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Singular Value Decomposition (SVD) is a technique based on linear projection theory, which has
been frequently used for data analysis. It constitutes an optimal (in the sense of least squares)
decomposition of a matrix in the most relevant directions of the data variance. Usually, this
information is used to reduce the dimensionality of the data set in a few principal projection
directions, this is called Truncated Singular Value Decomposition (TSVD). In situations where
the data is continuously changing the projection might become obsolete. Since the change rate
of data can be fast, it is an interesting question whether the TSVD projection of the initial
data is reliable. In the case of complex networks, this scenario is particularly important when
considering network growth. Here we study the reliability of the TSVD projection of growing
scale free networks, monitoring its evolution at global and local scales.
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1. Introduction

There exists a vast literature that acknowledges Singular Value Decomposition as a valuable tool for
information extraction from matrix-shaped data. This approach and its truncated variant have been ex-
traordinarily successful in many applications [Golub & Van Loan, 1996], in particular for the analysis of
relationships between a set of documents and the words they contain. In this case, the decomposition yields
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information about word-word, word-document and document-document semantic associations; the tech-
nique is known as latent semantic indexing [Berry et al., 1995] (LSI) or latent semantic analysis [Landauer
& Dumais, 1997] (LSA). In the field of complex networks, we recently introduced SVD as a useful tool to
scrutinize the modular structure in networks [Arenas et al., 2010].

Remarkably, a common characteristic of these applications is their dynamic nature. In order to attain
successful information retrieval, for instance in a query, LST or LSA must rely on the fact that SVD of textual
resources is always up to date. Unfortunately, databases rarely stay the same. Addition and/or removal of
information is constant, meaning that catalogs and indexes quickly become obsolete or incomplete. Turning
to networks, the question is equally pertinent: both natural and artificial networks are dynamic, in the
sense that they change through time (and so do their modular structures). Paradigmatic examples of this
fact are the Internet, the World Wide Web or knowledge databases like Wikipedia: all of them have been
object of study from a graph-theoretical point of view [Pastor-Satorras & Vespignani, 2004; Capocci et al.,
2006; Zlatié¢ et al., 2006]. Given this realistic scenario, a major question arises, namely, for how long TSVD
stands as a reliable projection of evolving data.

In this paper we study the stability of TSVD as applied on changing networks. In particular, we want to
quantify the differences between successive TSVD projections of evolving networks. To this end we devise
a set of measures of global and local reliability, and apply them to a classical model of network growth, the
Barabasi-Albert’s (BA) scale-free network [Barabasi & Albert, 1999]. The BA model consists in a random
network whose formation is driven by: growth, the network starts with a small number of nodes, and a new
one is added at each time step; and preferential attachment, the probability of a new node 4 linking to a
previously existing node j is proportional to the current degree of node j. This mechanism yields networks
with scale-free degree distributions P(k) = k3.

This work is partially motivated by the application of TSVD to analyze the mesoscale of networks and
its temporal evolution. In [Arenas et al., 2010], the object of analysis is the contribution matriz C, of N
nodes to M modules, where a module (or community) is a set of nodes with more connections between
them than with the rest of the network. The rows of C' correspond to nodes, and the columns to modules.
The analysis of this matrix is the focus of our research. The elements (', are the number of links that node
1 dedicates to module «, and is obtained as the matrix multiplication between the network’s adjacency
matrix A and the partition matriz S:

N
Cia =Y _ AijSja, (1)
=1

where S, = 1 if node j belongs to module o, and S;, = 0 otherwise. Note that certain changes in the
topology might not be reflected in the values of C', for example the rewiring of the connections of a node
towards other nodes in the same community. In [Arenas et al., 2010] it was supposed that the modules where
not overlapping, thus forming a partition, but the same analysis could have been done with overlapping
and fuzzy memberships of nodes to modules.

To measure the reliability of the TSVD projection of the contribution matrix, here we will consider the
“worst case scenario” where each node belongs to its own community. This case corresponds mathematically
to C' = A. Establishing that TSVD is robust to change in these circumstances will settle the fact that TSVD
is robust to change on a coarse-grained structure.

2. Analysis of networks based on TSVD

Given a rectangular N x M (real or complex) matrix A, SVD stands for the factorization into the product
of three other matrices,

A=UxVT, (2)
where U is an unitary N-by-N matrix (left singular vectors), and describes the original row entities as
vectors of derived orthogonal factor values; ¥, the singular values, is a diagonal N-by-M matrix containing

scaling values; and VT denotes the conjugate transpose of V', an M-by-M unitary matrix, which describes
the original column entities in the same way as U.
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A practical use of SVD is dimensional reduction approximation via truncation, TSVD. It consists
in keeping only some of the largest singular values to produce a least squares optimal, lower rank order
approximation. For example, severe dimensional reduction is a condition for success in machine learning
SVD applications [Deerwester et al., 1990; Berry et al., 1995; Landauer et al., 1998].

In the case of a rank r = 2 approximation, the first two left and right singular vectors are unique
(up to a sign) if the ordered singular values o; of the matrix ¥ satisfy o1 > 09 > o3 [Golub & Van Loan,
1996]. This dimensional reduction is particularly interesting to depict results in a two-dimensional plot for
visualization purposes. Here we suppose that rank(A) > 2.

The idea we developed in our previous work [Arenas et al., 2010] is to compute the projection of the
connectivity of nodes (rows in A) into the space spanned by the first two left singular vectors, we call
this the projection space Us and we denote the projected vector of the i-th node as n;. More precisely,
if Us is the matrix formed by the first two columns of U, then n; is the i-th row of Us. Given that the
transformation is information preserving [Chu & Golub, 2005] up to rank r = 2, the map obtained gives
an accurate representation of the main characteristics of the original data, visualizable and, in principle,
easier to scrutinize. It is important to highlight that this approach has essential differences with classical
pattern recognition techniques based on TSVD such as Principal Components Analysis (PCA) or, equiv-
alently, Karhunen-Loeve expansions. Our data (columns of A) can not be independently shifted to mean
zero without loosing its original meaning, this restriction prevents the straightforward application of the
mentioned techniques.

To interpret correctly the outcome of the TSVD we change to polar coordinates, where for each node i
the radius R; measures the length of its contribution projection vector n;, and 6; the angle between n; and
the horizontal axis. Large values of R correspond to highly connected nodes, and 6 reflects the adjacencies
of each node in matrix A. Fig. 1 shows the R—f planes of an evolving network to get a visual intuition
of the map’s stability: as the network grows the mapping is distorted. In the following section we develop
measures to quantify the effect of the growth on the TSVD projection.

3. Quantifying the reliability of TSVD on growing networks

As stated in the introduction, the goal of this research is to test how TSVD projection, at rank r = 2,
changes by computing it at different stages of the evolution of BA scale-free networks. This implies that
TSVD will be computed on an initial network of size Ny, and then re-computed for successive node additions
up to a final size Ny = 2Nj. To quantify the effect of growth on TSVD projection, we devise two levels of
study: global and local. We will define measures based on the concept of absolute and relative distances
between nodes, to this end we will work in the metric space Us.

3.1. Global measure

We propose a global quantity that indicates the amount of change in the position of nodes in the map
obtained by TSVD. In the sequence of computed TSVD projections, the nodes’ coordinates in Us space
change. This can be quantified by the difference of vectors n; between the initial and evolved network
projection.

In Fig. 2 we plot the projection of the growing network presented in Fig. 1 on the space Us. We fix our
attention in two time-shots of the evolution corresponding to growths of 30% and 80%. We compute the
differences between positions of the same nodes at different stages (z) as 9; = iy — i, producing a field
map that accounts for the changes. This field map is shown in the insets of Fig.2. When we have a 80%
increase of the initial size, the vectors 9; are longer than in the 30% increment, which evidences a larger
variability, i.e. a progressive degradation in the TSVD reliability.

The global error (Egona) measure we propose to assess successive changes of rank » TSVD projection
compared to the initial data is computed by the expression
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Fig. 1. Three snapshots of a growing network (left side), their corresponding projection on R-6 plane (center) and the
f-overlapping matrices (right side; see [Arenas et al., 2010] for details). For the sake of clarity, the initial set of nodes (a)
N = 1000 are drawn in black; the second snapshot (b) represents a growth of a 30% of nodes, N = 1300, new nodes are drawn
in red. Finally (c) represents a network with N = 1800, last arrived nodes are depicted in green. Some nodes from the initial
set have been highlighted (2, 4, 5, 6, 7, 964) in the R—0 plane, to get a visual intuition of the map’s stability. Note that nodes
with a high value of R (2, 4, 5, 6, 7) remain almost unchanged throughout the topology’s growth; whereas node 964 undergoes
much change from an absolute point of view. The rightmost matrices illustrate the amount of change of nodes with respect to
their 6 angles: as nodes are added in the structure the cosine overlaps between them increasingly distorts the original figure.
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Fig. 2. Projection in the Uz space (U(1) and U(2) are respectively the first and the second components of the vectors n;) of
the evolving network presented in Fig. 1. The insets for N = 1300 and N = 1800 trace the vectors ¥; between the projected
coordinates of each node on the grown network and the original coordinates on the initial network with Ny = 1000. We use
these vectors 9; to quantify the variability of the TSVD. Nodes are colored like in Fig. 1.

where U° represents the truncated left singular vectors of the original network with Ny nodes; and U? also
represents the truncated left singular vectors, but of the grown network with size N, > Njy.

We have applied this global measure to monitor the evolution of the TSVD stability for growing
networks with initial sizes Ng = 1000 and Ny = 10000. Fig. 3 shows the percentage of relative error with
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Fig. 3. Global error on two growing networks with initial sizes Ny = 1000 (above) and Ng = 10000 (below). For each network
we compute the error by increments of 5% of growth. In both cases, the global error is lower than 10% up to the 40% increment
of network size. Each point is the average of 100 simulations.

respect to the original network. In the chart, each successive point represents a 5% of nodes addition. Up
to a 40% growth the global error remains below 10%, and doubling the network size the average error still
remains below 20%. These results show the reliability of the projection after the growing process.

3.2. Local measure

Though informative, the previous global quantity can overlook changes at the microscopic level. The
neighborhood of each node in the Uy plane could undergo changes in the sequence of computed TSVD
projections difficult to be revealed by the global measure defined above. Thus, we propose a measure that
reflects these local changes using the distances between nodes in a neighborhood. Instead of defining a
sharp border for the neighbors of each node, we propose to use a gaussian neighborhood that weights the
distances according to a variance o.

First, we construct the N x N matrix of distances between any pair of nodes in the network at stage
z as:

T

D=\ [ (Ui -v3) ()

k=1

where U? represents the truncated left singular vectors of the network. These distances reflect a measure
of proximity between nodes, independently on the global positioning in the map. The neighborhood is
weighted to prioritize the stability on closer nodes over the distant ones. To this respect, we compute
a matrix of weighted distances S* using a gaussian distribution that establishes a radius of influence as
follows:

DZ.2
PR

2
S5 = De (™) (5)

where we have chosen a radius of influence depending on the node. Rg is the module of the projected vector
n; in the initial network, and o is a constant. This radius of influence proportional to the distance to the
origin, emphasizes nodes with larger R which are the most connected ones, see [Arenas et al., 2010]. Using
different values of o in the gaussian function we can tune the size of the neighborhood. Fig. 4 shows, for
a network with 1000 nodes, three magnified views of a network projection in Uy to illustrate the gaussian
radius of influence.
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Fig. 4. From top to bottom, we present the radius of influence of o = 0.1 (red), 0 = 1 (green) and o = 10 (blue) in the
projection space Us. In the bottom of each chart, we have plotted, for the nodes highlighted in yellow, the gaussian curves
that we added to matrix D? to compute the matrix of weighted distances S~.

Finally, the local error (Ej,..1) measure of reliability we propose is computed as the relative error:
No No
3 S%15 -5
Elocal = = ’;V_O No ) (6)
> 2 1S
i=1j=1
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Fig. 5. Local error on two growing networks with initial size Ny = 1000 (left) and No = 10000 (right). For each network we
compute the relative error for o = 0.1, 1 and 10 by increments of 5% of growth. For small values of o the error is lower, but
in all settings, the reliability of the projection is high. Each point is calculated with 100 simulations.

where S° and S? represent the matrices of weighted distances of the original network with Ny nodes, and
the grown network with size N, > Ny, respectively.

Fig. 5 shows the local error measured on two growing networks by increments of 5% of growth. Their
initial size is No = 1000 (left) and Ny = 10000 (right). For each network we compute the relative error for
o =0.1, 1 and 10. When ¢ = 0.1 only the closest neighbors have a significant weight in the measurement
of the local error. These low values of o give the neighbor-wise error a very local sense. On the other
hand, when ¢ = 10 the gaussian curve becomes flat and the measure is affected by the entire network
perturbations, i.e. every node is equally considered as belonging to the neighborhood. Despite this global
neighborhood for high o values, the local error measure represents a relative distance to each node, and as
we see, doubling the network size the average error remains below 0.1%. These very low error rates ensure
a good reliability of the projection from a local point of view.

4. Conclusions

In this article we have raised the question about reliability of a standard linear projection technique such
as SVD. The question is pertinent because SVD, and in particular its truncated version (TSVD), is rooted
at the heart of some methodologies which pretend to extract useful and reliable information from dynamic
data, i.e. data that is constantly undergoing change. We focus on growing scale-free networks.

We tackle the problem from two complementary points of view. At the large-scale level, we monitor
average changes in nodes’ TSVD projections. This means that each node’s projection is compared against
itself on successive changes.

Note however that success in practical applications of TSVD depends mostly on neighborhood sta-
bility. In other words, coherence of the output when data has suffered changes relies on the fact that the
surroundings of a projected node are similar to those before those changes had happened. From a mathe-
matical point of view, this merely implies that projections change in a coordinated way, such that relative
positions are stable. Keeping this in mind, the local measure developed above captures this facet of the
problem by comparing not the evolution of a nodes position against itself, but rather against the rest of
nodes. Furthermore, we introduce a parameter to weight this variation depending on the distance from the
node of interest. This tunable parameter allows for a finer observation of neighborhood stability, ranging
from immediate neighborhood measures to far-reaching areas. Note that the local measure is orders of
magnitude lower than the global one. This points to the fact that, although the projection changes signif-
icantly, displacements in the plane Us are similar in magnitude and direction on average. In other words,
as a node of the network grows following the preferential attachment, it is highly likely that its neighbors
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also increase their weight staying close together.

Results indicate that TSVD projections are very robust against data growth. From a global point
of view, an addition of 40% of new data implies only an average change of 10% from initial conditions.
Doubling the amount of nodes to a network supposes a modification of 15% in the positions of the set of
initial nodes. More importantly, changes at the local level (neighborhood) are close to 0 even in the most
demanding case.

Such results have been obtained with rather large structures (Ng = 10% and Ny = 10%), which at
the end of the process have doubled their initial size. This ensures that TSVD is reliable in a wide range
of situations. On the other hand, our study focuses on a particular network model (BA) in which time
plays an important role: the later a node appears, the lowest its chances to become an important one (a
hub). We anticipate that the irruption of important entities at late stages of evolution would surely disrupt
TSVD projections in a more significant way. Nonetheless, we stress that growing systems typically develop
smoothly, so our conclusions can be safely held.

Finally, we can briefly relate these results to the original motivation of the manuscript, that is, a
scenario where the modular structure of networks is taken into account. In that situation, the stability
of a TSDV map in the case of network changes is granted given the above reported results. Then, the
characterization of the role of nodes and modules in terms of SVD’s output can be safely regarded as
faithful even in the case of severe changes in the underlying topology.
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