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Abstract,

Several models for the design and implementation of virtual sensor systems based on advanced neural
| architectures that are capable to infer on-line the properties of a ma.nuféotured product from real process
variables were developed and tested. The architectures considered were a modified Fuzzy ARTMAP
network, and two hybrid networks each combining a dynamic unsupervised classifier with a different
kind of supervised predictor. A new method to construct dynamically the unsupervised layer was
developed. The values of the melt index or quality of different LDPE grades produced in a tubular
reactor were inferred at the beginning .of the process cycle for different operation conditions and feed
compositions. The most relevant process varables to build the sensor were selected using self-
organizing maps and dissimilarity measures. All neural sensors outperformed predictors based on linear
correlation techniques when appropriate information was provided foi‘ training. The resulis obtained
indicate that the virtual sensors developed are capable of learning the relationships between process

variables measured at the beginning of the production cycle and the quality parameters of the final

product.

128




e

1. Introduction and Motivation.

Real time quality control requires robust product quality measurement technicues, which often are either unavailable on-line
or entail long time delays. Virtual or software sensors are an alternative to the use of hardware sensors or laboratory
procedures. There are tree kinds of approaches available to build models that can be used as soft sensors in manufacturing
processes: mechanistic models, statistical regression models and artificial intelligence based models.

A specific area of intrinsic interest to chemical process industries is the estimation of the quality of final products in
polymerization processes. Due to the high nonlinearity, complexity and uncertainty of these processes, it is often difficult to
obtain mechanistic models. Furthermore it is very complex io implement reliable and fast on-line analyzers to measure the
properties of ihese products and to establish appropriate control strategies. In these situations data-driven approaches sach are
statistical methods or artificial neural networks (ANN) provide a useful alternative. Using these techniques, on-line
estimators of product quality can be developed based on available process information. One of the most powerful and
increasingly used methodologies is the inferential measurement (Martin, 1997). This method consists in the inference of
product guality or difficult to measure process indicators from other more reliable or easily performed plant measurements,

such are pressures, flow rates, concentrations or teraperatures.

The purpose of the current study is to develop a virtual sensor to infer product quality from other more easily measured
process variables using several adaptive neural network architectures. Different techniques for the selection of relevant
variables and the construction of appropriate training and test sets are also proposed. The networks that have been considered
are a modified Fuzzy ARTMAP network (Ferre-Giné et al. 1996), and a hybrid network that combines the construction of a
dynamic unsupervised classifier with a supervised predictor (Rallo et al., 2002). The neural virtual sensors developed
following this approach are applied to infer quality indicators of different low-density polyethylene (LDPE) grades measured
on-line in operating plants. The quality of the polymer is determined essentially by the Melt Index (MI), which is measured
by the flow rate of polymer through a die. The on-line measurement of this quandity is difficult and requires close human
intervention because the extrusion die often fool and blocks. As a result, in most plants the MI is evaluated off-line with an
analytical procedure that takes between 2 to 4 hours to complete in the laboratory. The paper is organized as follows. In the
next section the architectures of virtal sensors are described, ouilining the leaming algorithms and operation procedures.
Section 3 focuses on the preprocessing technigues nsed to perform the selection of relevant variables and relevant examples.

Finally the results obtained are presented and discussed in section 4, together with some concluding remarks about the design

and imnplementation of v1rtual 3€NS0rs systems.

2. Architecture of the Virtual Sensor.

- The proposed architecture for the virtual sensor consists of two main components: The preprocessing module, that performs
_the selection of the most relevant information {o frain the system, and a core module that contains ths inferential predictor.

Two neural models have been developed and evalnated as core modules: (i) A predictive Fuzzy ARTMAP architectare that
has been capable of learning the dynamics of large-scale structures in a turbulent flow (Giralt et al., 2000) and (ii) an
unsupervised classifier layer that is connected to an output layer, where ontputs are either the average target property value of
all the input paiterns belonging to the cluster that is activated or the target property value that results from the incorporation
of a kernel function in the cluster centers.

2.1. Fuzzy ARTMAP.

The Fuzzy ARTMAP neural network is formed by a pair of fuzzy ART modules Tinked by an associative memory and an
internal controfler (Carpenter et al.,, 1992). The Fuzzy ART architectnre was designed by Carpenter et al. {1991) as a
classifier for nultidimensional data clustering based on a set of features. The classification procedure of fuzzy ART is based
on Fuzzy Set Theory (Zadeh, 1965) and clusters the data having a value for its grade of fuzzy membership greater than a
ceriain vigilance parameter into groups or classes. This parameter controls the granularity of the classes and allows the
specification of the desired accuracy criterion in the classification procedure. The mechanisms to speed up the process and to
conduct the classification properly can be found elsewhere (Carpenter et al., 1991). The Fuzzy ARTMAP architecture, which
has been successfully applied to educe the different classes of large-scale events present in free turbulence {Ferre-(iné et al,
1996), was designed to classify data and, thus, cannot generate an output pattern after the training stage. To implement
predictive capabilities the categories educed by the system from the learned information are linked to the desired outputs
(Giralt et al., 2000). The accuracy of the procedure increases asymptotically towards a constant value with the number of
examples used for training, i.e., when the space of outputs is accurately mapped.
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2.2 Dynamic Unsupervised Layer.

The construction of the unsupervised layer is performed in three steps: (i) Set-up an initial configuration with the center of
the first cluster formed by one pattern chosen randomly from the training dataset; (ii) define the minimal mean distance
between training patterns as the maximum attention radius to control the generation of new nodes; (iii) present a new input
paitern to the network and compute the Euclidean distance between the pattern and all nodes. The structure of the network is
adapted according to the following two riles. If the input patter is located inside the region of influence of any node, the
pattern is classified and the center of this node is adapted using a winner takes-all approach based on the Kohonen’s learning
rule (Kohonen, 1982}, Otherwise, a new node is created with the center located at the point that defines the input pattern. The
procedure is repeated until the number of nodes stabilizes and either the classification or the number of iterations reaches a
predeterrnmed minimum or maximum value, respectively. The current algorithm creates an appropnate number of clusters
since it determines the attention radius based on the distribution of the training patierns,

2.3. Cutput Models for the Dynamic Unsupervised Layer.

Two techniques, based on a hybrid approach that combines the current dynamic vnsupervised classifier with a supervised
learning engine, are used to obtain an ouwtput from the unsupervised layer. The first is a clustering average that labels the
unsupervised layer using the values of the target variable. One of the most-common labeling processes consists in averaging
the target value for each of the training patterns belonging to a given cluster, like in the k-means algorithm (MacQueen,
1967). This averaged value is subsequently the output of the network. Once the dynamic unsupervised layer is labeled, the
network is ready to infer the target property values, i.e., act as a virtual sensor. The second technique consists in the
placement of a set of Radial Basis Functions (RBF) (Moody and Darken, 1989) over the cluster centers using a supervised
training procedure io adjust the output. This neural network is herein after identified as Dynamic Radial Basis Function
network (Rallo et al. 2002). The idea is to pave the input space (or the part of it where the input vectors lie) with the receptive
field of these Gaussian fonctions. A map between the RBF outputs and the desired process outpuis is then consiructed in a’
second supervised training stage. First, the unsuparwsed layer that defines the number of radial functions in the hidden layer-
- as well as their position and width in the input space is constructed. The activation of the RBF layer for a given input pattem
is related to the desired output in a second supervised leamning stage

3. Preprocessing of data.

In chemical processing plants, the mumber of process variables that can be measured is very large and the sampling rates used
for these measurements are usually high.. This implies the generation of large datasets. containing lois of features. In those
situations it is very useful to have an “intelligent system”. capable of selecting the most relevant features needed o build an
accurate and reliable model for the process. The problem of feature ‘selection is a common challenge m most fields of
engineering, mainly due to problems related to noise during the data acquisition process, and the presence of contradictory
information due to the inclusion of irrelevant or redundant variables. The selection of a.good set of process variables to learn
a given concept during the training of the neural network is:a'key issug in data pre-processing. A reduciion in the dimension
of the imput space would also simplify the input layer of the neural architecture and reduce the time needed for trammg
Additionally, if the class to which a certain input pattern belongs is known it should be possible to figure out the features that
_best discriminate between the different values of the target properties. Thus, the problem of. feature selection is an
optimization problem that involves searching the space of all possible feature subsets to Identlfy one that is optimal or fiear
optimal with respect to a certam performance measure. :

3.1. Selection of relevant Varzables.

~ Variable selection methods can be represented as heuristic search problems and, thus, be classified in terms of four basic
parameters that drive its operation mode. (i) The szarting point {or points) in the search space, which determines the
components of the initial variable configuration to perform the selection process. This leads to forward selection, in which
the process is started without variables or with only a small subset of them. Then it proceeds adding new variables aﬁer pach
iteration, backward elimination, in which the process is started with the complete set of variables and then deleting some of
them after each iteration. (ii) The organization of the search process in the space of vatiables. An exhaustive search is usually
impractical, because for a given problem there are 2" possible subsets of # attributes and this high dimension makes this
approach infeasible in the majority of real applications. Another more realistic approach is based on a greedy method to =
traverse the variable space. In this situation, only a subset of all the possible configurations is explored. (iii) The strategy 15

evaluate the subsets of attributes. A metric to evalnate the goodness of an attribute is needed once the search over the space
of variables starts. Commonly used meirics are the attribute's ability to discriminate among classes that are present in the
training data set. (iv) The criterion to stop the search procedure. One may siop adding or Temoving attributes when none of
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the aliernatives improves the estimated accuracy of the previous set or continue generating candidate sefs until reaching the
other end of the search space and then selecting the best candidate. A more robust alternative is to perform an ordering of the
variables according to some relevance measure and then using some threshold value to determine the break point.

The method currently used (Espinosa et al., 2001) is based on the projection of sclected subsets of the input space onto the
space generated by a topology-preserving clustering process such as the Self Organizing Map (Kohonen, 1990). The
comparison of the resulting maps using some dissimilarity measure gives an indicator of the relevance of each combination
of variables. In the present work we use the dissimilarity measure proposed by Espinosa et al. (2001) to compare the
positions of the reference vectors in different map structures. This measure is based on 2 map goodness measure (Kaski and
Lagus, 1997) that combines and index of the continuity of the mapping from the dataset to the map grid with a measure of
accuracy of the map. The dissimilarity of two maps L and M is defined as the average difference of its goodpess

D(L,M)=E M : f1]
’ dp (x) + dy () .

In this equation E is the average expectation, and dfx) the distance over the map from the winner neuron or best matching unit
(BMU), denoted by #ymgs, to the second best cluster or BMU, denoted by #25m5- Of all possible paths between My, and
Mpmuy the shortest path passing continuously between neighbor units is selected, ‘

| Eagl
d(x)= ”x My (x)"-!— oz llm[ ) ~ M gesny
k=

[2]

To confirm that equation [1] measures dissimilarity between pairs of maps the dissimilarity between an initial map and other
maps trained using the same dataset and learning parameters but progressively contaminated by Gaussian noise was
computed. The dissimilarity between maps increased with noise level, indicating that the maps were becoming progressively
more different, as should be the case for a function of this type. ‘

3.2. Methodology.

The identification of redundant variables has been carried out with a redundancy index based on correlation properties of the
input data and their projection over the SOM. Once the' SOM.-is properly trained the weight vectors are used to build a
“sliced” representation of the map showing the distribution of each component (vatiable). This representation is named
" component-plane. Also, the unified distance matrix (u-matrix) (Ultsch and Siemon, 1990) can be computed as the distance
between the weight vectors of adjacent units in the map. From the u-matrix, the different component planes can be obtained
. as well. Figure la shows the representation of the component planes of the original SOM while figure 1b depicts the
~ component planes of its associated u-matrix. Components planes show the distribution of the data over the SOM space while
the u-matrix planes represent the clustering of each variable over the map space. The redundancy index (R1) that takes into
" account not only the carrelation between variables but also the correlation of their distribution and its clustering properties is
. given by, ' :

RI . =lcorr(i, )| + [corr(cplane,, cplane ) + \corr(umat, ,umat ;) (3]
L1 . J /

If RI;; is greater than a certain threshold the variable j is discarded from the dataset because the information that it provides is
" redundant with that of variable i.

The next step is the definition of the starting point in the variable space to start the search for the best set of variables. This
process is based on the clustering of the SOM and in the assumption that variables located in the same cluster coniribute with
similar information to the model. Thus, the starting point for the search is determined by choosing a representative variable
- for each cluster. The cluster prototypes are the variables with the highest correlation with the target variable. To avoid the
inclusion in the initial set of irrelevant variables only those variables with a correlation value with the target property higher
than the average correlation for the whole set of variables are considered. The criterion of a minimum Davies-Bouldin index
(Davies and Bouldin, 1979) has been applied to determine the optimal number of clusters. This index is a fimction of the ratio
between the sum of cluster compactness and of cluster separations.

The organization of the search proceeds from the starting point by building subsets of variables with the addition of the rest
of variables, one by one, ranked by its correlation with the target property. For cach of these subsets the dissimilarity with the
rest of possible subsets is computed using equation [1]. The process stops when the dissimilarity between all possible
configurations has been computed. This procedure reduces the complexity of the search algorithm from O(2%) to O(n’), being -
» the number of input variables. The smallest average dissimilarity value for any given set of input vartables indicates the
similarity in quality and quantity of the information presented by the maps and, thus, the process of including variables to
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form the best set of input variables can be stopped when the dissimilarity measure stabilizes, i.e., the maps for these different
variables are very similar. Note that any increase in dissimilarity with the inclusion of additional input variables to the
previous subset indicates that they do not provide any additional relevant information.

4. Results and Discussion.

In the current study the 25 process vaniables (pressures, flow rates, temperatures of the cooling/heating streams of the reactor,
ete.) listed in Table 1 have been chosen to characterize and to predict the time-variation of MI with the virtual sensors. The
data presented in the following analysis correspond to time intervals of 10 minutes. The mean residence tite of the materials

in the reactor was t=30 minnies.
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Variable Name Units | BRI with | Selected | Cluster Variable Name Units | [Riwith Selected Cluster
M. _ M 00
compressor throughput tm'h 0.041 I Melt Index 2/10min - (target variable) 11
concentration 7 0.529 wi 2 Pressure kgiem® | 0.054 I
concentration 2 % 0,248 v It | temperature 1 °C 0.313 v I
concentration 3 % 0.169 v If - temperature 2 °C 0.026 I
concr_:ntration 4 % 0.022 I temperature 3 °C ¢.522 ~ I
density glem’ 0.180 i temperature 4 °C 0.114 1
extruder power A 0.590 '\' 1 temperature 5 °C 0.122 I
extruder speed pm 0.052 v - | temperature & °C 7 0.138 ‘J v
;  jflowrate 1 kegh | 0.021 1 temperature 7 *C [ 049 v I
\ flow rate 2 kg/h 0.043 f tempezature 8 °C 0.447 | (redundant=temp7) -
flow rate 3 kg/h 0.330 1A' temperature 9 °C .11t I
flow rate 4 kg/h 0.526 ~ A% vol. flow rate I th 0600 | A ITE
level . Y% 0.125 v vol. flow rate 2 th 0.630 N v

Table 1. Variable identification and correlation with the Melt Index for tiie ensemble of a1l LDPE grades produced. The cohiumns on the right show the most
relevant variables detected using the Self Organizing Map and its cluster assignment. Temperature 8 has been detected a5 a redundant variable,

The process of detection of redundant variables yields the compo'nent planes shown in figore 1.

a

S

: (@ ' : ' - (®
Figure 1. Topologically ordered comporent planes of a Self organizing Map trained using 21l the available variables. (1) Compozent planes of the SOM,
showing the disiribution of values of input variables; (b) component planes of the u-matrix showing cluster borders in dark gray.
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Based on these component planes and the redundancy index {3], the pair of variables labeled as [femp8,temp7] is detected ag
redundant. Also, this figure shows that other pairs of variables contribute with similar information, e.g., [level temp6] and
[conc2, conc3], but their redundancy index is below the threshold value and consequently are not discarded. After removing
the redundant variables from the dataset a map of 17x12 units was trained and the component planes of the u-matrix
extracted. Figure 2 shows the resulting U-matrix of these components after being clustered using a 10x10 SOM. In this
representation cach map node has been labeled with the name of the classified variables. Since clusters are difficult to detect
unambiguously by visnal inspection a cluster validity index has been nsed for this purpose. Figure 3 shows the five clusters
obtained after the minimization of the Davies-Bouldin index for the k-means clustering of these component planes.

The cluster assignment for each variable is presented in Table 1. In cluster I, which is the largest, the variables located in the
upper side are variables with low correlation values with the target and the variables located in the lower part of the cluster
correspond to variables with higher correlations. The representative variable or prototype of this cluster is the extruder power
consumption. Cluster II is formed by the patr of variables [conc2,conc3], which are not included in the initial set since none
of them has a correlation value higher than the average. For the rest of the clusters three flow rates are selected as
representative variables.

Afier c'omputing the dissimilarity for each of the possible subsets of variables, nine additional variables were chosen as
members of the set of most relevant process information. Table 1 identifies the reduced set of 13 selected variables. The
initial dimension of the problem is thus reduced by nearly to the 50% by using the current method.

SAM18Aug-2002

. Figure 2. U-Matrix of the SOM trained using the component planes . Figure 3. Detection of the optimal set of clusters by minimization of the
corresponding to the set of variables without redundant. information. High - the Davies-Bouldin index. Gray levels identify the different clusters. :
 values of distance {dark gzay) represent cluster borders. Low values '
represent compact clusters with similar variables. .

- The three neural sensors were irained using a data set of 14,111 patterns corresponding to the operatmg condmon of the
production of six different product grades of LDPE. The vahdatlon of the trained sensors-was performed using a test dataset
formed by 589 patterns never seen before by the neural network. Table 2 summarizes the results obtamed for each sensor
using both the complete and the reduced. sets of process variables.

Medif. Fuzzy ARTMAP . Clustering Average DYNARBF
Complete set of 24 non- '
redundant varisbles 0.207 0.130 0.135
Reduced set of 13 relevant 0.156 ) 0.122 0.123
varjahles

Table 2. Absolute mean ¢émors of the inferred MI obtained using the three vmal sensors with the camplete set of data and with the reduced set.

It can be observed in Table 2 that despite the important reduction in the dimension of the input space from 24 to 13 variables
and, thus, in the complexity of the virtual sensor, the performances of all the three virtual sensors slightly increase since only
reélevant {not noisy or contradmtory) information is used. Figure 4 depicts the results obtained for the clustering average
virtual sensor trained using the complete and the reduced sets of process variables. The use of the reduced set of 13 variables
enhances the capacity of the virtyal sensor to properly classify the process states and adequately predict MI values. As a
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consequence, a reduction on efroneous sensor responses is observed in the iime series depicted in figure 5. This effect is more
evident for LDPE grades having high values of ML

The proposed virtual sensor architecture combined with the automated procedure for the selection of relevant information
provides a reliable and accurate framework for the design and implementation of virtual sensor systems. The resulis obtained
indicate that viriual sensors are capable of learning the relationships between process variables measured at the beginning of
the production cycle and the quality parameter of the final product.

500 5.00
430 * . " 50
—— maastresd
4.00 + 24 process variables 400 ----- 24 process varlables

~-~—13 process variables

o 13 process variables

w
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2
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melt Index (gr/0min)

pradlctad MI {(gr/10min)
[N
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]

a0 BD 100 120 140 180 180 200

4.00 56 104 150 04 250 300 350 4400 4.50 500 a o 43
maasured M[ {gr/t0min) i 7 (resldence timse unlts)

Figure 4. Measured and predicted MI using the Clustering average model  Fig. 5. Measured and predicted time-records using the Clustering average
with the complete and the reduced sets of input variables. meodel with both sets of input process vaniables for 3 LDPE grades.
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