
Dual Priority Algorithm to Schedule Real-Time Tasks
in a Shared Memory Multiprocessor

Josep M. Banús, Alex Arenas and Jesús Labarta §

Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili
§ Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya

{jbanus@etse.urv.es} {aarenas@etse.urv.es}

Abstract

In this paper we present an adaptation of the Dual
Priority Scheduling Algorithm to schedule both hard real-
time periodic tasks and soft-aperiodic tasks in shared
memory multiprocessor systems. The goal is to achieve
low mean aperiodic response times while meeting all
periodic task deadlines. Our proposal allows periodic
and aperiodic tasks to migrate to other processors to
improve aperiodic mean response time. We show via
extensive simulations that our approach gives better
results than local Slack Stealing schedulers.

1. Introduction

Multiprocessor systems have evolved rapidly in the last
years. At the same time, the use of these powerful
computing resources in real-time systems has opened
several problems concerning scheduling strategies [1,2].
The problem of determining when and where a given task
must execute without missing its deadline or
compromising other task deadlines in multiprocessor
systems often becomes intractable. Besides, when the
scheduling is possible, algorithms that are optimal for
uniprocessor systems are not necessarily optimal when the
number of processors increases [3] (it is well known that
optimal scheduling for multiprocessors systems is a NP-
Hard problem [4]). Nevertheless, the great availability of
these systems has made them interesting for the real-time
community and the research in this area has been
reactivated in the last years. Usually, two alternatives are
proposed to schedule tasks in these systems: (i) local
scheduling; this methodology first allocates periodic tasks
to processors and, after that, an optimal uniprocessor
scheduling algorithm is used individually on each
processor [1]. And (ii) global scheduling or dynamic
binding; in this case there is a global scheduler that
dynamically binds periodic tasks to processors. Recent

works have evaluated the differences between both
alternatives [5], comparing the number of schedulable task
sets.

Joint scheduling of real-time periodic, sporadic and
soft-aperiodic task sets (from now on we will use the term
aperiodic task referring to soft-aperiodic tasks) has been
extensively studied for uniprocessor systems. For example
the Deferrable Server [6], the Sporadic Server [7] and the
Slack Stealing Algorithm [8,9] (that offers an optimal
scheduling strategy) solve this problem. Unfortunately,
the applicability of these scheduling algorithms to the
joint multiprocessor system is not straightforward.

A common feasible method in multiprocessors systems
consist in to partition periodic tasks among processors
statically and after to use a well-known uniprocessor
scheduling algorithm as a local scheduler. Besides, it is
also allowed migration of aperiodic tasks to any processor
[10,11,12]. In this scenario, the periodic task deadlines are
guaranteed and aperiodic tasks achieve good response
time because the migration algorithm is intended to
allocate the task to the most adequate processor. This
method is specially interesting for processors with
unbalanced loads because migration favors a more
efficient use of the whole system. However, it is also
useful for balanced loads because while a processor must
execute periodic tasks in order to meet their deadlines
other processors may be idle or may have enough laxity to
execute aperiodic tasks. In a previous work [13] we have
tested this scenario with Slack Stealing local schedulers
for periodic tasks, allocating aperiodic tasks to processors
with a global scheduler. The better results were achieved
using a Next-Fit distribution strategy for the global
aperiodic scheduler. However, we noticed that the results
could be improved mainly because the periodic load is
unbalanced: with local schedulers a processor may be in a
very busy period while other processors may be nearly
idle.

In this paper we propose to use a global scheduler for
both periodic and soft-aperiodic tasks. The goal is to
obtain better mean aperiodic response times by allowing

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

periodic tasks to migrate among processors. This scheme
balances both periodic and aperiodic load. Therefore, with
a global scheduler periodic tasks are able to advance work
in any processor, increasing the near future readiness to
serve aperiodic requests. The existing multiprocessor
global schedulers (RM [23], EDF [22] and
AdaptativeTKC [5]) do not deal with aperiodic tasks.
Furthermore, there are not schedulability tests for these
global schedulers. The usual schedulability test is
performed via simulation, because the deterministic nature
of periodic tasks. The consideration of aperiodic tasks
introduces stochastic factors and invalidates the
simulation tests. For this reason, it is necessary to adapt or
design a global scheduler able to guarantee periodic task
deadlines and able to serve aperiodic requests.

Within the uniprocessor domain, the Slack Stealing
Algorithm (SS) [8,9] is optimal in the sense that it
minimizes the response time of every aperiodic task
among all the uniprocessor scheduling algorithms that
meet all periodic task deadlines. Due to optimality, SS is a
good candidate to be adapted to multiprocessor
scheduling. The algorithm relies on the exact
schedulability conditions given in [24]. It computes
offline idle processor periods throughout the whole
hyperperiod and stores these values in a table. At runtime,
the scheduler uses this table to determine the availability
to execute aperiodic tasks. Unfortunately, it is not suitable
as a global scheduler because it is not possible to compute
a global table. Furthermore, in a generic multiprocessor
framework, there will be quite a lot of periodic tasks in the
whole system, with their respective different periods, and
this would generate a very huge table (its size is
proportional to the least common multiple of the periods).
Then SS unpractical as a global scheduler but it is still a
good reference when measuring aperiodic response times.

In contrast, the Dual Priority Algorithm (DP) [14,15]
does not need any pre-calculated table and therefore
scales with the number of different periodic tasks better
than Slack Stealing. On the other hand, the mean
aperiodic response times obtained in previous
uniprocessor works were worst than those obtained by the
optimal Slack Stealing algorithm but quite close. In
addition to its low memory usage, it has very low
computational overheads, because it is based on an offline
computation: the worst case response time possible for
every periodic task due to higher priority periodic tasks
interference. This value is used to promote a periodic task
from a low priority level to a higher priority level band.
This provides the scheduling algorithm with a duality in
the treatment of the tasks depending on the interferences,
and therefore it inherits some good characteristics from
fixed priority algorithms and some from dynamic priority
algorithms. This duality could be well adapted to
multiprocessors systems, and in particular to the purpose
of serving dynamic requests. Furthermore, other benefits

may be obtained. The original uniprocessor DP purpose
was to increase the periodic utilization of the processor.
This was done by establishing a promotion to a higher
priority for periodic tasks that otherwise would miss their
deadline with the rate-monotonic priority assignment.
Within the multiprocessor domain it is possible to
increase the number of schedulable task sets even more
because conflictive periodic tasks may use other
processors spare capacity. For an illustrative example see
Figure 1.

Figure 1: Dual Priority can increase the number
of schedulable task sets. This figure represents the
execution of the task set detailed in the legend using
(a) RM global scheduling and (b) DP global
scheduling using two processors. Downwards arrows
mark task activation and upward arrows mark task
termination. Although the task set only has a 152%
total load it is not schedulable by a global scheduler
with a fixed Rate Monotonic priority (see Figure 1(a),
where T3 misses a deadline at time t=100). Likewise
this task set is not schedulable by an Earliest
Deadline First global scheduler, illustrating that EDF
is not optimal for multiprocessors [3]. In contrast,
using a DP global scheduler, if a promotion time
equal to zero is used for task T3 then the whole
system is schedulable (see Figure 1(b)).

Additionally, there are extensions of the DP model to

deal with jitters releases [19], shared resources and
arbitrary deadlines [20]. These extensions will be
incorporated to the multiprocessor DP in a future work.
Our goal in this paper is to adapt DP to multiprocessors
systems and compare the aperiodic response times with
SS results.

The rest of the paper is organized as follows. In
Section 2 we set the framework and assumptions valid
through this paper. In Section 3 we detail the adaptation
of the Dual Priority algorithm to be used as a global

a) Rate Monotonic

b) Dual Priority

T1=(50,50,25) T2=(50,50,25) T3=(100,100,52)

0 25 50 75 100 125

2

1 3P1

P2 1 1

2 23

N

2

1

3

P1

P2

0 25 50 75 100 125

1 12

3

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

scheduler in shared memory multiprocessors. In Section 4
we study the results found in extensive simulations
measuring the mean aperiodic response times and in
Section 5 we summarise the conclusions of this work.

2. Framework and Assumptions

Consider a real-time multiprocessor system with N
symmetrical processors and shared memory. Every
processor p has allocated a set of n periodic tasks
TSp={τp1, ...,τpn}. This allocation is performed at design
time, for example using any of the techniques described in
[17]. These tasks are independent and can be preempted at
any time. Each task τpi has a worst-case execution time
Cpi, a period Tpi and a deadline Dpi, assumed to satisfy Dpi
≤ Tpi . Every instance k of a task must meet its absolute
deadline, i.e. the k-th instance of the task τpi , say τpi

k, must
be completed by time Dpi

k= (k-1)Tpi + Dpi. The
hyperperiod of the task set is the least common multiple
of all periods. We express all time measures (i.e. periods,
deadlines, computations, etc.) as integral multiples of the
processor clock tick. Each periodic task has a utilization
factor defined as Upi= Cpi/Tpi and the maximum utilization
factor in a processor p is Umaxp= max (Upi), 1≤ i ≤ n.

Each aperiodic task, Jk, has an associated arrival time
αk, a priori unknown, and a processing requirement Cap

k
(note that they do not have deadlines). These tasks are
queued in FIFO order.

All periodic workloads considered in this paper have a
total processor utilization (Up) lower than the theoretical

upper bounds (i.e. Up = τpi∈TSp Upi ≤ n(21/n-1)). Hence
any pre-runtime bin-packing algorithm can be used
without problems to allocate the periodic tasks to
processors. Recall that the remaining processor capacity is
used to execute aperiodic tasks.

Finally, for the sake of simplicity, we assume all
overheads for context swapping, task scheduling, task pre-
emption and migration to be zero. In fact, some of these
overheads may be taken into account in the pre-runtime
worst-case execution analysis.

3. Multiprocessor Dual Priority (MPDP).

The Dual Priority (DP) scheduling algorithm has the
following characteristics: (i) it guarantees periodic tasks
deadlines, (ii) it achieves very good mean aperiodic
response times, (iii) it has very low computation and
memory requirements, (iv) it can use the full processor
capacity, (v) it can use periodic tasks spare time (when
they finish earlier than their worst case execution time)
and (vi) it recovers quickly and in a controlled way from
transient overloads. The first four characteristics are very

important for the objectives of this paper. In particular,
since in a multiprocessor system the number of tasks can
be very high, resulting in a very long hyperperiod, which
means excessive memory requirements for algorithms
such as static Slack Stealing. However, the most important
characteristic is that, although it is a fixed priority system,
it almost has the flexibility of dynamic priority systems.

The Dual Priority Algorithm for uniprocessors is

based in the offline computation of periodic tasks worst
case response time, using a recurrent formula (1), which in
turn is also used as a scheduling test [21].

This recurrent formula is used pre-runtime to compute

the worst-case response time of periodic tasks (the final

Wi is task τi computation requirement and all higher

priority tasks interference). Thus, the periodic task τi can
be delayed until its promotion time = Di – Wi. During
runtime, a periodic task stars with a low priority level
(lower than aperiodic tasks) and at promotion time its
priority is updated to a higher level where it will only
receive the interference of other higher priority promoted
tasks, being its deadline guaranteed. However, this
formula is not valid for multiprocessors.

The alternatives in multiprocessor to the scheduling
test formula are two: to write an algorithm to find these
values or to measure the release times through a
simulation. The former alternative is also difficult and
probably ineffective, because in a multiprocessor system
there is an added uncertainty factor: the results depend on
the decisions previously done about which task to execute
where and these decisions make some tasks to interfere
with others or not. For example, it is well known the
multiprocessor anomaly of reducing some execution times
can increase the run length [2]. As a consequence, an
algorithm to compute the worst case response time for
periodic tasks in a multiprocessor would consider the
worst situations, giving very pessimistic values.

We have done some attempt to find the upper bounds
to periodic task response times and the results obtained
were far worse than those measured with simulations. We
have refused this line because using these algorithms as a
scheduling test result in rejecting perfectly schedulable
task sets. Furthermore, when the test is passed, the
computed values are so pessimistic that there is very low
flexibility to execute aperiodic tasks.

The other alternative is to run at design time a
simulation of the multiprocessor system with a pre-
emptive global scheduler based on fixed priorities to find
out the worst case response time for periodic tasks. This

)1(
)(

1 CC
T

W
W ij

ihpj j

n
in

i +=
∈

+

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

method is used to determine the schedulability of task sets
with global RM schedulers in [23]. If the measured
release times are lower than their respective deadlines the
system is schedulable and these values could be used in a
Dual Priority global scheduler at run time. However, a
new question raises: how long should the design-time
simulation take?. In an uniprocessor system the simulation
starts at the critical instant (all tasks are ready to be
executed at the same time) and can be stopped when every
periodic task first instantiation is finished. This does not
hold for multiprocessors: the simulation must run all over
the hyperperiod to find out the right values. The easy
example depicted in Figure 2 shows this phenomenon.

In Figure 2, the first instantiation of task T3 finishes at
time t=8, with a response time of 8 time units, and the
second instantiation finishes at time t=29, giving a
response time of 9 units, i.e., a time unit worse than the
previous instantiation. This is due to the fact that the
second instantiation receives the interference of a task T2
previous instantiation. A similar related phenomenon is
detailed in [22] when using a global EDF scheduler.

Figure 2: using a RM global scheduling the
critical instant is not necessarily the initial time, when
all tasks are ready to be executed at the same time.
This figure represents the execution of the task set
detailed in the legend using RM global scheduling
with two processors. Downwards arrows mark T3
activation and upward arrows mark T3 termination.

The methodology described in the previous paragraph

allows us to execute periodic and soft-aperiodic tasks with
a global DP scheduler, but still has some drawbacks. The
introduction of aperiodic tasks implies the introduction of
indeterminism and produces periodic task shifts. As a
consequence of these shifts periodic task execution
patterns that have been not tested in the pre-runtime
simulation may appear. Therefore, it would be possible to
miss some deadlines. That means that via simulations it is
not possible to find the worst response times. The task set
in Figure 3 allows us to observe this phenomenon in a
clear way. Figure 3-a plots a global RM execution of this
example. The worst response time measured for task T3 is
12 time units. Because its deadline is 21 the resulting
promotion time is 21-12 = 9. Therefore, a priori this task
can be delayed 9 time units.

Figure 3: the worst case response time obtained via

simulation with RM global scheduling can lead to miss
some deadlines with a global Dual Priority scheduler

Figure 3-b depicts the execution of the same example

but with an initial offset for the first instantiation of tasks
T2 and T3. This could be equivalent to the execution
delays due to aperiodic work. Now the response time of
T3 is 13, one unit more than previously. If this task was
delayed one time tick plus (see Figure 3-c) it would miss
its deadline. Note that a priory this task could be delayed
two extra time units. This simple example illustrates the
fact that the Dual Priority for multiprocessors is not so
straightforward. The global RM execution does not try
every offset. When executing aperiodic tasks, it is not
sufficient to simulate a hyperperiod as a schedulability test
as it is usually done in systems with pure periodic
workloads (for example, see [5,23]).

In uniprocessor systems the Dual Priority Algorithm

accomplishes the following premises:
1) No aperiodic task is executed while any periodic task

is promoted.
2) Delaying the execution of a task to its promotion time

is not a problem because this change in the offsets
never will be worse than in the critical instant.

3) The computed worst case response time for any task
includes the interference produced by all the higher
priority tasks.

In multiprocessor systems these premises are not valid.
The first is not valid because different processors can
execute simultaneously aperiodic tasks and promoted
periodic tasks. The second is not valid because the
number of possible offsets is unbounded and then it is
possible to have a situation worst than the critical instant.
The third is not valid because when changing the periodic
task offsets it is possible for some task to receive
interference from higher priority periodic tasks not
considered in the pre-runtime analysis. These anomalies

Rate Monotonic: R3
1= 8 , R3

2= 9

2

1 3

3

P1

P2 1 1

1 1

1

1 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

3

2

2

2

2

T1=(5,5,3) T2=(8,8,5) T3=(20,20,5)

12 1 2

1 3 11111111 333

P1

P2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P1

P2 1 11 111

2

2

1 1111 333

33 3

+7+4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a) Rate Monotonic: R3=12

b) with offsets: R3=13

c) with offsets: R3=14

1 11 111

2

2

1 1111 333

3

3

3

P1

P2

+8+4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N

T1=(2,2,1) T2=(14,14,7) T3=(21,21,8)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

are similar to those described in previous works, for
example [2,3]. Probably this could be avoided if it was
forbidden to execute aperiodic tasks during the promotion
time of any periodic task, but this would lead to long
periods of time without being able to execute aperiodic
tasks and the aperiodic tasks response times would be
very bad.

Due to all these problems we propose to use the DP in
a hybrid conformation between local and global
scheduling. It is possible to execute periodic tasks in any
processor during a period of time (dynamic phase) and
execute them into a predefined processor after their
promotion time (static phase).

Figure 4: Periodic tasks allocation phases in MPDP

In our proposal, all periodic tasks are statically

distributed among the processors, using any partitioning
algorithm. Then the uniprocessor formula is used pre-
runtime to compute the worst-case response time of
periodic tasks locally. These values are used as an extra
task parameter. During runtime, when a task arrives it is
queued in a Global Ready Queue (GRQ). In this queue,
aperiodic tasks have higher priority than periodic tasks
and are queued in FIFO order. On the other hand, periodic
tasks are sorted according their fixed low priority (for
example RM priority order). The global scheduler (GS)
selects the first N tasks from this queue to execute on the
N processors. Additionally, there are N High Priority
Local Ready Queues (HPLRQi with i in [1..N]) used to
queue promoted periodic tasks. When a periodic task τpi is
promoted (i.e. it remains as much time as the pre-
computed worst-case response time to its deadline) it is
moved from the GRQ to its corresponding processor
HPLRQp. Processors with promoted periodic tasks are not
allowed to execute tasks from the GRQ. Note that a
promotion imply a change in priority and can cause a pre-
emption. Note that at promotion time, a periodic task must
migrate to its original processor, where it will only receive
the interference of other higher priority promoted tasks,
being its deadline guaranteed.

Within this scheme, while a periodic task is not
promoted, it can be executed in any processor. This
reduces the number of periodic task waiting for a specific
processor, taking advantage of idle processors, advancing

periodic work and making the system ready for future
aperiodic demands.

The time involved in the task migration and context-
switching costs has been considered negligible, although it
will be a subject of further study. At a first attempt, we
have tried to minimize the impact of these costs by saving
some migrations using a processor renaming strategy.
Hence, when a periodic task is promoted and it is the only
one promoted of its original processor, it has not to
migrate back to it. In these situations a logical name swap
between its current processor and its original processor is
performed, saving the migration.

4. Results and Discussion

In this section we show the simulation results
comparing the global scheduling detailed in the previous
section (MPDP), versus the local scheduling Slack
Stealing + global aperiodic scheduling using the next fit
dynamic binding (SS+NF, [13]). We study the efficiency
in performance comparing the mean aperiodic response
time using synthetically generated task sets. As far as we
know, no global scheduling has been studied to execute
both periodic and soft-aperiodic tasks. In consequence we
have compared our global scheduling proposal to the best
local scheduling: the Slack Stealing algorithm [8,9].

We have varied the number of processors in the
multiprocessor system from 2 to 8, which is quite common
in shared memory real time systems.

The periodic task sets have been originally generated
with balanced loads of 65% per processor. This periodic
load is low enough to generate schedulable task sets (65%
< n(21/n-1) [18], where n is the number of tasks) and high
enough to experiment some difficulties in serving
aperiodic requests. In the experiments we have increased
proportionally the periodic load up to 72%, keeping fixed

Ti
n

Low Priority High Priority

Dynamic Phase Static Phase

Di
n -Ri Di

n

 τi
n
 promotion

 HPLRQ1 P1

promoted tasks HPLRQ2 GS P2

 HPLRQ3 P3

Jn
 GRQ

τpi
k

periodic tasks aperiodic tasks

Figure 5: DP Global Scheduler. Squares represent
processors, circles schedulers and rectangles
queues. For any processor Pi , if HPLRQi is not
empty execute the first promoted task in Pi.
Otherwise Pi execute the first task in GRQ.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

the number of tasks and their corresponding periods. The
periods of periodic tasks range from 100 to 3000 and the
hyperperiod is 378000. This parameters lead to non-
harmonic periods but with certain multiplicity degree (i.e.,
some periodic tasks may be ready to execute
simultaneously, but not always the same tasks nor a great
number of tasks). The number of periodic tasks in each
processor has been fixed to 15. The weight load defined
as (Di/Ti) has been fixed to 1. In all the simulations every
periodic task execute its worst-case computation time,
although both algorithms are able to use eventual spare
periodic time. All generated task sets have a breakdown
utilization [24] greater than 75% and all the sets were
schedulable (i.e., all periodic tasks computation
requirements can be increased by a certain factor to raise
the total load to 75% maintaining the task set
schedulable). The aperiodic load is fixed to 25%, thus the
total maximum load per processor analyzed is 97%. If a
Sporadic Server with a period equal to the smallest period
of the periodic task set is used, the maximum server size
would be 35 time units (minimum period * (maximum
breakdown utilization - periodic load) =100*(100%-
70%)). In fact, a 100% breakdown utilization is not
frequent. Its more realistic a 90% and this would give a
maximum server size of 25 time units. Hence, we have
used computation time requirements for aperiodic tasks in
the range [1:25] time, achieving high demanding aperiodic
workloads. We illustrate the trends reporting the results
obtained for the extreme values.

We measured the mean response time of the aperiodic
requests as a function of the periodic loads. The arrivals
of the aperiodic requests were assumed to be Poisson
distributed. For every point we represent in the figures
there are involved 200 simulations, one hundred different
task sets tested against both scheduling algorithms. The
results depicted are obtained as the division of the mean
aperiodic response obtained with SS+NF by those
obtained with MDPD. For every task set and scheduling
algorithm we repeated the simulation until we have
reached a 95% confidence that the measured value was
within a 5% interval around the true value. The only
parameter we varied in these simulations was the initial
seed for the aperiodic tasks arrival distribution generation.

For the first experiment, the synthetic periodic tasks
have been generated to be small. The maximum utilization
factor (Umax) has been fixed to 5%. Because the number
of tasks (15) and the total load generated [65%, 72%], all
tasks have a similar utilization factor. The results for this
experiment are depicted in Figures 6 and Figure 7.

In Figure 6 we can see the results obtained for
aperiodic request of one-tick computations. The first
observation is that differences arise from total loads above
92% (67% periodic load +25% aperiodic load). The
smaller the number of processors, the greater the
differences. For example, with 2 processors and 70%

periodic load, SS+NF is 75% worse than MPDP. For the
same load, with 8 processors the disadvantage is reduced
to 39%. This is because SS+NF has a dynamic part, the
aperiodic task allocation, and it is easier to find a
processor available for an aperiodic request when the
number of processors is greater. When the number of
processors is small, MPDP takes advantage of its
dynamical aspect (i.e., the two priority levels and the
periodic task migration capacity). In Figure 7 the periodic
task sets are the same but the aperiodic requests are less
frequent and have a computation request of 25 ticks. In
this case, the MPDP advantage has been reduced. In the
example points analyzed above (70% periodic load with
two and eight processors) SS+NF is 17% and 3% worse
than MPDP respectively. This is because both scheduling
algorithms have more difficulties to allocate this amount
of aperiodic computation request and, therefore, the
results tend to equalize. MPDP is more flexible than
SS+NF because of its capability to migrate periodic tasks
and this allows MPDP scheduler to find small periods of
time to serve aperiodic requests. When these requests are
large enough both algorithms have the same problems,
because the total available time to serve aperiodic tasks
depends on the periodic load.

1,0

1,5

2,0

2,5

3,0

3,5

65% 66% 67% 68% 69% 70% 71% 72%

Periodic Load

Figure 6: Umax= 5%, Cap= 1

SS
+N

F
 /

M
P

D
P

2P

3P

4P

6P

8P

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

65% 66% 67% 68% 69% 70% 71% 72%

Periodic Load

Figure 7: Umax= 5%, Cap= 25

SS
+N

F
 /

M
P

D
P

2P

3P

4P

6P

8P

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

For the second experiment the synthetic periodic tasks
have been generated to have a heavy and infrequent task
(large Upi and long Tpi). The maximum utilization factor
(Umax) has been fixed to 35%. The task with such a load
is one of the three lower priority tasks. Because the
number of tasks (15) and the total load generated [65%,
72%], the rest of tasks have a low utilization factor, which
is about 2%. We have designed this experiment because
with this kind of workloads the Dual Priority algorithm
achieves worse mean aperiodic response times. Note that
DP is based on a pessimistic value: the worst case
response time of periodic tasks, which is achieved in the
critical instant. When the heaviest task has the highest
priority, the low priority part is a 65% of time and the
high priority part is 35%. When the heaviest task has the
lowest priority it receives the interference of all the other
tasks, giving a high priority part of almost 100%. This
means that the scheduler is not able to execute aperiodic
tasks for long periods of time. In Figure 8 we can see the
results obtained for aperiodic request of one-tick
computations in the second experiment. Here the results
are better for SS+NF, as we expected.

The differences arise a little bit earlier than in the previous
experiment, but still heavy total loads are needed to make
some differences in the performance of both scheduling
algorithms. Again, the smaller the number of processors,
the greater the differences are. For example, with 2
processors and 70% periodic load, MPDP is 300% worse
than SS+NF. This is because with two processors it is
very likely to have them both in high priority level. For
the same load, with 8 processors the MPDP disadvantage
is reduced to 2,8%. This is due to the higher probability to
find a processor running in low priority level, ready to
serve an aperiodic request. When the aperiodic requests
are of 25 ticks (see Figure 9) again the differences have
been reduced substantially. For 70% of periodic load, with
2 and 8 processors, MPDP is 20% and 0,9% worse than
SS+NF. For four processors or more, the differences are
not statistically significant.

Finally, we have designed a third experiment, which is
similar to the previous one, but the heavy task with the
maximum utilization factor is not restricted to be one of
the three lower priority tasks. It can be any of the tasks. In
Figure 10 are depicted the results for this experiment
when the aperiodic tasks have a computation request of 25
ticks. These results show that MPDP performs better than
in the previous experiment. The performances are similar
for both algorithms when the number of processors is
high. However, MPDP is quite better than NF+SS when
the number of processors is smaller. From this experiment
we can conclude that MPDP only have some disadvantage
in very special and identified cases which should be
considered by the designer.

Although traditionally the partitioning method has been
used, recently the non-partitioning method is gaining
interest in the research community [5,22,23]. Recent
research has compared partitioning the periodic tasks
among processors or not partitioning [5] with the
performance metric being the number of schedulable task
sets. They have concluded that with a small number of

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

65% 66% 67% 68% 69% 70% 71% 72%

Periodic Load

Figure 8: Umax= 35%, Cap= 1

SS
+N

F
 /

M
P

D
P

2P

3P

4P

6P

8P

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

0,98

1,00

65% 66% 67% 68% 69% 70% 71% 72%

Periodic Load

Figure 9: Umax= 35%, Cap= 25

SS
+N

F
 /

M
P

D
P

2P

3P

4P

6P

8P

0,90

1,00

1,10

1,20

1,30

1,40

1,50

65% 66% 67% 68% 69% 70% 71% 72%

Periodic Load

Figure 10: Umax= 35%, Cap= 25

SS
+N

F
 /

M
P

D
P

2P

3P

4P

6P

8P

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

processors it is better the non-partitioning method. We
have found the same behavior when the performance
metric is the aperiodic response time. Hence, the global
scheduling in shared memory multiprocessors with small
number of processors could be a right choice for the near
future real-time operating systems.

5. Conclusions

In this paper we have detailed how to use the Dual
Priority algorithm as a global scheduler in a
multiprocessor system and the problems found to adapt it
to these platforms. The solution proposed is an hybrid
model with to phases for every task: a dynamic phase
where periodic tasks can execute on any processor and a
static phase, when the periodic task has to execute on a
particular processor to meet its deadline. With this
scheme, all periodic task deadlines remain guaranteed.
The periodic processor utilization upper bounds are the
same than in uniprocessor systems, but the remaining
processing capacity is available to aperiodic load. With
extensive simulations we have shown that this method
achieves very good mean aperiodic response time.
Furthermore, when the system is heavily loaded it can
achieve better performance than an optimal local
scheduler as the Slack Stealing with aperiodic tasks
migration implemented. This performance gain is greater
when the number of processors is small.

We have also identified the characteristics of particular
periodic task sets that perform badly with Dual Priority.
We have show that this effect is less important when the
number of processor increases. Nevertheless, a further
research could be done to cope with these situations.

6. References
[1] Burns, A, "Scheduling Hard Real-Time Systems: a Review"

Software Engineering Journal, 6 (3), pp. 116-128, 1991
[2] Stankovic, J.A., Spuri, M., Di Natale, M., Butazzo, G.C.,

"Implications of Classical Scheduling Results for Real-
Time Systems", IEEE Computer, v. 28, n.6, pp.15-25, 1995

[3] Dertouzos, M.L., Mok, A.K., "Multiprocessor On-Line
Scheduling of Hard-Real-Time Tasks", IEEE Transactions
on Software Engineering, v.15, n.12, pp. 1497-1506, 1989

[4] Garey M.R., Johnson D. S., "Complexity Results for
Multiprocessor Scheduling under Resource Constraints".
SIAM Journal on Computing, 4(4): 397-411, 1975

[5] Anderson, B., Jonsson, J., "Fixed-Priority Pre-emptive
Multiprocessor Scheduling: To Partition or not to
Partition". Real-Time Computing Systems and
Applications, pp. 337-346, 2000

[6] Strosnider J.K., Lehoczky J.P., Sha L., "The Deferrable
Server Algorithm for Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments", IEEE Transactions on
Computers, v. 44, n. 1, pp 73-91, 1995

[7] Sprunt B., Sha L, Lehoczky J.P., "Aperiodic Task
Scheduling for Hard Real-Time Systems", Real-Time
Systems Journal, vol. 1, pp. 27-60, 1989

[8] Lehoczky J.P., Ramos-Thuel S., “An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed Priority
Preemptive Systems”. RealTime Systems Symposium 1992

[9] Lehoczky J.P., Ramos-Thuel S., "Chapter 8: Scheduling
Periodic and Aperiodic Tasks using the Slack Stealing
Algorithm", pp. 175-197, Principles of Real-Time Systems,
Prentice Hall, 1994

[10] Sáez S., Vila J., Crespo A., "Soft Aperiodic Task
Scheduling on Real-Time Multiprocessor Systems", Sixth
International Conference on Real-Time Computing Systems
and Applications, pp. 424-427, 1999

[11] Ramamritham K., Stankovic J.A., Zhao W., "Distributed
Scheduling of Tasks with Deadlines and Resource
Requirements", IEEE Transactions on Computers, C-38,
(8), pp. 1110-1123, 1989

[12] Fohler G., ”Joint Scheduling of Distributed Complex
Periodic and Hard Aperiodic Tasks in Statically Scheduled
Systems”, Real-Time Systems Symposium, 152-161, 1995

[13] Banús, J.M., Arenas, A., Labarta, J., "An Efficient Scheme
to Allocate Soft-Aperiodic Tasks in Multiprocessor Hard
Real-Time Systems", Parallel and Distributed Processing
Techniques and Applications, v.II, pp.809-815, 2002

[14] Davis, R., Wellings, A., "Dual Priority Scheduling", Real-
Time Systems Symposium, pp. 100-109, 1995

[15] Moncusí, M.A., Banús, J.M, Labarta, J., Llamosí, A., "The
Last Call Scheduling Algorithm for Periodic and Soft
Aperiodic Tasks in Real-Time Systems", V Jornadas de
Concurrencia, 1997

[16] Burns A. Wellings, A., "Real Time Systems and
Programming Languages, 2n Ed.", Addison Wesley, 1997

[17] Burchard A., Liebeherr J., Yingfeng Oh, Sang H. Son,
"New Strategies for Assigning Real-Time Tasks to
Multiprocessor Systems", IEEE Transactions on
Computers, vol. 44, no. 12, December 1995

[18] Liu, C.L., Layland, J.W., "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment",
Journal of the Association for Computing Machinery, vol.
20(1), pp. 46-61, 1973

[19] Audsley, N., Burns, A. Richardson, M., Tindell, K.,
Welling, A.J., "Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling", Software Engineering
Journal, 8(5), pp. 284-292, 1993

[20] Tindell , K., Burns, A., Welling, A.J., "An Extendible
Approach for Analyzing Fixed Priority Hard Real-Time Tasks",

Real-Time Systems, 6(2), pp. 133-151, 1994
[21] Joseph, M., Pandya, P., "Finding Response Times in a

Real-Time System", British Computer Society Computer
Journal, 29(5):390-395, Cambridge University Press, 1986

[22] Gossens, J., Funk, S., Baruah, S., "EDF scheduling on
Multiprocessor platforms: some (perhaps) counterintuitive
observations", Real-Time Computing Systems and
Applications, pp. 321-330, 2002

[23] Anderson, B., Baruah, S., Jonsson, J., "Static-Priority
Scheduling on Multiprocessors, Real-Time Systems
Symposium, 2001

[24] Lehoczky, J.P., Sha, L., Ding, Y., "The Rate-Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior", Proceedings of Real-Time Systems
Symposium, pp. 166-171, 1989

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

