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We present new results in a model of technological evolution which displays different

macroscopic behaviors based on very simple microscopic rules of local interaction. The
main features are criticality and self-organization. We give information about new scaling
relation and study the roughness of the spatial technological profile. We verify that the
performance is optimized in the critical region independently of the dynamical rules.
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1. Introduction

One of the most appealing examples of productive and fruitful collaboration be-
tween two different disciplines that can be found nowadays in science ig econo-
physics. Physicist are providing mathematical tools and new insights to tackle
problems that economists were eager to consider and as a consequence the new
field is being developed at an unusual speed [2].%

T'wo basic branches are the main focus of interest. Perhaps the most important is
finance. The analysis of the statistical properties of real time data (stock market),
the control of financial risk or indication about to handle an optimal portfolio

aSince this is a fast growing field we should point the reader to the Internet pages devoted to
the Econophysics literature http://www.unifr.ch/econophysics/, where an exhaustive list of
references is permanently updated.
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are some typical examples which are receiving a lot of attention from the physics
community [5, 9, 7]. There is another group of people whose main goal is to develop
agent based models with the hope that the analysis of the essential mechanisms
governing the individual behavior of an ensemble of interacting units could give
information about macroscopic observables that can be measured in real life [3].
Indeed, economic systems can display very complex cooperative behavior even if
the individual nature of the agents is very simple. Agent models for trading, for
companies growth (8] or for spatial dependent games are, among others, examples
which have been investigated recently.

Coordination and competition are two basic ingredients that define the character
of any agent based model. Competition is more suitable to consider evolutionary sce-
narios where the amount of resources is limited. Coordination fits well with the idea.
of growth and optimization of common resources. Recently, we have studied a model
for technological progress where coordination and cooperation between agents give
rise to interesting features that can be observed in real economies [1]. The model,
which will be sketched briefly in the next section, displays self-organization, scale-
dependent effects (larger economies grow faster than smaller ones) and allows to
define observables that quantify the rate of progress of the systern.

In this paper we present new results that not only will help to understand
better the collective behavior of the model but also other important aspects such
that fluctuations or scaling properties. |

2. The Model

We have defined a model with local couplings formed by n agents, each of them
occupying a particular position (node) in a distributed one-dimensional boundary-
less lattice (see Fig. 1). At every time step (time will be considered discrete) each
agent adopts a certain action a,(t) that may be interpreted as the technology level
it currently uses. From the interaction with its first nearest neighbors (left and
right) it obtains corresponding payoffs, P(a;(t), a1 (t)) and ¢(ay(t), a;—1(t)), with
¥(-) being called the payoff function.

Fig. 1. Distribution of the agenis n a one-dimensional ring.
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The interaction must reflect a crucial aspect of the model: the compatibility
of technological levels should lead to higher payoffs while some incompatibility
costs that detract from the base payofl, should arise from g possible mismatch
between neighbors’ technologies. In addition, it seems logical to assume that the
costs must be bounded from below (the bankrupt). As an example, we may think of
the interaction between two agents as consisting of the completion of 4 new project
(e.g. launching a new product through firm partnership), for which dissimilarity of
action leads to consequent waste of resources. Under these general requirements we
have chosen the following payoff function

N Ja—ki(l—e @m0y jrg >4
w(a, a ) = {a — Iy (1 _ e»«-(a'—a)) ifa<a, (1)

The base payoff obtained from using a certain technology is assumed equal to a while
the incompatibility costs due to being too advanced or too backwards relative to
the neighbors are parameterized, respectively, by positive factors k1 and ks.

To model a dynamic environment in which infrequent perturbations punctuate
periods of stasis, thus triggering relatively quick processes of diffusion, we propose
an adjustment dynamics decoupling both processes as follows (see Fig. 2):

e Updates (marked (i) in Fig. 2): at each time step a randomly selected agent is
chosen to update its technological level from a;(t — 1) to

a;(t) =a;(t—1)+¢7, (2)

where & is an ii.d random variable. This update plays the role of an exoge-
nous perturbation that may be attributed to several interpretations (e.g. local
innovation, a shock in payoffs, population renewal, etc.).

check update an agent
neighbo_urs at random
e 7
@ (ii) (i) ﬁ F
payoff better?

Copy your neighbour

Start

W79
repeat until no&

more changes

Fig. 2. Schematic description of the dynamics of the model. The two time-scales are shown; (i) is
the slow time-scale (innovation) and (ii) is the fast time-scale {diffusion),
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o Diffusion (marked (ii) in Fig. 2): each one of agents i +1 and i — 1 now have three
options: to maintain its level or adopt one of its two neighbors. It will choose
the one which maximises its payoff i.e. ¥(as, ai-1) + ¥(a;,a;11). This process
continues until no agent wants to perform any adjustment in its technological
level. Then, another agent is updated randomly and so on.

Notice, that both processes are defined in different time scales. While the inno-
vations are supposed to be slow, the diffusion of them is a very fast process. The
diffusion is completely resolved before any new update is done so that the model
is synchronous.” For each “event” taking place at time ¢, i.e. a random update
followed by the upgrades it induces, we define the event size s(t) as the number of
agents that were modified, and the technological advance H (f) as the sum of the
technology gain throughout the system.

In our previous work [1] it turned out that the key to understand the dynamics
of the system relays only in the difference & = k; — k. Intuitively, & reflects the cost
difference resulting from “downwards incompatibility” (i.e. being too advanced) as
compared to that derived from “upwards incompatibility” (i.e. being too back-
wards). If & is small then all the agents tend to have the best possible technology
and any new update will immediately be copied by the whole population. In the fast
time scale it means a wave of change (avalanche) involving a large number of agents
in such a way that after each update (slow time scale) the agents are synchronised
i.e. have the same a. We will refer to this regime as the synchronised growing front
regime since when the technological profile of the system is considered, as we will
discuss in Sec. 4, this regime is characterised by a flat profile advancing with time.
In the limit of large % it is difficult to find an agent interested in changing their
current state because the cost is too high, so that the avalanches are very small.
We may identify both extremes as a supercritical and sub-critical state, respec-
tively. The intermediate range is very rich and the most interesting from a dynamic
standpoint.

3. Scaling Properties

As pointed out in the last section, for a finite range of values of the parameter k,
the dynamics of the model produces events of all sizes. This scale invariance is the
hallmark of self-organized critical behavior, confirmed by the power-law distribu-
tions for different magnitudes obtained in numerical simulations [1]. In Fig. 3 we
have represented the distribution of event sizes for different total number of agents
L. We observe a fast decay for small event sizes followed by a power-law behavior.
The picture also shows that the initial decay is independent of the system size.

In order to make more quantitative assertions about the concrete form that this
distribution adopts in our model, we propose the following method.

5An asynchronous model where the update and diffusion can overlap was also investigated but
the results are similar. This variant will not be discussed here.
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Fig. 3. Event size distribution for different system sizes and k = 4,
We calculate the probability, denoted P, that an agent adjusts its technological

level (upgrade) after an innovation (update) has been introduced in the system. We
can relate P to the event size distribution, p(s), if we interpret it as the probability

that an update generates an avalanche of size s. Given this, our agent will be

affected with probability s/L, being L the size of the system. Assuming for p(s) a
continuous form, we can express P as

L
lep@%%:@ﬂL (3)

Now it is a simple exercise to obtain P, given a concrete form for the distribution
of event sizes. Based on Fig. 3 we propose to approximate the event size distribution
by the following continuous distribution,

Cie™® ifse [0,30) s

Ps) = {czs—*r if s € (s, L] ¥

assuming an exponential decay for event sizes up to sp and a power-law for larger
~ event sizes. The continuity condition between the different parts of the distribution
relates C1 and C»,

Cre™ = (Chsy™7, (5)

and the normalization condition enables to determine Cy,

() R
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Now it is a straightforward calculation to obtain P as a function of v and sg.
For ~ £ 2 we have

2_
L o+ D+ 2 [(£)" ]
P(’“{, 80) = E X - o0 LNI—7 g (7)
e~ 1+ (&) 7 —1]
whereas for v == 2 the expression is
1 650—(50+1)+8021n(£)
Pl — 2, Y= = x 0 . 8
Y S0) T 630—1*—80{'}’—0"— J ()

Given the relationship just obtained between the probability that an agent
makes an upgrade and the parameters characterizing the event size distribution,
the numerical estimation of P allows us to say something about the form of this
distribution. To estimate P we have to collect the number of upgrades per event
that the agents make. In Fig. 4 we have represented the distributions for a system
of size L = 4096 and three different values of k. The mean values of these distribu-
tions provide an estimation of P. To compare with the analytical results we have
used the values of the exponent 7 obtained by linear regression. In Fig. 5 we have
represented these points together with the analytical results. We observe g good
fit with the line corresponding to the case sq = 3, confirming that the rapid decay
occurs, indeed, for very small event sizes.
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Fig. 4. Probability distribution of the number n of upgrades per event and per agent for k =
45(4), k=40 (A}, and k = 3.5 (B), and a sample of size 4096.
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Fig. 5. Comparison between analytical results and the data obtained in simulations. The fines
correspond to evaluating P as a function of v and s (Eqgs. (7)—(8)), and the squares to the pairs
of values of P and v obtained from the simulation for different values of k.

4. Profiles

In this section, we are going to focus our attention on the geometric properties of the
technological profile that results from the evolution of the system. In this way, we
will be able to extract some information about the spatial fluctuations of the system.
The technology profile, defined by the technological level of the agents a;, exhibits
several regimes. For k < 3, the profiles are essentially flat since big avalanches are
very frequent and they tend to flatten the interface. On the other hand, for k£ > 3
the profiles, as Fig. 6 shows, are quite rough. In tact, the larger the value of &k the
more frequent small avalanches are and the rougher the interface is. In this work,
we will analyze technological profiles with % close to the critical region k£ ~ 3.5
since this is the most interesting regime. Beginning from a flat initial interface,
fluctuations statistically increase each time step. Nevertheless, fluctuations do not
grow forever, they saturate after some simulation steps. Moreover, the larger the
System size the later they saturate.

Given this phenomenology, one can treat the system as a non-equilibrium inter-
face and try to apply some methods used in surface growth problems [4]. In such
problems it is common to study the fluctuations of the global interface width which
is defined as

2

1/2
W(L,1) = < 23 [aalt) - @l 2> , (9)
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Fig. 8. Three snapshots of the technological interface at different times for a system of 256 agents

and k& = 4.5. The interface width fluctuations grow with time until they reach a statistically
stationary value.

where (...} implies averaging over different realizations and ai(t) is the average
technological level at time ¢. Once the interface width has saturated, it is possible
to calculate the roughness exponent o by means of the scaling law

Weas (L) ~ L. (10)

If this relation holds, then the interface is said to be self-similar in the stationary
state. Sometimes is more convenient to work with the local interface width, w(i, ).
It is defined in analogy with Eq. (9), but now the spatial average is performed over
a window of size / instead of over the whole interface L. In F ig. 7 the evolution
of w(l,t) for some [ are shown. The local interface width is related to the height-
height correlation function G(I, 1) = ((ai11(t) ~ a;(t))2) through the scaling relation
w(l,1)? ~ G(1,t). Furthermore, given a system size L, we can estimate the roughness
exponent by calculating wsat(!) for several window sizes | and assuming that

Weat (1) ~ 1%, (11)

This is true for self-similar interfaces, but not in general. In particular, there are
some interfaces that show anomalous scaling [6], that is, local fluctuations do not
scale as global fluctuations. In this case, a new exponent is introduced, the local
roughness exponent aje, to characterize the local Auctuations. Now Eq. (11) reads

Wsat (1) ~ /Coat (1) ~ 110 [ 00c | (12)

Notice that, for [ = L, Eq. (10) is recovered. Our model exhibits an anomalous
scaling in the stationary state for & close to the critical region. For & = 3.5 we
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Fig. 7. Time evolution of the Auctuations of the local interface width w(l, t) for different window
sizes [ up to system size 1. = 1024. They saturate at a value weay ({) which increases with window
size [.

obtain roughness exponents o ~ 0.18 and oy, ~ 0.34. Therefore, in the model,
global economic fluctuations, do not scale in the same way as local fluctuations do.
‘These results only concern the spatial scaling of fluctuations in the stationary state.
The transient, or temporal, scaling of the interface does not seem to fit any of the
known scaling families and is currently being investigated.

5. Introducing Costs

Another ingredient with respect to the original model could be introduced. This
concerns the cost an agent should pay when updating to a higher technological
level along a diffusion process. This means that when an agent takes a decision it
is based not only on the difference in payoffs, as explained in Sec. 2, but also on
a cost that in general can depend on the amount of the upgrade, C(A). In other
words, it chooses within the set {a;_1, a;, Qi+1}

ai = ai-1 0 Uai-1, 1) + ¥(ai—1, 2i1) ~ Clai_y — a;),
i~ ; \IJ(a@-, ani».._]) + ‘I’(ai,ai+1), (13)
ai = @it1 0 U(@it1;Gim1) + U(aip1, Giv1) — Clazgr — as)

and takes the one that maximizes the RHS of (13).

The main effect of this introduction is to disable very small jumps. Let us see, for
instance, how the condition for stability of the synchronized growing front, defined
in the last paragraph of Sec. 2 and studied in [1], changes. Imagine a flat profile
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a;_1 = a; = @441, and then update a;—1 — ;-1 + A. Now agent 7 will decide to
upgrade if the following condition is satisfied

2A — C(A)

51— ky <
2 1—-e2

(14)

Since we have assumed a continuous distribution of technological levels, the
strongest condition corresponds to A — 0. Then it is easy to see that if
lima_o C{A) # 0, ie. even a very small update has a finite cost, then the con-
dition of stability of the synchronized front is k; — ko — —oo. This means that the
uniformly growing front is no longer a possible dynamics of the system. Anyway,
big avalanches are still possible if local gradients are large enough.

We have performed computer simulations with a fixed cost of 0.5 units per
upgrade and random updates & (as defined in Eq. (2)) within the interval [0, 1]. For
small values of &, even smaller than 2, we observe very large avalanches but not all
of them are system size wide. Hence, this mechanism provides an improvement in
the efficiency of the system. In [1] we defined the technological advance rate as

p=lim p(T)%Tlglgo ZZ:"‘” (())
t= 1

The values of p obtained from simulations with the new dynamical rules are
plotted in Fig. 8. Now it is casy to realize that since small upgrades are forbidden

(15)
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Fig. 8. Efficiency as a function of k, for two different system sizes.
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the system will be able to reach a global technological level with fewer upgrades
and hence the parameter p is larger, for a given value of k, than in the original
model.

For larger values of & (bigger than 3) we enter into the critical region where
avalanches are power-law distributed. With respect to the original model we expect
slightly better values of p, 25% for k = 3 and 2% for k = 4 for instance, but different
numerical values of the exponents. These two effects are, nevertheless, related since
the maximum efficiency is still within the critical region and it grows with system
size, showing again interesting scale effects.

Finally, for very large values of k the effect of introducing costs is negligible
since in this case upgrades are already quite large.

6. Conclusions

We have presented new results in the study of evolution in socio-economic environ-
ments, with special attention on the subject of technological progress. Following
the trends defined in a previous work we have confirmed that this model presents
some of the features characterizing self-organized critical systems in the framework
of statistical physics. For instance, we have found a new way of computing the
exponents of the power law distribution of event sizes. Borrowing some ideas from
interface growing phenomena we have studied the roughening of the technological
profile, observing that it has an anomalous scaling, which can be quite interest-
ing from an economic point of view, since local and global fluctuations behave in
a different way. Finally, the concept of universality shows up when changing the
microScopic rules but optimization of the magnitude that characterizes efficiency
still takes place within the critical region; the numerical values of the exponent
change, the width of the critical region enlarges, but these facts do not change the
location of the efficiency peak.
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