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Abstract

We investigate the connection between the dynamics of synchronization and the modu-

larity on complex networks. Simulating the Kuramoto’s model in complex networks we

determine patterns of meta-stability and calculate the modularity of the partition these

patterns provide. The results indicate that the more stable the patterns are, the larger

tends to be the modularity of the partition defined by them. This correlation works

pretty well in homogeneous in degree networks but fails when networks contain hubs,

mainly because the modularity is never improved where isolated nodes appear, whereas

in the synchronization process the characteristic of hubs is to have a large stability when

forming its own community.

1 INTRODUCTION

The theory of complex networks has reported major advances in the understanding of the
networked substrate in which many natural, social and technological processes take place.
Complex networks are representative of the intricate connections between elements in systems
as diverse as the Internet and the WWW, metabolic networks, neural networks, food webs,
communication networks, transport networks, and social networks [1, 2]. The availability of
wide databases of entities (nodes) and relations (links) as well as the advances in computation
have provided scientists with the necessary tools to unravel the statistical properties of complex
networks [3–5].

One of the subjects that has received more attention, in the recent years, is the detection
and characterization of intermediate topological scales in their structure. In particular, the
problem of detection of community structure, meaning the appearance of densely connected
groups of vertices, with only sparser connections between groups, has been intensely attacked
from the scientific community [6, 7]. The most successful solutions, in terms of accuracy and
computational cost required, are those based in the optimization of a magnitude called mod-

ularity proposed by Newman [8] that allows the comparison of different partitionings of the
network. The modularity of a given partition is, up to a multiplicative constant, the number
of edges falling within groups minus the expected number in an equivalent network with edges
placed at random. Given a network partitioned into communities, being ci the community to
which node i is assigned, the mathematical definition of modularity is expressed in terms of
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the adjacency matrix Aij and the total number of links m = 1

2

∑
i ki where ki is the degree of

node i as

Q =
1

2m

∑

ij

(Aij −
kikj

2m
)δ(ci, cj) (1.1)

The search for the optimal (largest) modularity value is a NP-hard problem [9] that means
that the space of possible partitions grows faster than any power of the system size. For this
reason, a heuristic search strategy is mandatory to restrict the search space while preserving the
optimization goal [10–15]. Indeed, it is possible to relate the current optimization problem forQ
with classical problems in statistical physics, e.g. the spin glass problem of finding the ground
state energy [16], where algorithms inspired in natural optimization processes as simulated
annealing and genetic algorithms have been successfully used. REFERENCIES AQUI.

In a different scenario, physicists have largely studied the dynamics of complex biological
systems, and in particular the paradigmatic analysis of large populations of coupled oscillators
[17–19]. The connection between the study of synchronization processes and complex networks
is interesting by itself. Indeed, the original inspiration of Watts and Strogatz in the development
of the Small-World network structure [1] was to understand the synchronization of cricket
chirps. This synchronization phenomena as many others e.g. asian fireflies flashing at unison,
pacemaker cells in the heart oscillating in harmony, etc. have been mainly described under the
mean field hypothesis that assumes that all oscillators behave identically and interact with the
rest of the population. Recently, the emergence of synchronization phenomena in these systems
has been shown to be closely related to the underlying topology of interactions at mesoscopic
scales [20].

Here we analyze the effect of the community structure in the path towards synchronization.
We study the dynamics towards synchronization in several types of structured complex net-
works and find an evolving community structure based on the recruitment of groups of nodes
towards complete synchronization. We will also provide a connection between the emergence
of synchronized groups and the way nodes are grouped in some of the agglomerative methods
of community detection based on the maximization of the modularity, as defined in 1.1, [7,10].

The paper is structured as follows: in section II we present the synchronization model
studied. In section III we describe a method to construct synthetic networks with a well
prescribed hierarchical community structure. In section IV, we expose the analysis of the
route towards synchronization and their relationship with the topological structure. Finally,
we conclude with a discussion about the communities revealed by synchronization processes in
complex networks.

2 THE DYNAMICAL MODEL

The first successful attempt to understand synchronization phenomena, from a physicist’s
perspective, was due to Kuramoto [19], who analyzed a model of phase oscillators coupled
through the sine of their phase differences. The model is rich enough to display a large variety of
synchronization patterns and sufficiently flexible to be adapted to many different contexts [21].
The Kuramoto model consists of a population of N coupled phase oscillators where the phase
of the i-th unit, denoted by θi(t), evolves in time according to the following dynamics

dθi

dt
= ωi +

∑

j

Kij sin(θj − θi) i = 1, ..., N (2.1)



WILL BE SET BY THE PUBLISHER Pr1-3

where ωi stands for its natural frequency and Kij describes the coupling between units. The
original model studied by Kuramoto assumed mean-field interactionsKij = K, ∀i, j. In absence
of noise the long time properties of the population are determined by analyzing the only two
factors which play a role in the dynamics: the strength of the coupling K whose effect tends
to synchronize the oscillators (same phase) versus the width of the distribution of natural
frequencies, the source of disorder which drives them to stay away each other by running at
different velocities. For unimodal distributions, there is a critical coupling Kc above which
synchronization emerges spontaneously.

2.1 Synchronization in complex networks

Recently, due to the realization that many networks in nature have complex topologies, syn-
chronization studies have been extended to systems with heterogeneous connectivity pat-
terns [22–29]. Usually, due to the complexity of the analysis in these cases some further
assumptions have been introduced. For instance, it has been a normal practice to assume that
the oscillators are identical. In absence of disorder, i.e. if (ωi = ω ∀i) there is only one attractor
of the dynamics: the fully synchronized regime where θi = θ, ∀i. In this context the interest
concerns not the final locked state in itself but the route to the attractor. In particular, it has
been shown [30, 31] that high densely interconnected sets of oscillators (motifs) synchronize
more easily that those with sparse connections. This scenario suggests that for a complex
network with a non-trivial connectivity pattern, starting from random initial conditions, those
highly interconnected units forming local clusters will synchronize first and then, in a sequen-
tial process, larger and larger spatial structures also will do it up to the final state where the
whole population should have the same phase [32]. We have shown [33, 34] this process to
occur at different time scales if a clear community structure exists. Thus, the dynamical route
towards the global attractor reveals different topological structures, indeed some of them very
similar to those which represent communities in partitions with high modularities.

2.2 Order parameter

It is a normal practice to define, for the Kuramoto model, a global ‘’order parameter” to
characterize the level of entrainment between oscillators. The normal choice is to use the
following complex-valued order-parameter

reiψ =
1

N

N∑

j=1

eiθj . (2.2)

where r(t) with 0 ≤ r(t) ≤ 1 measures the coherence of the oscillator population, and ψ(t)
is the average phase. However, this definition, although suitable for mean-field models is not
efficient to identify local dynamic effects. In particular it does not give information about the
route to the attractor (fully synchronization) in terms of local clusters which is so important
to identify functional groups or communities. For this reason, instead of considering a global
observable, we define a local order parameter measuring the average of the correlation between
pairs of oscillators

ρij(t) =< cos(θi(t) − θj(t)) > (2.3)

where the brackets stand for the average over initial random phases. The main advantage of
this approach is that it allows to trace the time evolution of pairs of oscillators and there-
fore to identify compact clusters of synchronized oscillators reminiscent of the existence of
communities.
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In previous works [33, 34] we have analyzed the dynamics towards synchronization in dif-
ferent networks with community structure. From the average correlation correlations between
pairs of oscillators (ρij) we define a dynamical connectivity matrix. We consider that two
nodes are linked if if their correlation is above some fixed threshold. In this way we start with
a system of disconnected nodes. As time goes on, nodes merge into groups until they form a
single synchronized component, for a time long enough.

For networks with a clear community structure, we have been able to identify the jumps
of the number of connected components in time with the complete eigenvalue spectrum of
the Laplacian matrix, showing a striking similarity. Nevertheless, here we will focus in the
relation between a magnitude that describes the the quality of the community partitioning,
the modularity (1.1), and the relative stability of the dynamical structures that are formed in
the merging process described above.

3 NETWORKS

In the present work we analyze the same type of networks than in [33,34]. Those are structured
networks with a clear community structure. Some of them are homogeneous in degree and are
generalizations of the model networks proposed in [35] as a benchmark for community detection
algorithms. Other networks have special nodes that act as hubs. For a detailed description
and visualization of the networks the reader is pointed to [34].

The networks we analyze are:

• Networks with 1 level of community with in-homogeneous distribution of community sizes:
it is a kind of network that has been proposed as a better benchmark for community
detection algorithms, since in real networks the community sizes are not homogeneously
distributed [36].

• Networks with two and three hierarchical levels of homogeneous communities: This gen-
eralization was proposed in [33,34] to show that the dynamics is able to find communities
at different levels.

In general one takes a set of N nodes and divide it into n1 groups of equal size; each
of these groups is then divided into n2 groups and so on up to a number of steps k
which defines the number of hierarchical levels of the network. Then we add links to the
networks in such a way that at each node we assign at random a number of z1 neighbours
within its group at the first level, z2 neighbours within the group at the second level and
so on. There is a remaining numbers of links that each node has to the rest of the
network, that we will call zout. In this case it is easy to compute the modularity of the
partition [35] at any level l ≤ k

Qn1·n2·...·nl
=

zl + . . .+ zk

zout + z1 + . . .+ zk
−

1

n1 · n2 . . . · nl
(3.1)

and its numerical value tells us how good as partition into a given community structure
is.

Here we will consider networks with two hierarchical levels, 256 nodes, and n1 = n2 = 4;
this gives two possible partitions: one with 4 communities and the other one with 16
communities. In the case of three levels we take 64 nodes and n1 = n2 = n3 = 2, and
hence there are three possible partitions, 2, 4, and 8 equal size communities.
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• Hierarchical networks with hubs: There is a set of self-similar deterministic networks that
has been used as an example of hierarchical scale-free networks, proposed by Ravasz and
Barabasi [37]. This type of networks, apart from its hierarchical structure has some nodes
with a special role in terms of number of connexions (hubs) in contrast to the networks
discussed previously that are essentially homogeneous in degree.

4 SYNCHRONIZATION AND COMMUNITY STRUCTURE

We have simulated the Kuramoto’s model 2.1 with constant natural frequency distribution on
the above mentioned structured complex networks. We also have calculated the modularity
values Eq.1.1 for the different emergent community structure in the synchronization process.
The results are shown in joint plots containing the dendrogram corresponding to the merging
of groups of synchronized nodes over time and the corresponding values of modularity for these
different partitions, see Figs. 1-6. We observe that the partition corresponding to the most
stable synchronization groups in time also have large values of modularity. This interesting
effect is showing that the meta-stability of the synchronized groups is related to the specific
topological structure where the dynamics take place. Keeping in mind this idea, it is natural
to propose a method for community detection based on the dynamics towards synchronization,
however this should be carefully considered. The first problem we face is that the optimal par-
tition into communities given by maximizing the modularity Q does not corresponds exactly
to the most stable conformation of groups of synchronization. We have used and heuristic
algorithm to optimize Q based on extremal optimization [14] obtaining larger values for the
modularity than those presented by the synchronization communities, see Table 1. Still more
striking that this difference is the observation of the communities that present larger stability
in the Ravasz-Barabasi type networks. These hierarchical networks are characterized by the
presence of hubs, the role of hubs in the synchronization process is very different that the role
played by the rest of nodes. As shown in [33] the equations involving hubs in the synchro-
nization process are topological averages of the phases of the nodes they are connected with.
In terms of meta-stable patterns of synchronization, hubs persist during long times as isolated
communities however this fact could never be detected via optimization of the modularity,
cause modularity of any partition with isolated nodes can never be optimal. This last fact is
proved analytical from the definition of modularity.

5 CONCLUSIONS

We have show that meta-stable patterns of synchronization in the path towards complete
synchronization are closely related to the partitions obtained optimizing modularity on complex
networks. However, the correspondence between both descriptions is not exact. This is pointing
out that some definition of communities at different scales from topological analysis, including
the possibility of having nodes forming its own community will be more representative of the
topological role of the structure in the dynamics taking place on it.

References

[1] Watts D J and Strogatz S H 1998 Nature 393 440-442

[2] Strogatz S H 2001 Nature 410 268-276

[3] Albert, R. & Barabasi, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74 47-97 (2002).



Pr1-6 JOURNAL DE PHYSIQUE IV

Fig. 1. Please write your figure caption here

Fig. 2. Please write your figure caption here

[4] Newman, M.E.J.The structure and function of complex networks. SIAM Rev. 45 167-256 (2003).

[5] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M .& Hwang, D.U. Complex networks: Structure and
dynamics . Phys. Rep. 424 175-308 (2006).

[6] Newman, M.E.J. Detecting community structure in networks. Eur. Phys. J. B 38 321-330 (2004).

[7] Danon, L., Dı́az-Guilera, A., Duch, J. & Arenas, A. Comparing community structure identification. J.

Stat. Mech. P09008 (2005).

[8] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113



WILL BE SET BY THE PUBLISHER Pr1-7

[9] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, D. Wagner, Maximizing Modu-
larity is hard, physics/0608255.

[10] Newman M E J 2004 Phys. Rev. E 69 066133

[11] Clauset A, Newman M E J and Moore C 2004 Phys. Rev. E 70 066111
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