi- N
croscopic mechanisms responsible of such an explosive per- r(£)e¥® — %Z 2105 (1) @
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colation transition and their possible existence in other d

namical contexts remain open. In this line, we conjectuag th

such dynamical abrupt changes occur when both, the locathe modulus of the above order parametet,) < [0, 1],

heterogeneous structure of networks and the dynamics on tQReasures the coherence of the collective motion, reacheng t

of it, are positively correlated. valuer = 1 when the system is fully synchronized, while
In this Letter, we prove our conjecture in the context of ther = 0 for the incoherent solution. On the other hand, the value

synchronization of Kuramoto oscillators. We show that anof ¥(¢) accounts of the average phase of the collective dynam-

explosive synchronization transition emerges in SF neksvor ics of the system. Typically, the average (over long enough

when the natural frequency of the dynamical units are positimes) value ofr as a function of the coupling strengihdis-

tively correlated with the degree of the units. Furthermore plays a second-order phase transition from= 0 tor = 1

we analytically study this first-order transition in a staagh ~ with a critical coupling\. = 2/(rg(w = 0)), whereg(w)



ing progressively the value of and computing the stationary
value of the order parameterfor \g, A\g + 0A,..., \g + ndA.
Alternatively, the backward continuation is performed ey d
creasing the values offrom \g + nd\ to \y. The panels 1a,
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the frequency distributiop(w)) increases.
The most striking result is however observed for the BA
| network (panel 1d) in which a sharp, first-order synchroniza
Backward —— \ tion transition appears. In the case of the forward continna
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FIG. 1: (color online) Synchronization diagramé\) for different ~ Motion. Moreover, the diagram corresponding to the back-
networks constructed using the interpolation model introduced ifward continuation also shows a sharp transition from thg ful
[25]. Thea values in each panel are @)= 1 (ER), (b)a = 0.6, (c)  synchronized state to the incoherent one. The two sharp tran
a = 0.2 and (d)a = 0 (BA). The four panels show botForward  sitions takes place at different valuessogo that the whole
and BackWardCOntinUatiOnSI in\ USing increments od\A = 0.02. ) Synchron|zat|0n d|agram dlsplays a Strong hysteres|s
The size of the networks i®% = 10° and the average degree is To analyze deeply the change of the order of the synchro-
(k) = 6. o - ; .
nization transition, we have monitored the evolution ofdke
namics for every node by computing their effective freqyenc

. L ) o along the forward continuation, see Fig. 2 . The effectiee fr
is the distribution of the natural frequencigsy;}, and it is quency of a nodeis defined as

assumed to be unimodal and even [23].

Here we will focus on the influence of the dynamical and e — 1 /HT 6;(7) dr 3)
topological characteristics at the local level (the nodethe ! T/ ! ’
network and their interactions) in the emergence of global . )
synchronization. In particular, we will identify the inteal W!th,T > 1. We have also computgd the evquuonwﬁﬁl
frequency of each nodedirectly with its degreek,, so that  Within @ degree class, (w)y,, averaging over nodes having
wi = k; in Egs. (1). Note that this prescription automatically 'dentical degreé:
sets that the distribution of frequenciggy) = P(k) but not 1 off
vice versa [24]. {whr = N Z Wi

To study the effects of the correlation between dynamical
and structural attributes, we simulate the Kuramoto modelyhere N, = N P(k) is the number of nodes with degrée
on top of a family of networks generated according to [25].in the network. From the panels in Fig. 2 we observe that the
This model allows to construct networks with the same avindividual frequencies and the different curves »(\) con-
erage connectivityk), interpolating from Erds-Renyi (ER)  verge progressively to the average frequency of the system
graphs to Baradsi-Albert (BA) SF networks by tuning a sin- () = (k) = 6 until full synchronization is achieved. Panel 2a
gle parametew. The growth of the networks assumes that a(ER graph) shows that the convergencéXtes first achieved
newly added node either attaches randomly with probakility py those nodes with large degree while the sniatlasses
or preferentially to those nodes with large degree with prob achieve full synchronization later on. As the heterogeneit
bility (1 — ). In this way,a = 1 gives rise to ER graphs with  the network increases (see= 0.6 anda = 0.2 in panels
a Poissonian degree distribution whereasifer 0 the result- - 2b and 2c, respectively) the differences in the convergefice
ing networks are SF with’(k) ~ k3. Intermediate values the k-classes decrease. Finally, for the BA network (Fig. 2d),
a € (0,1) tune the heterogeneity of the network, which in- we observe that nodes (and thus the differeiasses) re-
creases when going from = 1to a = 0. In the four panels  tain their natural frequencies until they become almody ful
of Fig. 1, we report the synchronization diagrams of four net |ocked, which signal the abrupt synchronization observed i
work topologies constructed using this model. The limitingFig. 1d. Thus, the first-order transition of the BA network
cases of ER and BA networks correspond to panel 1a and 1dorresponds to a process in which no microscopic signals of
respectively. The size of these networks afe= 10* while  synchronization are observed until the critical couplings
the average connectivity is set o) = 6. reached.

For each panel in Fig. 1 we have computed two synchro- To further explore the correspondence of the explosive syn-
nization diagramsr(\), labeled afrorward and Backward  chronization transition with the SF nature of the undedyin
continuations. The former diagram is computed by increasgraph, in Fig. 3.a we show the synchronization diagrams for
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FIG. 3: (color online) Panel (a) shows the synchronization diagrams
r(A) for several SF networks constructed via the configurational
model. All the networks have a degree-distributiBiik) ~ k=7
with v = 2.4, 2.7, 3.0, and3.3 while N = 10%. The steps of
the continuation are set ®\ = 0.02. In panel (b) we show the
synchronization diagrams of the same SF networks without the local
correlation between degrees and natural frequencesw; # ki,
while the distribution of natural frequencies is sfl(w) ~ w™7.
FIG. 2: (color online) The panels show the evolution of the effective
frequencies of the nodes along the (forward) continuation in the four
model networks of Fig. 1. The colored dots account for Single'nOdQed to the ana'ysis of ﬂ'ﬂarconﬁguraﬁon' a specia' structure
values (colors sFand for their respective degree) whilg the solid Iin_eﬁ]at grasp the main property of SF networks, namely the role
z?ﬁ‘gdt:: fg\j’iwg?ﬁ eosfathmee%\gfgg value of the effective frequenc'e%f hubs. Therefore, we explore the synthor?ization trimsit_

of such a configuration and show that it is indeed explosive
when the correlatiow; = k; holds. A star graph (as shown in
the inset of Fig. 4a) is composed by a central node (the hub)

bution’ exponents. These graphs have been constructegl usi@nd & Peripheral nodes (or leaves). Each of the peripheral

the configurational model [26] by imposing a degree distri-N°des connects solely to the hub. Thus, the connectivity of
bution P(k) ~ k=7 with v = 2.4, 2.7, 3.0 and3.3. The the leaves ig; = 1 (i = 1,..., K) while that of the hub is

synchronization diagrams are obtained by forward continua®» = K- Let us suppose that the hub has a frequengy

tion (as described above) starting)at= 1 and performing  While all the leaves beat at the same frequency

adiabatic increments @i\ = 0.02. Again, for each value of First we set a reference frame rotating ywth the average
A the Kuramoto dynamics is run until the valuesofeaches ~Phase of the systemi(i) = W(0) + ¢, being(2 the av-

its stationary state. From the figure it is clear that a firsieo ~ €7@0€ frequency of the oscillators in the str= (Kw +
synchronization transition appears for all the reportddeg ~ w»)/ (/€ + 1). In the following we set(0) = 0 without loss

of v pointing out the ubiquity of the explosive synchroniza- of generality so that the transformed variables are defised a

tion transition in SF networks. Moreover, the onset of syn-?r» = 0n—$t forthe huband; = 0, Qi (withj =1, ..., K)
chronization,\,, is delayed as decreases,e. when the het- for the leaves. Thus, the equations of motion for the hub and

erogeneity of the graph increases. the leaves read:

different uncorrelated SF graphs with different degre¢ridis

Up to now, we have shown that the explosive synchroniza- ' K
tion transition appears in SF when the natural frequendies o on = (wp — Q)+ A Z sin(¢; — én), (5)
the nodes are correlated with their degrees. To show thet thi j=1
correlation is the responsible of such explosive transjtio ¢} = (w— Q)+ Asin(¢n — ¢;), with j = 1...K.(6)

Fig. 3b we show the synchronization diagram for the same
SF networks used in Fig. 3a, but when the correlation betn this rotating frame the motion of the hub, Eq. (5), can be
tween dynamics and structure is broken in such a way that thexpressed as:
same distribution for the internal frequenciggy) = w7 is )
kept. To this end, we made a random assignment of frequen- on = (wn, — Q) + MK + 1)rsin(op) , @)
cies to nodes according w). The plots reveal that now
all the transitions turn to be of second-order, thus rednger SO that it becomes clear that the hub motion is governed by
the usual picture of synchronization phenomena in compleis (transformed) frequency and a term of coupling with the
networks. Therefore, the first-order transition arises tiue mean-field motion of the star. Now, imposing that the phase
the positive correlation between natural frequencies &ed t Of the hub is lockedg,, = 0, we obtain:
degrees of the nodes in SF networks [27].

All the simulations results presented corroborate our con- sin ¢y, = (wn =) )
jecture about the explosive percolation transition in SF ne AK +1)r
works. To get analytical insights, we reduce the problerd-stu
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of the distribution of natural frequencies. Our findings-pro
vide with an explosive phase transition of an important macr
scopic phenomena, synchronization, in a widely studied dy-
namical framework, the Kuramoto model, thus shedding light
to the microscopic roots behind these phenomena and paving
= . the way to their study in other dynamical contexts.
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at some value. < 1 the transition turns into a second-order
one.



