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Our current world is linked by a complex mesh of networks where information, people and goods
flow. These networks are interdependent each other, and present structural and dynamical features
different from those observed in isolated networks. While examples of such “dissimilar” properties
are becoming more abundant, for example diffusion, robustness and competition, it is not yet clear
where these differences are rooted in. Here we show that the composition of independent networks
into an interconnected network of networks undergoes a structurally sharp transition as the inter-
connections are formed. Depending of the relative importance of inter and intra-layer connections,
we find that the entire interdependent system can be tuned between two regimes: in one regime, the
various layers are structurally decoupled and they act as independent entities; in the other regime,
network layers are indistinguishable and the whole system behave as a single-level network. We
analytically show that the transition between the two regimes is discontinuous even for finite size
networks. Thus, any real-world interconnected system is potentially at risk of abrupt changes in its
structure that may reflect in new dynamical properties.

Interacting, interdependent or multiplex networks are
different ways of naming the same class of complex sys-
tems where networks are not considered as isolated enti-
ties but interacting each other. In multiplex, the nodes
at each network are instances of the same entity, thus
the networks are representing simply different categori-
cal relationships between entities, and usually categories
are represented by layers. Interdependent networks is a
more general framework where nodes can be different at
each network.
Many, if not all, real networks are “coupled” with other
real networks. Examples can be found in several do-
mains: social networks (e.g., Facebook, Twitter, etc.) are
coupled because they share the same actors [10]; multi-
modal transportation networks are composed of different
layers (e.g., bus, subway, etc.) that share the same loca-
tions [11]; the functioning of communication and power
grid systems depend one on the other [1]. So far, all phe-
nomena that have been studied on interdependent net-
works, including percolation [1, 3], epidemics [4], and lin-
ear dynamical systems [5], have provided results that dif-
fer much from those valid in the case of isolated complex
networks. Sometimes the difference is radical: for exam-
ple, while isolated scale-free networks are robust against
failures of their nodes or edges [12], scale-free interdepen-
dent networks are instead very fragile [1, 3].
Given such observations, two fundamentally important
theoretical questions are in order: (i) Why do dynam-
ical and critical phenomena running on interdependent
network models differ so much from their analogous in
isolated networks?; (ii) What are the regimes of appli-
cability of the theory valid for isolated networks to in-
terdependent networks? In this paper, we provide an
analytic answer to both these questions by characteriz-
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Figure 1: a) Schematic example of two interdependent net-
works A and B. In this representation, nodes of the same
color are one-to-one interdependent. b) In our model, inter-
layer edges have weights equal to p.

ing the structural properties of the whole interconnected
network in terms of the networks that compose it.

For simplicity, we consider here the case of two interde-
pendent networks. The following method can be, how-
ever, generalized to an arbitrary number of interdepen-
dent networks and its solution is reported in the Supple-
mentary Information. We assume that the two interde-
pendent networks A and B are undirected and weighted,
and that they have the same number of nodes N . The
weighted adjacency matrices of the two graphs are in-
dicated as A and B, respectively, and they have both
dimensions N × N . With this notation, the element
Aij = Aji is equal to the weight of the connection be-
tween the nodes i and j in network A. The definition of
B is analogous.
We consider the case of one-to-one symmetric interdepen-
dency [1] between nodes in the networks A and B (see
Fig. 1A). In the more general case of multiple interde-
pendencies, the solution is analogous and reported in the
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Supplementary Information. The connections between
interdependent nodes of the two networks are weighted
by a factor p (see Fig. 1B), any other weighted factor
for the networks A and B is implicitly absorbed in their
weights. The supra-adjacency matrix G of the whole net-
work is therefore given by

G =

(
A p1
p1 B

)
, (1)

where 1 is the identity matrix of dimensions N ×N .
Using this notation we can define the supra-laplacian of
the interconnected network as

L =

(
LA + p1 −p1
−p1 LB + p1

)
. (2)

The blocks present in L are square symmetric matrices
of dimensions N ×N , In particular, LA and LB are the
laplacians of the networks A and B, respectively.
Our investigation focus on the analysis of the spectrum of
the supra-Laplacian to ascertain the origin of the struc-
tural changes of the merging of networks in an intercon-
nected system. The spectrum of the laplacian of a graph
is a fundamental mathematical object for the study of
the structural properties of the graph itself. There are
many applications and results on graph Laplacian eigen-
pairs and their relations to numerous graph invariants
(including connectivity, expanding properties, genus, di-
ameter, mean distance, and chromatic number) as well
as to partition problems (graph bisection, connectivity
and separation, isoperimetric numbers, maximum cut,
clustering, graph partition), and approximations for opti-
mization problems on graphs (cutwidth, bandwidth, min-
p-sum problems, ranking, scaling, quadratic assignment
problem) [13–16].
Note that, for any graph, all eigenvalues of its laplacian
are non negative numbers. The smallest eigenvalue is al-
ways equal to zero and the eigenvector associated to it is
trivially a vector whose entries are all identical. The sec-
ond smallest eigenvalue λ2 also called the algebraic con-
nectivity [17] is one of the most significant eigenvalues of
the Laplacian. It is strictly larger than zero only if the
graph is connected. More importantly, the eigenvector
associated to λ2, which is called the characteristic valu-
ation or Fiedler vector of a graph, provides even deeper
about its structure [18–20]. For example, the components
of this vector associated to the various nodes of the net-
work are used in spectral clustering algorithms for the
bisection of graphs [21].

Our approach consists in the study of the behavior of the
second smallest eigenvalue of the supra-laplacian matrix
L and its characteristic valuation as a function of p, given
the single-layer network laplacians LA and LB .
According to the theorem by Courant and Fisher (i.e., the
so-called min-max principle) [22, 23], the second smallest
eigenvalue of L is given by

λ2 (L) = min
|v〉∈V

〈v| L |v〉 , (3)

where |v〉 ∈ V is such that 〈v|1〉 = 0, 〈v|v〉 = 1.
The vector |1〉 has 2N entries all equal to 1. Eq. (3)
means that λ2 (L) is equal to the minimum of the func-
tion 〈v| L |v〉, over all possible vectors |v〉 that are orthog-
onal to the vector |1〉 and that have norm equal to one.
The vector for which such minimum is reached is thus
the characteristic valuation of the supra-laplacian (i.e.,
L |v〉 = λ2 |v〉).
We distinguish two blocks of size N in the vector |v〉 by
writing it as |v〉 = |vA, vB〉. In this notation, |vA〉 is the
part of the eigenvector whose components corresponds
to the nodes of network A, while |vB〉 is the part of the
eigenvector whose components corresponds to the nodes
of network B. We can now write

〈v| L |v〉 = 〈vA, vB | L |vA, vB〉 =
〈vA| LA |vA〉+ 〈vB | LB |vB〉+
p (〈vA|vA〉+ 〈vB |vB〉 − 2 〈vA|vB〉)

and the previous set of constraints as 〈vA|1〉+ 〈vB |1〉 = 0
and 〈vA|vA〉 + 〈vB |vB〉 = 1, where now all vectors have
dimension N . Accounting for such constraints, we can
finally rewrite the minimization problem as

λ2 (L) = p+ min|v〉∈V {〈vA| LA |vA〉
+ 〈vB | LB |vB〉 − 2p 〈vA|vB〉}

. (4)

This minimization problem can be solved using Lagrange
multipliers (see Supplementary Information for technical
details).
In this way we are able to find that the second smallest
eigenvalue of the supra-laplacian matrix L is given by

λ2 (L) =

{
2p , if p ≤ p∗
≤ 1

2λ2 (LA + LB) , if p ≥ p∗ . (5)

Thus indicating that the algebraic connectivity of the
interconnected system follows two distinct regimes, one
in which its value is independent of the structure of the
two layers, and the other in which its upper bound is
limited by the algebraic connectivity of the weighted su-
perposition of the two layers whose laplacian is given by
1
2 (LA + LB). More importantly, the discontinuity in the
first derivative of λ2 is reflected in a radical change of
the structural properties of the system happening at p∗

(see Supplementary Information). Such dramatic change
is visible in the coordinates of characteristic valuation
of the nodes of the two network layers. In the regime
p ≤ p∗, the components of the eigenvector are

|vA〉 = − |vB〉 where |vA〉 = ± 1√
2N
|1〉 . (6)

This means that the two network layers are structurally
disconnected and independent. For p ≥ p∗, we have

〈vA|1〉 = 〈vB |1〉 = 0 , (7)

which means that the components of the vector corre-
sponding to interdependent nodes of network A and B
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Figure 2: Algebraic connectivity and Fiedler vector for two interdependent Erdős-Rényi networks of N = 50 nodes and average
degree k̄ = 5. In this example, the critical point is p∗ = 0.602(1). a) Characteristic valuation of the nodes in the two network
layers for p = 0.602. b) Algebraic connectivity of the system (black line). The discontinuity of the first derivative of λ2 is very

clear. The two different regimes 2p and λ2(LA+LB)
2

are shown as red dot-dashed and blue dashed lines, respectively. c) Inner
product 〈vA|vB〉 between the part of the Fiedler eigenvector (|vA〉) corresponding to nodes in the network A and the one (|vB〉)
corresponding to vertices in network B as a function of p. d) Inner products 〈vA|1〉 and 〈vB |1〉 as functions of p. 〈vA|1〉 and
〈vB |1〉 indicate the sum of all components of the Fiedler vectors |vA〉 and |vB〉, respectively. e) Characteristic valuation of the
nodes in the two network layers for p = 0.603.

have the same sign, while nodes in the same layer have
alternating signs. Thus in this second regime, the system
connectivity is dominated by inter-layer connections, and
the two network layers are structurally indistinguishable.
The critical value p∗ at which the transition occurs is the
point at which we observe the crossing between the two
different behaviors of λ2, which means

p∗ ≤ 1

4
λ2 (LA + LB) . (8)

This upper bound becomes exact in the case of identical
network layers (see Supplementary Information). Since
inter-layer connections have weights that grows with p,
the transition happens at the point at which the weight
of the inter-layer connections exceeds the half part of
the inverse of the algebraic connectivity of the weighted
super-position of both network layers (see Fig. 2). In the
case of ` network layers, the result is equivalent to the
superposition of all of them (see Supplementary Informa-
tion).
It is important to notice that the discontinuity in the
first derivative of λ2 (L) can be interpreted as the con-
sequence of the crossing of two different populations of
eigenvalues (see the case of identical layers in the Sup-
plementary Information). The same crossing will also
happen for the other eigenpairs of the graph laplacian
(except for the smallest and the largest ones), and thus
will reflect in the discontinuities in the first derivatives of

the corresponding eigenvalues.

A physical interpretation of the algebraic phase transi-
tion that we are able to analytically predict can be given
by viewing the function 〈v| L |v〉 as an energy-like func-
tion. From this point of view, Eq. (3) becomes equivalent
to a search for the ground state energy, and the char-
acteristic valuation can be viewed as the ground state
configuration. Such analogy is straightforward if one re-
alizes that Eq. (3) is equivalent to the minimization of
the weighted cut of the entire networked system [whose
adjacency matrix G is defined in Eq. (1)], and that the
minimum of this function corresponds to the ground state
of a wide class of energy functions [24] and fitness land-
scapes [25]. These include, among others, the energy as-
sociated to the Ising spin models [26] and costs functions
of combinatorial optimization problems, such as the trav-
eling salesman problem [27]. In summary, the structural
transition of interdependent networks involves a disconti-
nuity in the first derivative of an energy-like function, and
thus, according to the Ehrenfest classification of phase
transitions, it is a discontinuous transition [28].
Since the transition at the algebraic level has the same
nature as the connectivity transition that has been stud-
ied by Buldyrev et al. in the same class of networked
systems [1], it is worth to discuss about the relations
between the two phase transitions. We can reduce our
model to the annealed version of the model considered



4

by Buldyrev et al. by setting A = t2A, B = t2B and
p = t, being 1 − t the probability that one node in one
of the networks fails. All the results stated so far hold,
with only two different interpretations. First, the upper
bound of Eq. (8) becomes a lower bound for the critical
threshold of the algebraic transition that reads in terms
of occupation probability as

tc ≥
4

λ2 (LA + LB)
. (9)

Second, the way to look at the transition must be re-
versed: network layers are structurally independent (i.e.,
the analogous of the non percolating phase) for values of
t ≤ tc, while become algebraically connected (i.e., analo-
gous of the percolating phase) when t ≥ tc.
As it is well known, the algebraic connectivity represents
a lower bound for both the edge connectivity and node
connectivity of graph (i.e., respectively the minimal num-
ber of edges or nodes that should be removed to discon-
nect the graph) [17]. Indeed, the algebraic connectivity
of a graph is often used as a control parameter to make
the graph more resilient to random failures of its nodes
or edges [29]. Thus, the lower bound of Eq. (9) represents
also a lower bound for the critical percolation threshold
measured by Buldyrev et al. Interestingly, our prediction
turns out to be a sharp estimate of the lower bound.
For the Erdős-Rényi model, we have in fact tc ≥ 2/k̄, if
the two networks have the same average degree k̄, and
this value must be compared with 2.455/k̄ as predicted
by Buldyrev et al. [1, 3]. Similarly, we are able to predict
that tc grows as the degree distribution of the network
becomes more broad [14], in the same way as it has been
numerically observed by Buldyrev et al. [1].
Although we are not able to directly map the algebraic
transition to the percolation one, we believe that the ex-
istence of a first-order transition at the algebraic level
represents an indirect support of the discontinuity of the
percolation transition.

In conclusion, we have provided the exact analytic treat-
ment of the structural properties of interconnected net-
works. We have presented the exact solution for the al-
gebraic connectivity of these network models. For sim-
plicity, we have considered the simplest case of one-to-
one interdependency but our formalism can be easily ex-
tended to study more complicated dependence relation-
ships among the nodes of the different layers. Our proof
does not rely on any approximation but on a very intu-
itive mathematical approach.
The structural phase transitions in interdependent net-

works are first-order in nature. This differentiate multi-
and single-level networks in a radical manner. We remark
that the discontinuity in the first derivative of the alge-
braic connectivity affects directly a vast class of systems
whose dynamics is driven by the minimization of energy-
like functions associated to the structure of the system,
but the same conclusions can be also extended to other
critical phenomena whose features depend on the third,
fourth, etc. smallest eigenpairs of the graph laplacian.
Moreover, the point at which we observe the disconti-
nuity in the first derivative of the algebraic connectivity
(but also on other eigenvalues of the graph laplacian) de-
fines a clear scale for the applicability of the results valid
for isolated networks. In one case, network layers can be
considered as independent, in the other case the entire
system can be considered as a single-level network. The
fact that the transition between the two regimes is so
sharp leaves out only a very tiny interval of interaction
values where it makes sense to consider the system as
composed of many interacting network layers.
Our results have also deep practical implications. The
abrupt nature of the structural transition is not only vis-
ible in the limit of infinitely large systems, but for net-
works of any size. Thus, even real networked systems
composed of few elements may be subjected to abrupt
structural changes, including failures. Our theory pro-
vides, however, fundamental aids for the prevention of
such collapses. It allows, in fact, not only the prediction
of the critical point of the transition, but, more impor-
tantly, to accurately design the structure of such systems
in order to make them more robust. For example, the
percolation threshold of interconnected systems can be
simply decreased by increasing the algebraic connectiv-
ity of the superposition of the network layers. This means
that an effective strategy to make an interdependent sys-
tem more robust is to avoid the repetition of edges among
layers, and thus bring the superposition of the layers as
close as possible to an all-to-all topology.
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Supplementary Information

Solution of the algebraic connectivity value of
interconnected networks

In the following, we will make use of the standard bra-
ket notation for vectors. In this notation, |x〉 indicates
a column vector, 〈x| indicates the transposed (i.e., row
vector) of |x〉, 〈x|y〉 = 〈y|x〉 indicates the inner product
between the vectors |x〉 and |y〉, A |x〉 indicates the action
of matrix A on the column vector |x〉, and 〈x|A indicates
the action of matrix A on the row vector 〈x|.

First of all, we can simply state that for the algebraic
connectivity of Eq. (4) we must have that

λ2 (L) ≤ 1

2
λ2 (LA + LB) , (S1)

where this upper bound comes out directly from the def-
inition of the minimum of a function. For every Q ⊆ V,
we have in fact that

min
|v〉∈V

〈v| L |v〉 ≤ min
|v〉∈Q

〈v| L |v〉

simply because we are restricting the domain in which
finding the minimum of the function 〈v| L |v〉. The par-
ticular value of the upper bound of Eq. (S1) is then given
by setting Q as

|v〉 = |vA, vB〉 ∈ Q is such that |vA〉 = |vB〉 = |q〉
, with 〈q|1〉 = 0, 〈q|q〉 = 1/2

.

To find the minimum of the function expressed in Eq. (4),
we use the Lagrange multipliers’ formalism. This means
finding the minimum of the function

M = 〈vA| LA |vA〉+ 〈vB | LB |vB〉 − 2p 〈vA|vB〉
−r (〈vA|1〉+ 〈vB |1〉)− s (〈vA|vA〉+ 〈vB |vB〉 − 1)

,

where the constraints of the minimization problem have
been explicitly inserted in the function to minimize
through the Lagrange multipliers r and s. In the fol-
lowing calculations, we will make use of the identities

∂
∂ |x〉 〈t|x〉 = ∂

∂ |x〉 〈x|t〉 = 〈t|
∂
∂ |x〉 〈x|x〉 = 2 〈x|
∂
∂ |x〉 〈x|A |x〉 = 2 〈x|A, if A = AT

,

where ∂
∂ |x〉 indicates the derivative with respect to all

the coordinates of the vector |x〉. Equating to zero the
derivatives of M with respect to r and s, we obtain the
constraints that we imposed. By equating to zero the
derivative of M with respect to |vA〉, we obtain instead

∂M

∂ |vA〉
= 2 〈vA| LA−2p 〈vB |−r 〈1|−2s 〈vA| = 〈0| , (S2)
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and, similarly for the derivative of M with respect to
|vB〉,we obtain

∂M

∂ |vB〉
= 2 〈vB | LB−2p 〈vA|−r 〈1|−2s 〈vB | = 〈0| . (S3)

Multiplying both equations for |1〉, we have
2 〈vA| LA |1〉 − 2p 〈vB |1〉 − r 〈1|1〉 − 2s 〈vA|1〉 = 0
and 2 〈vB | LB |1〉 − 2p 〈vA|1〉 − r 〈1|1〉 − 2s 〈vB |1〉 = 0,
that can be simplified in 2(p − s) 〈vA|1〉 − rN = 0 and
2(p − s) 〈vB |1〉 − rN = 0 because LA |1〉 = LB |1〉 = |0〉
and 〈vA|1〉 = −〈vB |1〉. Summing them, we obtain r = 0.
Finally, we can write

(p− s) 〈vA|1〉 = 0
(p− s) 〈vB |1〉 = 0

. (S4)

These equations can be true in two cases: (i) 〈vA|1〉 6= 0
or 〈vB |1〉 6= 0 and s = p; (ii) 〈vA|1〉 = 〈vB |1〉 = 0. In the
following, we analyze these two cases separately.

First, let us suppose that s = p, and that at least one of
the two equations 〈vA|1〉 6= 0 and 〈vB |1〉 6= 0 is true. If
we set s = p in Eqs. (S2) and (S3), they become

〈vA| LA − p 〈vB | − p 〈vA| = 〈0| (S5)

and

〈vB | LB − p 〈vA| − p 〈vB | = 〈0| . (S6)

If we multiply the first equation for |vA〉 and the second
equation for |vB〉, the sum of these two new equations is

〈vA| LA |vA〉+ 〈vB | LB |vB〉 − 2p 〈vA|vB〉 = p . (S7)

If we finally insert this expression in Eq. (4), we find that
the second smallest eigenvalue of the supra-laplacian is

λ2 (L) = 2p . (S8)

We can further determine the components of Fiedler
vector in this regime. If we take the difference between
Eqs. (S5) and (S6), we have 〈vA| LA = 〈vB | LB .
On the other hand, Eq. (S8) is telling us that
〈vA| LA |vA〉 = −〈vB | LB |vB〉 because the only
term surviving in Eq. (S7) is the one that depends on
p. Since 〈vA| LA |vA〉 (〈vB | LB |vB〉) is always larger
than zero, unless |vA〉 = c |1〉 (|vB〉 = c |1〉), with c
arbitrary constant value, we obtain Eq. (6). Thus in this
regime, both the relations 〈vA|1〉 6= 0 and 〈vB |1〉 6= 0
must be simultaneously true. Eq. (6) also means that
〈vA|vB〉 = − 1

2 .

The other possibility is that Eqs. (S4) are satisfied be-
cause 〈vA|1〉 = 0 and 〈vB |1〉 = 0 are simultaneously true.
In this case, the average value of the components of the
vectors |vA〉 and |vB〉 is zero, and thus the coordinates
of the Fiedler vector corresponding to the nodes of the

same layer have alternatively negative and positive signs.
More can be said in the case of identical layers, where
the problem can be solved exactly (see next section). In
this case, the upper bound of Eq. (S1) becomes the ex-
act solution for the algebraic connectivity and reads as
λ2 (L) = λ2 (M), withM laplacian of both layers. More
importantly, the Fiedler vector satisfies the relation

|vA〉 = |vB〉 . (S9)

The same relation does not hold in general for different
network layers, although the coordinates of the Fiedler
vector of two interdependent nodes seem to have the same
sign.

Spectrum of the laplacian for two identical network
layers

Consider the case LA = LB =M. Finding the eigenval-
ues of the supra-laplacian L means finding the solutions
of the eigenvalue problem

det (L − λ1) = 0 .

Let us write the eigenvalues λ as functions of the eigen-
values µ of M. This can be done in the following way.

(L − λ1) =

(
M+ p1− λ1 −p1

−p1 M+ p1− λ1

)
Consider the matrices

U =

(
Q ∅
∅ Q

)

UT =

(
QT ∅
∅ QT

)
,

with QTMQ = D and D diagonal matrix containing the
eigenvalues µ of M, so that QTQ = QQT = 1, and the
matrices

V =
1√
2

(
1 −1
1 1

)

V T =
1√
2

(
1 1

−1 1

)
We can write

V TUT (L − λ1)UV =

V T
(
D + p1− λ1 −p1
−p1 D + p1− λ1

)
V
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V TUT (L − λ1)UV =

1√
2

(
D − λ1 D − λ1

−D + λ1− 2p1 D − λ1 + 2p1

)
V

V TUT (L − λ1)UV =

1
2

(
2D − 2λ1 ∅
∅ 2D − 2λ1 + 4p1

)
.

Since

det (L − λ1) = det
[
V TUT (L − λ1)UV

]
,

the eigenvalues of the supra-laplacian L are given by {µ}
and {µ+ 2p}, where {µ} are the eigenvalues of the single
layer laplacian M.
This means that there two possible candidates for λ2 (L):
µ2 and 2p. The equation that delimits the different re-
gions is thus

µ2 (M) = 2p .

Please note that a similar behavior is valid also for the
other eigenvalues of the laplacian (except the largest and
the smallest, see Fig. S1). For example, the third smallest
eigenvalue λ3 of the supra-laplacian exhibits three differ-
ent behaviors, an its derivative is discontinuous at two
values of p identified by the equations

µ2 (M) = 2p

(i.e., the same point in which the first derivative of λ2 is
discontinuous) and

µ3 (M) = µ2 (M) + 2p .

The behavior of the other eigenvalues is even richer, and
in principle several discontinuity points are present. A
similar behavior is also present in the case of different
network layers (see Fig. S1).

Spectrum of the laplacian with arbitrary number of
identical interconnected networks

The same result holds also for more than two identical
interdependent networks. In that case, the matrix V is
the block matrix able to diagonalize the block matrix
composed of ` blocks equal to the identity matrix. U is
still the matrix able to diagonalize the laplacianM. The
resulting matrix, after the similarity transformation

V TUT (L − λ1)UV

has one block diagonal element equal toD+` p1−λ1, and
the remaining `−1 block diagonal elements proportional
to D−λ1. The eigenvalues of the supra-laplacian matrix
are thus {µ} with multiplicity ` − 1, and {µ + `p} with

multiplicity one. We thus have still two regimes for the
second smallest eigenvalue given by

λ2 (L) =

{
`p , if p ≤ p∗
µ2 (M) , if p ≥ p∗ ,

where p∗ is given by

p∗ =
1

`
µ2 (M) .

General case with arbitrary number of
interconnected networks

Let us consider the case of ` different layers. The supra-
laplacian matrix is composed of ` × ` block matrices of
dimensions N ×N . Along the diagonal, we have

Lmm = Lm + (`− 1)p1

while on the off-diagonal blocks we have

Lmn = −p1 ,

where Lm is the laplacian matrix of the layer m, while 1
is the identity matrix. Let us write the generic vector as

|v〉 = |v1, v2, . . . , v`〉 .

Then

〈v| L |v〉 =
∑
m 〈vm| Lm |vm〉

+(`− 1)p
∑
m 〈vm|vm〉 − p

∑
m

∑
n 6=m 〈vm|vn〉

.

For the Courant-Fisher min-max theorem, the second
smallest eigenvalue λ2 (L) of the supra-laplacian matrix
is given by

0 ≤ λ2 (L) = min
V
〈v| L |v〉 ,

with

|v〉 ∈ V is such that
|v〉 6= |0〉 , 〈v|v〉 = 1 and 〈v|1〉 = 0

.

|1〉 is the column vector whose `N entries are equal to
one, while |0〉 is the column vector whose `N entries are
equal to zero. The constraints of the vectors in V can be
written also as

〈v|v〉 =
∑
m

〈vm|vm〉 = 1 and 〈v|1〉 =
∑
m

〈vm|1〉 = 0 ,

where |1〉 now indicates a column vector whose N entries
are equal to one, and |0〉 now indicates a column vector
whose N entries are equal to zero. Imposing the con-
straint

∑
m 〈vm|vm〉 = 1, the former expression reduces

to

〈v| L |v〉 =
∑
m 〈vm| Lm |vm〉

−p
∑
m

∑
n 6=m 〈vm|vn〉+ (`− 1)p

. (S10)
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Figure S1: Properties of some eigenpairs of the supra-laplacian matrix for two interdependent Erdős-Rényi networks of N = 50
nodes and average degree k̄ = 5. The networks used in this plot are the same as those considered in Fig. 2. In panels a, b
and c, we used identical layers (only network A for both layers), in panels d, e and f, we used instead different network layers.
a) and d) Eigenvalues λk, with k = 2, 3, 4 and 5 as functions of p. b) and e) Inner product 〈vA|vB〉 between the part of the
eigenvector (|vA〉) corresponding to nodes in the network A and the one (|vB〉) corresponding to vertices in network B as a
function of p. c) and f) Absolute value of the inner product 〈vA|1〉 as a function of p.

First of all, we can easily set an upper bound for λ2 (L)
by simply reducing the set of vectors where searching for
the minimum of the function 〈v| L |v〉. For all Q ⊆ S,
the definition of minimum implies that

λ2 (L) ≤ minQ 〈v| L |v〉 = (`− 1)p

+ minQ

[∑
m 〈vm| Lm |vm〉 − p

∑
m

∑
n 6=m 〈vn|vm〉

]
.

In particular, if we choose Q

|v〉 = |v1, . . . , vm〉 ∈ Q is such that
|vm〉 = |q〉 for all m with 〈q|1〉 = 0 and 〈q|q〉 = 1/`

this leads to∑
m

∑
n 6=m

〈vn|vm〉 =
∑
m

∑
n6=m

〈q|q〉 =
∑
m

(`− 1)/` = `− 1

and therefore to

λ2 (L) ≤ minQ
∑
m 〈vm| Lm |vm〉 =

minQ 〈q|
∑
m Lm |q〉 =

λ2(
∑

m Lm)
` .

Notice that this upper bound does not depends on p, and
thus represents the asymptotic value of λ2 (L) in the limit
p→∞. This can be proven in the following way. In the
regime p� 1, we can write

minV

[∑
m 〈vm| Lm |vm〉 − p

∑
m

∑
n6=m 〈vm|vn〉

]
∼

minVp�1

[
−p
∑
m

∑
n 6=m 〈vm|vn〉

]
=

−p maxVp�1

[∑
m

∑
n6=m 〈vm|vn〉

] .

In this regime, the terms 〈vm| Lm |vm〉 are in fact finite
(i.e., they do not diverge with p), because Lm does not

depend on p and because the constraint
∑
m 〈vm|vm〉 = 1

implies that 〈vm|vm〉 ≤ 1. This basically means that each
component of the vector |vm〉 is in modulus smaller or
equal to one. For the Cauchy-Swartz inequality, we can
also write

〈vn|vm〉2 ≤ 〈vn|vn〉 〈vm|vm〉

and thus

〈vn|vm〉 ≤
√
〈vn|vn〉 〈vm|vm〉 .

On the other hand, we have also that

1 = (
∑
m 〈vm|vm〉)

2
=∑

m

∑
n6=m 〈vn|vn〉 〈vm|vm〉+

∑
m 〈vm|vm〉

2

thus ∑
m

∑
n6=m 〈vn|vn〉 〈vm|vm〉 =

1−
∑
m 〈vm|vm〉

2 ≤ 1

This implies that ∑
m

∑
n 6=m

〈vn|vm〉 ≤ 1

where the equality holds only if all vectors |vm〉 are iden-
tical. The maximum of the function thus corresponds to
one of these configurations, and thus Vp�1 = Q. This an-
alytically prove the result established by Gómez et al. [5]
through approximation methods.

We can further investigate the structure of the eigenvec-
tor associated to the eigenvalue λ2 (L). In order to find
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λ2 (L), we have to minimize the function 〈v| L |v〉 under
the constraints of V. This can be performed with the use
of the Lagrange multipliers, by minimizing the function

M =
∑
m

[
〈vm| Lm |vm〉 − p

∑
n 6=m 〈vm|vn〉

]
−r (

∑
m 〈vm|vm〉 − 1)− s

∑
m 〈vm|1〉

.

By equating the derivatives of M with respect to r and
s we simply recover the constraints. By equating to zero
the derivative of M with respect to |vm〉, we find

∂ M
∂ |vm〉 = 2 〈vm| Lm
−2p

∑
n 6=m 〈vn| − 2r 〈vm| − s 〈1| = 〈0|

(S11)

where 〈0| indicates a row vector whoseN entries are equal
to zero. If we multiply the previous equation for |1〉, we
have

2 〈vm| Lm |1〉 − 2p
∑
n 6=m

〈vn|1〉 − 2r 〈vm|1〉 − s 〈1|1〉 = 0

from which

−2p
∑
n 6=m

〈vn|1〉 − 2r 〈vm|1〉 − sN = 0

because the Lm |1〉 = 0 and 〈1|1〉 = N . We further have
from one the constraints that

∑
n 6=m 〈vn|1〉 = −〈vm|1〉,

thus

2 (p− r) 〈vm|1〉 − sN = 0 . (S12)

If we sum the previous equation over all m, we have

2 (p− r)
∑
m

〈vm|1〉 −
∑
m

sN = 0

and since
∑
m 〈vm|1〉 = 0, we have

s = 0 .

If we set s = 0 in Eq. (S12), we have

(p− r) 〈vm|1〉 = 0 , ∀m .

These ` equations are satisfied if: (i) r = p and ∃n such
that 〈vn|1〉 6= 0, or (ii) 〈vm|1〉 = 0, ∀m.

Let us first suppose the first case, and thus r = p. Mul-
tiply Eq. (S11) for |vm〉 to obtain

〈vm| Lm |vm〉 − p
∑
n 6=m

〈vn|vm〉 − p 〈vm|vm〉 = 0

and summing over all layers m, we have

∑
m

〈vm| Lm |vm〉 − p∑
n 6=m

〈vn|vm〉 − p 〈vm|vm〉

 = 0 .

If we now insert this expression in Eq. (S10), we obtain

〈v| L |v〉 =
∑
m

[
〈vm| Lm |vm〉 − p

∑
n 6=m 〈vm|vn〉−

p 〈vm|vm〉+ p 〈vm|vm〉] + (`− 1)p

from which

〈v| L |v〉 = p+ (`− 1)p = `p .

Thus, in this regime, we have that

λ2 (L) = `p .

Since there is no dependency on p, we must have that∑
m

〈vm| Lm |vm〉 = 0 .

This equation can be true only if |vm〉 = cm |1〉, with cm
arbitrary constant, and thus only if 〈vm| Lm |vm〉 = 0,
∀m. This follows from the fact that 〈x| Lm |x〉 ≥ 0 for
any choice of |x〉 and the equality holds only for |x〉 =
c |1〉. The relation between the constants cm is then given
by the normalization∑

m

〈vm|vm〉 = N
∑
m

c2m = 1

but also by the fact that∑
m

〈vm|1〉 = N
∑
m

cm = 0

and there exists at least one n for which

cn 6= 0 .

In the case of ` = 2 layers, this reduces to only one
possibility as given by Eq. (6).

In conclusion, we can write that

λ2 (L) = min {`p, µ2 (L)} , (S13)

where

µ2 (L) = min
T
〈v| L |v〉 (S14)

and

|v〉 = |v1, . . . , vm, . . . , v`〉 ∈ T is such that∑
m 〈vm|vm〉 = 1 and 〈vm|1〉 = 0 ,∀ m .

Arbitrary interdependency matrix

We consider here the case ` = 2 network layers, but the
calculations are analogous for the case arbitrary `. Sup-
pose that the connections between interdependent nodes
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in the networks A and B are described by the symmetric
matrix C. The supra-adjacency matrix is thus

G =

(
A pC
pC B

)
, (S15)

and the supra-laplacian matrix is

L =

(
LA + pDC −pC
−pC LB + pDC

)
, (S16)

where DC is the diagonal matrix whose elements are
(DC)ii =

∑
j Cij . We can write

〈vA, vB | L |vA, vB〉 = 〈vA| LA |vA〉+ p 〈vA|DC |vA〉+
〈vB | LB |vB〉+ p 〈vB |DC |vB〉 − 2p 〈vA|C |vB〉 .

Proceeding in the same way as described before (i.e., min-
imization with the use of Lagrange multipliers), we ob-
tain the two following equations

2 〈vA| LA + 2p 〈vA|DC − 2p 〈vB |C − 2s 〈vA| − r 〈1| = 〈0|

and

2 〈vB | LB+2p 〈vB |DC−2p 〈vA|C−2s 〈vB |−r 〈1| = 〈0| .

If we multiply them for |1〉, we have

2p 〈vA|c〉 − 2p 〈vB |c〉 − 2s 〈vA|1〉 − rN = 0

and

2p 〈vB |c〉 − 2p 〈vA|c〉 − 2s 〈vB |1〉 − rN = 0 ,

where |c〉 = C |1〉 = DC |1〉 is the vector whose coordi-
nates correspond to the strengths of the nodes in the in-
terdependent part of the graph. Summing them, we find
r = 0. If we multiply the first equation for |vA〉, we have
〈vA| LA |vA〉+p 〈vA|DC |vA〉−p 〈vB |C |vA〉−s 〈vA|vA〉 =
0 and 〈vB | LB |vB〉 + p 〈vB |DC |vB〉 − p 〈vA|C |vB〉 −
s 〈vB |vB〉 = 0, thus from their sum we obtain s =

〈vA, vB | L |vA, vB〉.
If C is the adjacency matrix of a regular graph with de-
gree c, then |c〉 = c |1〉. This means that

(2pc− s) 〈vA|1〉 = (2pc− s) 〈vB |1〉 = 0 .

As in the former case, we can have two possibilities

〈vA|1〉 = 〈vB |1〉 = 0

or

λ2 (L) = 2pc with 〈vA|1〉 6= 0 , 〈vB |1〉 6= 0 .

Annealed interconnected networks

With the presented methodological approach, we can
easily study the typical behavior of different ensembles
of network models. In this case, the adjacency matri-
ces A and B should be thought as weighted symmet-
ric matrices where the weight of each edge is equal to
the probability of having a connection between nodes in
the ensemble of networks (i.e., so-called annealed net-
works [9]). For example, if networks A and B are Erdős-
Rényi models with connections probability qA and qB ,
respectively, the laplacian of network A is such that
(LA)ij = qA(N − 1) if i = j, and (LA)ij = −qA, oth-

erwise. Similarly, we have (LB)ij = qB(N − 1) if i = j,

and (LB)ij = −qB , otherwise. The algebraic connec-
tivity of LA + LB can be analytically estimated to be
λ2 (LA + LB) = (qA + qB)N = k̄A+ k̄B , with k̄A = qAN
average degree of network A and k̄B = qBN average de-
gree of network B. Thus, the critical threshold of Eq. (8)
becomes p∗ ≤

(
k̄A + k̄B

)
/4. For more general network

models, such annealed networks with prescribed power-
law degree distributions, the critical point of the transi-
tion can be also analytically estimated by implementing
the methodology developed by Chung et al. [14].


