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Abstract 

In this paper we present an adaptation of the Dual 
Priority Scheduling Algorithm to schedule both hard real-
time periodic tasks and soft-aperiodic tasks in shared 
memory multiprocessor systems. The goal is to achieve 
low mean aperiodic response times while meeting all 
periodic task deadlines. Our proposal allows periodic 
and aperiodic tasks to migrate to other processors to 
improve aperiodic mean response time. We show via 
extensive simulations that our approach gives better 
results than local Slack Stealing schedulers. 

 
 

1. Introduction 

Multiprocessor systems have evolved rapidly in the last 
years. At the same time, the use of these powerful 
computing resources in real-time systems has opened 
several problems concerning scheduling strategies [1,2]. 
The problem of determining when and where a given task 
must execute without missing its deadline or 
compromising other task deadlines in multiprocessor 
systems often becomes intractable. Besides, when the 
scheduling is possible, algorithms that are optimal for 
uniprocessor systems are not necessarily optimal when the 
number of processors increases [3] (it is well known that 
optimal scheduling for multiprocessors systems is a NP-
Hard problem [4]). Nevertheless, the great availability of 
these systems has made them interesting for the real-time 
community and the research in this area has been 
reactivated in the last years. Usually, two alternatives are 
proposed to schedule tasks in these systems: (i) local 
scheduling; this methodology first allocates periodic tasks 
to processors and, after that, an optimal uniprocessor 
scheduling algorithm is used individually on each 
processor [1]. And (ii) global scheduling or dynamic 
binding; in this case there is a global scheduler that 
dynamically binds periodic tasks to processors. Recent 

works have evaluated the differences between both 
alternatives [5], comparing the number of schedulable task 
sets.  

Joint scheduling of real-time periodic, sporadic and 
soft-aperiodic task sets (from now on we will use the term 
aperiodic task referring to soft-aperiodic tasks) has been 
extensively studied for uniprocessor systems. For example 
the Deferrable Server [6], the Sporadic Server [7] and the 
Slack Stealing Algorithm [8,9] (that offers an optimal 
scheduling strategy) solve this problem. Unfortunately, 
the applicability of these scheduling algorithms to the 
joint multiprocessor system is not straightforward. 

A common feasible method in multiprocessors systems 
consist in to partition periodic tasks among processors 
statically and after to use a well-known uniprocessor 
scheduling algorithm as a local scheduler. Besides, it is 
also allowed migration of aperiodic tasks to any processor 
[10,11,12]. In this scenario, the periodic task deadlines are 
guaranteed and aperiodic tasks achieve good response 
time because the migration algorithm is intended to 
allocate the task to the most adequate processor. This 
method is specially interesting for processors with 
unbalanced loads because migration favors a more 
efficient use of the whole system. However, it is also 
useful for balanced loads because while a processor must 
execute periodic tasks in order to meet their deadlines 
other processors may be idle or may have enough laxity to 
execute aperiodic tasks. In a previous work [13] we have 
tested this scenario with Slack Stealing local schedulers 
for periodic tasks, allocating aperiodic tasks to processors 
with a global scheduler. The better results were achieved 
using a Next-Fit distribution strategy for the global 
aperiodic scheduler. However, we noticed that the results 
could be improved mainly because the periodic load is 
unbalanced: with local schedulers a processor may be in a 
very busy period while other processors may be nearly 
idle. 

In this paper we propose to use a global scheduler for 
both periodic and soft-aperiodic tasks. The goal is to 
obtain better mean aperiodic response times by allowing 
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periodic tasks to migrate among processors. This scheme 
balances both periodic and aperiodic load. Therefore, with 
a global scheduler periodic tasks are able to advance work 
in any processor, increasing the near future readiness to 
serve aperiodic requests. The existing multiprocessor 
global schedulers (RM [23], EDF [22] and 
AdaptativeTKC [5]) do not deal with aperiodic tasks. 
Furthermore, there are not schedulability tests for these 
global schedulers. The usual schedulability test is 
performed via simulation, because the deterministic nature 
of periodic tasks. The consideration of aperiodic tasks 
introduces stochastic factors and invalidates the 
simulation tests. For this reason, it is necessary to adapt or 
design a global scheduler able to guarantee periodic task 
deadlines and able to serve aperiodic requests.  

Within the uniprocessor domain, the Slack Stealing 
Algorithm (SS) [8,9] is optimal in the sense that it 
minimizes the response time of every aperiodic task 
among all the uniprocessor scheduling algorithms that 
meet all periodic task deadlines. Due to optimality, SS is a 
good candidate to be adapted to multiprocessor 
scheduling. The algorithm relies on the exact 
schedulability conditions given in [24]. It computes 
offline idle processor periods throughout the whole 
hyperperiod and stores these values in a table. At runtime, 
the scheduler uses this table to determine the availability 
to execute aperiodic tasks. Unfortunately, it is not suitable 
as a global scheduler because it is not possible to compute 
a global table. Furthermore, in a generic multiprocessor 
framework, there will be quite a lot of periodic tasks in the 
whole system, with their respective different periods, and 
this would generate a very huge table (its size is 
proportional to the least common multiple of the periods). 
Then SS unpractical as a global scheduler but it is still a 
good reference when measuring aperiodic response times.  

In contrast, the Dual Priority Algorithm (DP) [14,15] 
does not need any pre-calculated table and therefore 
scales with the number of different periodic tasks better 
than Slack Stealing. On the other hand, the mean 
aperiodic response times obtained in previous 
uniprocessor works were worst than those obtained by the 
optimal Slack Stealing algorithm but quite close. In 
addition to its low memory usage, it has very low 
computational overheads, because it is based on an offline 
computation: the worst case response time possible for 
every periodic task due to higher priority periodic tasks 
interference. This value is used to promote a periodic task 
from a low priority level to a higher priority level band. 
This provides the scheduling algorithm with a duality in 
the treatment of the tasks depending on the interferences, 
and therefore it inherits some good characteristics from 
fixed priority algorithms and some from dynamic priority 
algorithms. This duality could be well adapted to 
multiprocessors systems, and in particular to the purpose 
of serving dynamic requests. Furthermore, other benefits 

may be obtained. The original uniprocessor DP purpose 
was to increase the periodic utilization of the processor. 
This was done by establishing a promotion to a higher 
priority for periodic tasks that otherwise would miss their 
deadline with the rate-monotonic priority assignment. 
Within the multiprocessor domain it is possible to 
increase the number of schedulable task sets even more 
because conflictive periodic tasks may use other 
processors spare capacity. For an illustrative example see 
Figure 1. 
 

Figure 1: Dual Priority can increase the number 
of schedulable task sets. This figure represents the 
execution of the task set detailed in the legend using 
(a) RM global scheduling and (b) DP global 
scheduling using two processors. Downwards arrows 
mark task activation and upward arrows mark task 
termination. Although the task set only has a 152% 
total load it is not schedulable by a global scheduler 
with a fixed Rate Monotonic priority (see Figure 1(a), 
where T3 misses a deadline at time t=100). Likewise 
this task set is not schedulable by an Earliest 
Deadline First global scheduler, illustrating that EDF 
is not optimal for multiprocessors [3]. In contrast, 
using a DP global scheduler, if a promotion time 
equal to zero is used for task T3 then the whole 
system is schedulable (see Figure 1(b)). 

 
Additionally, there are extensions of the DP model to 

deal with jitters releases [19], shared resources and 
arbitrary deadlines [20]. These extensions will be 
incorporated to the multiprocessor DP in a future work. 
Our goal in this paper is to adapt DP to multiprocessors 
systems and compare the aperiodic response times with 
SS results. 

The rest of the paper is organized as follows. In 
Section 2 we set the framework and assumptions valid 
through this paper. In Section 3 we detail the adaptation 
of the Dual Priority algorithm to be used as a global 
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scheduler in shared memory multiprocessors. In Section 4 
we study the results found in extensive simulations 
measuring the mean aperiodic response times and in 
Section 5 we summarise the conclusions of this work. 

2. Framework and Assumptions 

Consider a real-time multiprocessor system with N 
symmetrical processors and shared memory. Every 
processor p has allocated a set of n periodic tasks 
TSp={τp1, ...,τpn}. This allocation is performed at design 
time, for example using any of the techniques described in 
[17]. These tasks are independent and can be preempted at 
any time. Each task τpi has a worst-case execution time 
Cpi, a period Tpi and a deadline Dpi, assumed to satisfy Dpi 
≤ Tpi . Every instance k of a task must meet its absolute 
deadline, i.e. the k-th instance of the task τpi , say τpi

k, must 
be completed by time Dpi

k= (k-1)Tpi + Dpi. The 
hyperperiod of the task set is the least common multiple 
of all periods. We express all time measures (i.e. periods, 
deadlines, computations, etc.) as integral multiples of the 
processor clock tick. Each periodic task has a utilization 
factor defined as Upi= Cpi/Tpi and the maximum utilization 
factor in a processor p is Umaxp= max (Upi), 1≤ i ≤ n.  

Each aperiodic task, Jk, has an associated arrival time 
αk, a priori unknown, and a processing requirement Cap

k 
(note that they do not have deadlines). These tasks are 
queued in FIFO order. 

All periodic workloads considered in this paper have a 
total processor utilization (Up) lower than the theoretical 

upper bounds (i.e. Up = τpi∈TSp  Upi ≤ n(21/n-1)). Hence 
any pre-runtime bin-packing algorithm can be used 
without problems to allocate the periodic tasks to 
processors. Recall that the remaining processor capacity is 
used to execute aperiodic tasks. 

Finally, for the sake of simplicity, we assume all 
overheads for context swapping, task scheduling, task pre-
emption and migration to be zero. In fact, some of these 
overheads may be taken into account in the pre-runtime 
worst-case execution analysis. 

 
 

3. Multiprocessor Dual Priority (MPDP). 

The Dual Priority (DP) scheduling algorithm has the 
following characteristics: (i) it guarantees periodic tasks 
deadlines, (ii) it achieves very good mean aperiodic 
response times, (iii) it has very low computation and 
memory requirements, (iv) it can use the full processor 
capacity, (v) it can use periodic tasks spare time (when 
they finish earlier than their worst case execution time) 
and (vi) it recovers quickly and in a controlled way from 
transient overloads. The first four characteristics are very 

important for the objectives of this paper. In particular, 
since in a multiprocessor system the number of tasks can 
be very high, resulting in a very long hyperperiod, which 
means excessive memory requirements for algorithms 
such as static Slack Stealing. However, the most important 
characteristic is that, although it is a fixed priority system, 
it almost has the flexibility of dynamic priority systems. 

 
The Dual Priority Algorithm for uniprocessors is 

based in the offline computation of periodic tasks worst 
case response time, using a recurrent formula (1), which in 
turn is also used as a scheduling test [21]. 

 
This recurrent formula is used pre-runtime to compute 

the worst-case response time of periodic tasks (the final 

Wi is task τi computation requirement and all higher 

priority tasks interference). Thus, the periodic task τi can 
be delayed until its promotion time = Di – Wi. During 
runtime, a periodic task stars with a low priority level 
(lower than aperiodic tasks) and at promotion time its 
priority is updated to a higher level where it will only 
receive the interference of other higher priority promoted 
tasks, being its deadline guaranteed. However, this 
formula is not valid for multiprocessors. 

The alternatives in multiprocessor to the scheduling 
test formula are two: to write an algorithm to find these 
values or to measure the release times through a 
simulation. The former alternative is also difficult and 
probably ineffective, because in a multiprocessor system 
there is an added uncertainty factor: the results depend on 
the decisions previously done about which task to execute 
where and these decisions make some tasks to interfere 
with others or not. For example, it is well known the 
multiprocessor anomaly of reducing some execution times 
can increase the run length [2]. As a consequence, an 
algorithm to compute the worst case response time for 
periodic tasks in a multiprocessor would consider the 
worst situations, giving very pessimistic values.  

We have done some attempt to find the upper bounds 
to periodic task response times and the results obtained 
were far worse than those measured with simulations. We 
have refused this line because using these algorithms as a 
scheduling test result in rejecting perfectly schedulable 
task sets. Furthermore, when the test is passed, the 
computed values are so pessimistic that there is very low 
flexibility to execute aperiodic tasks. 

The other alternative is to run at design time a 
simulation of the multiprocessor system with a pre-
emptive global scheduler based on fixed priorities to find 
out the worst case response time for periodic tasks. This 

)1(
)(

1 CC
T

W
W ij

ihpj j

n
in

i +=
∈

+

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



method is used to determine the schedulability of task sets 
with global RM schedulers in [23]. If the measured 
release times are lower than their respective deadlines the 
system is schedulable and these values could be used in a 
Dual Priority global scheduler at run time. However, a 
new question raises: how long should the design-time 
simulation take?. In an uniprocessor system the simulation 
starts at the critical instant (all tasks are ready to be 
executed at the same time) and can be stopped when every 
periodic task first instantiation is finished. This does not 
hold for multiprocessors: the simulation must run all over 
the hyperperiod to find out the right values. The easy 
example depicted in Figure 2 shows this phenomenon. 

In Figure 2, the first instantiation of task T3 finishes at 
time t=8, with a response time of 8 time units, and the 
second instantiation finishes at time t=29, giving a 
response time of 9 units, i.e., a time unit worse than the 
previous instantiation. This is due to the fact that the 
second instantiation receives the interference of a task T2 
previous instantiation. A similar related phenomenon is 
detailed in [22] when using a global EDF scheduler. 

Figure 2: using a RM global scheduling the 
critical instant is not necessarily the initial time, when 
all tasks are ready to be executed at the same time. 
This figure represents the execution of the task set 
detailed in the legend using RM global scheduling 
with two processors. Downwards arrows mark T3 
activation and upward arrows mark T3 termination. 

 
The methodology described in the previous paragraph 

allows us to execute periodic and soft-aperiodic tasks with 
a global DP scheduler, but still has some drawbacks. The 
introduction of aperiodic tasks implies the introduction of 
indeterminism and produces periodic task shifts. As a 
consequence of these shifts periodic task execution 
patterns that have been not tested in the pre-runtime 
simulation may appear. Therefore, it would be possible to 
miss some deadlines. That means that via simulations it is 
not possible to find the worst response times. The task set 
in Figure 3 allows us to observe this phenomenon in a 
clear way. Figure 3-a plots a global RM execution of this 
example. The worst response time measured for task T3 is 
12 time units. Because its deadline is 21 the resulting 
promotion time is 21-12 = 9. Therefore, a priori this task 
can be delayed 9 time units. 

 
Figure 3: the worst case response time obtained via 

simulation with RM global scheduling can lead to miss 
some deadlines with a global Dual Priority scheduler 

 
Figure 3-b depicts the execution of the same example 

but with an initial offset for the first instantiation of tasks 
T2 and T3. This could be equivalent to the execution 
delays due to aperiodic work. Now the response time of 
T3 is 13, one unit more than previously. If this task was 
delayed one time tick plus (see Figure 3-c) it would miss 
its deadline. Note that a priory this task could be delayed 
two extra time units. This simple example illustrates the 
fact that the Dual Priority for multiprocessors is not so 
straightforward. The global RM execution does not try 
every offset. When executing aperiodic tasks, it is not 
sufficient to simulate a hyperperiod as a schedulability test 
as it is usually done in systems with pure periodic 
workloads (for example, see [5,23]). 

 
In uniprocessor systems the Dual Priority Algorithm 

accomplishes the following premises: 
1) No aperiodic task is executed while any periodic task 

is promoted. 
2) Delaying the execution of a task to its promotion time 

is not a problem because this change in the offsets 
never will be worse than in the critical instant. 

3) The computed worst case response time for any task 
includes the interference produced by all the higher 
priority tasks. 

In multiprocessor systems these premises are not valid. 
The first is not valid because different processors can 
execute simultaneously aperiodic tasks and promoted 
periodic tasks. The second is not valid because the 
number of possible offsets is unbounded and then it is 
possible to have a situation worst than the critical instant. 
The third is not valid because when changing the periodic 
task offsets it is possible for some task to receive 
interference from higher priority periodic tasks not 
considered in the pre-runtime analysis. These anomalies 
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are similar to those described in previous works, for 
example [2,3]. Probably this could be avoided if it was 
forbidden to execute aperiodic tasks during the promotion 
time of any periodic task, but this would lead to long 
periods of time without being able to execute aperiodic 
tasks and the aperiodic tasks response times would be 
very bad. 

Due to all these problems we propose to use the DP in 
a hybrid conformation between local and global 
scheduling. It is possible to execute periodic tasks in any 
processor during a period of time (dynamic phase) and 
execute them into a predefined processor after their 
promotion time (static phase). 

 
Figure 4: Periodic tasks allocation phases in MPDP 
 
In our proposal, all periodic tasks are statically 

distributed among the processors, using any partitioning 
algorithm. Then the uniprocessor formula is used pre-
runtime to compute the worst-case response time of 
periodic tasks locally. These values are used as an extra 
task parameter. During runtime, when a task arrives it is 
queued in a Global Ready Queue (GRQ). In this queue, 
aperiodic tasks have higher priority than periodic tasks 
and are queued in FIFO order. On the other hand, periodic 
tasks are sorted according their fixed low priority (for 
example RM priority order). The global scheduler (GS) 
selects the first N tasks from this queue to execute on the 
N processors. Additionally, there are N High Priority 
Local Ready Queues (HPLRQi with i in [1..N]) used to 
queue promoted periodic tasks. When a periodic task τpi is 
promoted (i.e. it remains as much time as the pre-
computed worst-case response time to its deadline) it is 
moved from the GRQ to its corresponding processor 
HPLRQp. Processors with promoted periodic tasks are not 
allowed to execute tasks from the GRQ. Note that a 
promotion imply a change in priority and can cause a pre-
emption. Note that at promotion time, a periodic task must 
migrate to its original processor, where it will only receive 
the interference of other higher priority promoted tasks, 
being its deadline guaranteed. 

Within this scheme, while a periodic task is not 
promoted, it can be executed in any processor. This 
reduces the number of periodic task waiting for a specific 
processor, taking advantage of idle processors, advancing 

periodic work and making the system ready for future 
aperiodic demands.  

The time involved in the task migration and context-
switching costs has been considered negligible, although it 
will be a subject of further study. At a first attempt, we 
have tried to minimize the impact of these costs by saving 
some migrations using a processor renaming strategy. 
Hence, when a periodic task is promoted and it is the only 
one promoted of its original processor, it has not to 
migrate back to it. In these situations a logical name swap 
between its current processor and its original processor is 
performed, saving the migration. 

4. Results and Discussion 

In this section we show the simulation results 
comparing the global scheduling detailed in the previous 
section (MPDP), versus the local scheduling Slack 
Stealing + global aperiodic scheduling using the next fit 
dynamic binding (SS+NF, [13]). We study the efficiency 
in performance comparing the mean aperiodic response 
time using synthetically generated task sets. As far as we 
know, no global scheduling has been studied to execute 
both periodic and soft-aperiodic tasks. In consequence we 
have compared our global scheduling proposal to the best 
local scheduling: the Slack Stealing algorithm [8,9]. 

We have varied the number of processors in the 
multiprocessor system from 2 to 8, which is quite common 
in shared memory real time systems. 

The periodic task sets have been originally generated 
with balanced loads of 65% per processor. This periodic 
load is low enough to generate schedulable task sets (65% 
< n(21/n-1) [18], where n is the number of tasks) and high 
enough to experiment some difficulties in serving 
aperiodic requests. In the experiments we have increased 
proportionally the periodic load up to 72%, keeping fixed 
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the number of tasks and their corresponding periods. The 
periods of periodic tasks range from 100 to 3000 and the 
hyperperiod is 378000. This parameters lead to non-
harmonic periods but with certain multiplicity degree (i.e., 
some periodic tasks may be ready to execute 
simultaneously, but not always the same tasks nor a great 
number of tasks). The number of periodic tasks in each 
processor has been fixed to 15. The weight load defined 
as (Di/Ti) has been fixed to 1. In all the simulations every 
periodic task execute its worst-case computation time, 
although both algorithms are able to use eventual spare 
periodic time. All generated task sets have a breakdown 
utilization [24] greater than 75% and all the sets were 
schedulable (i.e., all periodic tasks computation 
requirements can be increased by a certain factor to raise 
the total load to 75% maintaining the task set 
schedulable). The aperiodic load is fixed to 25%, thus the 
total maximum load per processor analyzed is 97%. If a 
Sporadic Server with a period equal to the smallest period 
of the periodic task set is used, the maximum server size 
would be 35 time units (minimum period * (maximum 
breakdown utilization - periodic load) =100*(100%-
70%)). In fact, a 100% breakdown utilization is not 
frequent. Its more realistic a 90% and this would give a 
maximum server size of 25 time units. Hence, we have 
used computation time requirements for aperiodic tasks in 
the range [1:25] time, achieving high demanding aperiodic 
workloads. We illustrate the trends reporting the results 
obtained for the extreme values. 

We measured the mean response time of the aperiodic 
requests as a function of the periodic loads. The arrivals 
of the aperiodic requests were assumed to be Poisson 
distributed. For every point we represent in the figures 
there are involved 200 simulations, one hundred different 
task sets tested against both scheduling algorithms. The 
results depicted are obtained as the division of the mean 
aperiodic response obtained with SS+NF by those 
obtained with MDPD. For every task set and scheduling 
algorithm we repeated the simulation until we have 
reached a 95% confidence that the measured value was 
within a 5% interval around the true value. The only 
parameter we varied in these simulations was the initial 
seed for the aperiodic tasks arrival distribution generation.  

For the first experiment, the synthetic periodic tasks 
have been generated to be small. The maximum utilization 
factor (Umax) has been fixed to 5%. Because the number 
of tasks (15) and the total load generated [65%, 72%], all 
tasks have a similar utilization factor. The results for this 
experiment are depicted in Figures 6 and Figure 7.  

In Figure 6 we can see the results obtained for 
aperiodic request of one-tick computations. The first 
observation is that differences arise from total loads above 
92% (67% periodic load +25% aperiodic load). The 
smaller the number of processors, the greater the 
differences. For example, with 2 processors and 70% 

periodic load, SS+NF is 75% worse than MPDP. For the 
same load, with 8 processors the disadvantage is reduced 
to 39%. This is because SS+NF has a dynamic part, the 
aperiodic task allocation, and it is easier to find a 
processor available for an aperiodic request when the 
number of processors is greater. When the number of 
processors is small, MPDP takes advantage of its 
dynamical aspect (i.e., the two priority levels and the 
periodic task migration capacity). In Figure 7 the periodic 
task sets are the same but the aperiodic requests are less 
frequent and have a computation request of 25 ticks. In 
this case, the MPDP advantage has been reduced. In the 
example points analyzed above (70% periodic load with 
two and eight processors) SS+NF is 17% and 3% worse 
than MPDP respectively. This is because both scheduling 
algorithms have more difficulties to allocate this amount 
of aperiodic computation request and, therefore, the 
results tend to equalize. MPDP is more flexible than 
SS+NF because of its capability to migrate periodic tasks 
and this allows MPDP scheduler to find small periods of 
time to serve aperiodic requests. When these requests are 
large enough both algorithms have the same problems, 
because the total available time to serve aperiodic tasks 
depends on the periodic load. 
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For the second experiment the synthetic periodic tasks 
have been generated to have a heavy and infrequent task 
(large Upi and long Tpi). The maximum utilization factor 
(Umax) has been fixed to 35%. The task with such a load 
is one of the three lower priority tasks. Because the 
number of tasks (15) and the total load generated [65%, 
72%], the rest of tasks have a low utilization factor, which 
is about 2%. We have designed this experiment because 
with this kind of workloads the Dual Priority algorithm 
achieves worse mean aperiodic response times. Note that 
DP is based on a pessimistic value: the worst case 
response time of periodic tasks, which is achieved in the 
critical instant. When the heaviest task has the highest 
priority, the low priority part is a 65% of time and the 
high priority part is 35%. When the heaviest task has the 
lowest priority it receives the interference of all the other 
tasks, giving a high priority part of almost 100%. This 
means that the scheduler is not able to execute aperiodic 
tasks for long periods of time. In Figure 8 we can see the 
results obtained for aperiodic request of one-tick 
computations in the second experiment. Here the results 
are better for SS+NF, as we expected.  

The differences arise a little bit earlier than in the previous 
experiment, but still heavy total loads are needed to make 
some differences in the performance of both scheduling 
algorithms. Again, the smaller the number of processors, 
the greater the differences are. For example, with 2 
processors and 70% periodic load, MPDP is 300% worse 
than SS+NF. This is because with two processors it is 
very likely to have them both in high priority level. For 
the same load, with 8 processors the MPDP disadvantage 
is reduced to 2,8%. This is due to the higher probability to 
find a processor running in low priority level, ready to 
serve an aperiodic request. When the aperiodic requests 
are of 25 ticks (see Figure 9) again the differences have 
been reduced substantially. For 70% of periodic load, with 
2 and 8 processors, MPDP is 20% and 0,9% worse than 
SS+NF. For four processors or more, the differences are 
not statistically significant. 

Finally, we have designed a third experiment, which is 
similar to the previous one, but the heavy task with the 
maximum utilization factor is not restricted to be one of 
the three lower priority tasks. It can be any of the tasks. In 
Figure 10 are depicted the results for this experiment 
when the aperiodic tasks have a computation request of 25 
ticks. These results show that MPDP performs better than 
in the previous experiment. The performances are similar 
for both algorithms when the number of processors is 
high. However, MPDP is quite better than NF+SS when 
the number of processors is smaller. From this experiment 
we can conclude that MPDP only have some disadvantage 
in very special and identified cases which should be 
considered by the designer. 

Although traditionally the partitioning method has been 
used, recently the non-partitioning method is gaining 
interest in the research community [5,22,23]. Recent 
research has compared partitioning the periodic tasks 
among processors or not partitioning [5] with the 
performance metric being the number of schedulable task 
sets. They have concluded that with a small number of 
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processors it is better the non-partitioning method. We 
have found the same behavior when the performance 
metric is the aperiodic response time. Hence, the global 
scheduling in shared memory multiprocessors with small 
number of processors could be a right choice for the near 
future real-time operating systems. 

5. Conclusions 

In this paper we have detailed how to use the Dual 
Priority algorithm as a global scheduler in a 
multiprocessor system and the problems found to adapt it 
to these platforms. The solution proposed is an hybrid 
model with to phases for every task: a dynamic phase 
where periodic tasks can execute on any processor and a 
static phase, when the periodic task has to execute on a 
particular processor to meet its deadline. With this 
scheme, all periodic task deadlines remain guaranteed. 
The periodic processor utilization upper bounds are the 
same than in uniprocessor systems, but the remaining 
processing capacity is available to aperiodic load. With 
extensive simulations we have shown that this method 
achieves very good mean aperiodic response time. 
Furthermore, when the system is heavily loaded it can 
achieve better performance than an optimal local 
scheduler as the Slack Stealing with aperiodic tasks 
migration implemented. This performance gain is greater 
when the number of processors is small. 

We have also identified the characteristics of particular 
periodic task sets that perform badly with Dual Priority. 
We have show that this effect is less important when the 
number of processor increases. Nevertheless, a further 
research could be done to cope with these situations. 
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