

Improving Multiprocessor Average-Case Schedulability using
A Modified Global Dual Priority Algorithm

Josep M. Banús {jbanus@etse.urv.es}, Alex Arenas and Jesús Labarta §

Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili
§ Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya

Abstract

In this paper we present a modification of the Dual
Priority Scheduling Algorithm to work on shared memory
multiprocessor systems improving the average-case
schedulability. The proposal deals with global fixed-
priority preemptive scheduling of periodic tasks on
identical processors. The algorithm allows to schedule
hard real-time periodic tasks using task migration between
different processors. Using this approach we are able to
schedule task sets that cannot be scheduled via traditional
partitioning methods. Extensive simulations show that the
proposed algorithm gives higher success ratios than
previous global scheduling schemes and traditional
partitioning methods.

Keywords: real-time, multiprocessors, schedulability,
global scheduling, periodic tasks

1. Introduction

Multiprocessor systems have evolved rapidly in the last
years. At the same time, the use of these powerful
computing resources in real-time systems has opened
several problems concerning scheduling strategies. The
problem of determining when and where a given task must
execute without missing its deadline or compromising
other task deadlines in multiprocessor systems often
becomes intractable. Besides, when the scheduling is
possible, algorithms that are optimal for uniprocessor
systems are not necessarily optimal when the number of
processors increases [1] (it is well known that optimal
scheduling for multiprocessors systems is a NP-Hard
problem). Nevertheless, the great availability of these
systems has made them interesting for the real-time
community and the research in this area has been
reactivated in the last years. Usually, two alternatives are
proposed to schedule tasks in these systems: (i) local
scheduling or partitioning method; this methodology first
allocates statically periodic tasks to processors and, after
that, an optimal uniprocessor scheduling algorithm is used
individually on each processor. And (ii) global scheduling
or non-partitioning method; in this case there is a global
scheduler that dynamically binds periodic tasks to
processors, obtaining dynamic load balancing, fault
tolerance, etc.

Traditionally the first method is used, mainly because it

takes advantage of well-known uniprocessor strategies and
because often the average-case performance is higher than
the average-case of the global scheduling.

However, recently the second method is receiving more
attention from the research community that has evaluated
the differences between both alternatives. More of them
have dealt with utilization upper bounds for the Global
Rate Monotonic Scheduling (GRMS) using these bounds
as a necessary schedulability condition and to perform new
tasks admission control. Unfortunately these upper bounds
are too pessimistic and produce low processor utilizations.
Hence, to find schedulability in heavy loaded systems the
straight solution consists in their simulation. In particular,
in [2] it is showed that the partitioning method is not
necessarily the best approach.

Nevertheless, the global scheduling method has some
important drawbacks: no efficient schedulability tests exist,
no optimal priority-assignment is known, multiprocessor
anomalies appear and computational complexity increases.
Some of these drawbacks can be avoided using heuristics.

In this paper we have modified the Dual Priority
algorithm [3-5], that we will call Modified Global Dual
Priority (MGDP), to use the spare capacity of processor to
serve some selected periodic tasks instead of serving
aperiodic tasks. With this algorithm every task execution
might run at two different priority levels and on different
processors. This gives the scheduler flexibility to fit tasks
into processor capacities increasing the utilization.

2. Framework and Assumptions

We consider a real-time multiprocessor system with m
symmetrical processors and shared memory. All tasks are
considered independent and can be preempted at any time.
Each task τi has a worst-case computation requirement Ci,
a period Ti and a deadline Di, assumed to satisfy Di ≤ Ti.
The worst-case analysis is assumed to include the initial
cache misses (i.e., every execution of a task starts in an
empty state). Therefore, the first execution of every
instance will be considered neither a preemption nor a
migration. Each periodic task has an utilization factor
defined as ui= Ci/Ti. The utilization of the task set is U=�ui
and is assumed to be lower or equal than the capacity of
the system (U≤m). Finally, we assume all overheads for
context switching, task scheduling, task pre-emption and
migration to be zero. Note that we also assume that every

task executes its worst-case execution time. Nevertheless,
in some experiments we will consider also the number of
preemptions and migrations in order to compare different
algorithms.

3. Global Dual Priority Scheduling

The Dual Priority (DP) uniprocessor scheduling
algorithm has many good properties (to mention one, it
achieves very good mean aperiodic response times).
However, the most important characteristic is that,
although it is a fixed priority system, it almost has the
flexibility of dynamic priority systems.

The Dual Priority Algorithm for uniprocessors is based
on the offline computation of periodic tasks worst-case
response time, using a recurrent formula (1), which in turn
is also used as a scheduling test [6].

This recurrent formula is used pre-runtime to compute
the worst-case response time of periodic tasks (the final Wi

is the computation requirement of task τi and all higher
priority tasks (hp(i))) interference. The key element of this

approach is that the periodic task τi can be delayed until its
promotion time (=Di – Wi) and still be guaranteed to meet
its deadline. During runtime, a periodic task starts with a
low priority level (lower than aperiodic tasks) and at
promotion time its priority is raised to a higher level where
it will only receive the interference of other higher priority
promoted tasks, guaranteeing its deadline. This provides
the scheduling algorithm with a duality in the treatment of
the tasks depending on the interferences, and therefore it
inherits some good characteristics from fixed priority
algorithms and some from dynamic priority algorithms.
This duality could be well adapted to multiprocessors
systems, for example to serve aperiodic requests or to
increase periodic task sets schedulability. In fact, the
original uniprocessor DP [4] purpose was to increase the
periodic utilization of the processor. This was done by
establishing a promotion to a higher priority for periodic
tasks that otherwise would miss their deadline with the
rate-monotonic priority assignment. Our idea is that within
the multiprocessor domain it is possible to increase the
number of schedulable task sets even more because
conflictive periodic tasks (or the higher priority tasks that
interfere with them) may use other processors spare
capacity.

Unfortunately, formula (1) is not valid for
multiprocessors. Therefore, we propose to use the DP in a
hybrid conformation between local and global scheduling
(MGDP). At design time all periodic tasks are statically
distributed among processors and their promotion times
are computed. At run time it is possible to execute periodic
tasks in any processor during a period of time (dynamic
phase) and execute them into a predefined processor after

their promotion time (static phase) (see Figure 1). Hence,
there are two priority levels: the Low Priority Level (LPL)
and the High Priority Level (HPL). Accordingly, every
task has two priorities, one of each band, but only one is
active: at start time it has its LPL and after the promotion it
has its HPL. The priority assignment in the LPL can be
arbitrary. Usually we establish a Global Rate Monotonic
assignment. On the other hand, the HPL must use local
Rate Monotonic order to guarantee task deadlines.

Figure 1: Periodic tasks allocation phases in MGDP

 Ti
n

Low Priority

 High Priority

Dynamic Phase Static Phase

Di
n -Ri Di

n

 τi
n
 promotion

The design time distribution of periodic tasks among
processors is performed by an adapted version of RM-
FFDU partitioning algorithm to Dual Priority.

First, we sort the task set using rate-monotonic order
and we set the LPL. After that, we use RM-FFDU [7] to
pre-allocate tasks to processors. In heavy loaded systems,
there will be some remaining tasks impossible to allocate.
In this case, we assign the remaining tasks to processors
with the lowest utilizations, overloading them. Obviously
overloaded processors will not pass the schedulability test
but we will tag this task as not-guaranteed and the
processor as overloaded. At run-time other processor spare
capacity will help these not-guaranteed tasks to meet their
deadlines.
After that, we set a rate-monotonic priority assignment in
HPL for local tasks. The following step consists in
computing the promotion times using the uniprocessor
formula (1) and setting it to zero for not-guaranteed tasks,
i.e. immediate promotion. At the same time, to meet a not-
guaranteed task deadline we give its higher priority tasks
preference to be executed in other processors. Therefore,
we assign them the higher priorities in the LPL. By doing
this we reduce the higher priority tasks interference and
therefore not-guaranteed tasks may possibly finish on
time. We tag these high priority tasks as selected-tasks.

The runtime process is illustrated on Figure 2. When a
task arrives it is queued in a Global Ready Queue (GRQ).
In this queue, selected-tasks have higher priority than the
other periodic tasks. They are queued according to a global
rate-monotonic priority assignment relative to all selected-
tasks. The remaining periodic tasks are sorted according to
their fixed low priority. The global scheduler (GS) selects
the first m tasks from this queue to execute on the m
processors. Additionally, there are m High Priority Local
Ready Queues (HPLRQi with i in [1..m]) used to queue
promoted periodic tasks. When a periodic task τpi is

)1(
)(

1 CC
T

W
W ij

ihpj j

n
in

i +�
�

�
�
�

�
= �

∈

+

promoted it is moved from the GRQ to its corresponding
processor HPLRQp. Processors with promoted periodic
tasks are not allowed to execute tasks from the GRQ. Note
that a promotion implies a change in priority and can cause
a pre-emption. At promotion time, a periodic task must
execute in its originally designated processor, where it will
only receive the interference of the higher priority
promoted tasks, guaranteeing its deadline. Note that
sometimes this condition will cause a promoted task to
migrate from a processor to its designated processor.

Figure 2: DP Global Scheduler. Squares represent
processors, circles schedulers and rectangles queues. For
any processor Pi , if HPLRQi is not empty Pi executes the
first promoted task. Otherwise Pi executes the first task
from GRQ.

Within this scheme, while a periodic task is not
promoted, it can be executed in any processor. This
reduces the number of periodic task waiting for a specific
processor, taking advantage of idle processors, advancing
periodic work and making the system ready for future
‘overloads’ .

4. Results and Discussion

In this section we perform an average-case performance
evaluation comparing the global scheduling detailed in the
previous section (MGDP) versus both global and local
schedulers from the literature [2]. The evaluation
methodology we have used is based on the simulation of
extensive randomly generated synthetic task sets. We test
the average-case performance and robustness of the
scheduling algorithms under an extent range of situations.

We use the Success Ratio (the fraction of all generated
task sets that are successfully scheduled with respect to an
algorithm) as the performance measure for average-case
performance. Unless otherwise stated, we have used the
same experimental setup used in [2] (m=4,
n=uniform(4,12), Ti ∈ { 100,200,300,...,1600} , E[ui]=0.5,
stddev[ui]=0.4). The only difference is that our synthetic
task generator discards the unfeasible cases (where the
total load generated is greater than the available capacity)
because it would introduce a distortion of the real
algorithm’s performance. For simulations in figures 3 to 6

the success ratio is computed as the average of 2,000,000
task sets. Hence, with a 95% confidence, we obtain an
error of the success ratio that is less than 0.1%.

We have used two versions of a partitioning algorithm
(RM-FFDU) as a reference for the non-partitioning
algorithms. One version uses the sufficient schedulability
test from Liu and Layland [8] (with polynomial time
complexity) and the other (RM-FFDU+respan uses the
necessary and sufficient schedulability test from Joseph
and Pandya [6] (with pseudo-polynomial time complexity).
Obviously, the later needs more offline computational time
but achieves higher success ratio, being a good reference.
This partitioning method was found in [2] to achieve the
highest success ratio for the proposed experimental setup.
We have also simulated three global schedulers: GRMS,
AdaptativeTkC and MGDP. All of them use the
‘preemption-aware’ characteristic described in [2], i.e., all
the dispatchers take into account the previous state to
minimize the number of preemptions.

In Figure 3 we can see that RM-FFDU+respan
outperforms all global schedulers but MGDP. This is so
because the success ratio for MGDP includes all cases
scheduled by RM-FFDU and a portion of the remaining.
When the number of processors increases there are more
resources available and therefore all algorithms increase
their success ratio. We observe a crossover from two to
three processors. Hence, we have analyzed the synthetic
task sets generated for two processors. We have concluded
that the generator has problems with this parameter set and
it tends to generate easy to schedule task sets (i.e., with
low loads) and this increases the success ratio. We have
also conducted simulations fixing the number of
processors to four and varying the rest of parameters, but
their figures are not included for the sake of space.
Increasing the number of tasks or their utilization is
equivalent to reducing the number resources (because the
number of processors remains the same). In these
situations MGDP behaves better than the rest because it
has two priority levels and breaks periodic task execution
in two phases and they are easier to fit into a resource (i.e.
a processor). For example, for E[U]= 90%, MGDP success
ratio is 70% and with AdaptativeTkC is 35%. For E[n]=
12, MGDP success ratio is 75% and with AdaptativeTkC
39%. In Figure 4 we have focused on task sets with heavy
loads because they are the most difficult to schedule. We
have used the same synthetic task set generator and
parameter set but we have classified the resulting tasks sets
according to the total load generated. First of all, we
observe that the range 85%-90% is the average-case upper
bound as it happens in the uniprocessor domain. Second,
the partitioning algorithm has a sudden drop at 85%
because the discretization of the bin and task sizes. It
usually reaches a point when tasks have sizes that do not fit
into any processor. On the other hand, MGDP is able to fit
tasks to processors exceeding its total capacity (i.e. can
overflow the bins). This allows to maintain high success

 HPLRQ1 P1

 task promotions HPLRQ2 GS P2

 HPLRQ3 P3

 GRQ
τpi

k
 periodic tasks selected-tasks

ratios until a point (95% approximately) where the total
load is so high that idle processors cannot help overloaded
processors.

To be more realistic, the preemption and migration
costs should be considered. For the experiments in Figure
5 we have simulated 5,000 task sets for each point and we
have measured the preemption and migration densities
(the number of preemptions or migrations divided by the
length of the simulation respectively). To be fair we have
only considered the task sets that were schedulable by all
the algorithms. For low periodic loads the Dhall’s effect is
observed: partitioning algorithms have more preemptions
than non-partitioning algorithms. On the other hand,
MGDP has more preemptions than AdaptativeTkC. This is
because tasks can be preempted in both phases, the
dynamic and again in the static phase. These two phases
give MGDP flexibility and therefore a higher success ratio.
However, if preemptions and migration costs were
significant it would reduce the success ratio achieved. In a
future work we will study the way of reducing the number
of preemptions in MGDP.

Acknowledgements

We thank Professor Björn Andersson for useful
discussions. This research is supported by MCYT project
number TIC2001-0995-C02-01.

References
[1] Dertouzos, M.L., Mok, A.K., "Multiprocessor On-Line

Scheduling of Hard-Real-Time Tasks", IEEE Transactions
on Software Engineering, v.15, n.12, pp. 1497-1506, 1989

[2] Anderson, B., Jonsson, J., "Fixed-Priority Pre-emptive
Multiprocessor Scheduling: To Partition or not to Partition".
Real-Time Computing Systems and Applications, pp. 337-
346, 2000

[3] Davis, R., Wellings, A., "Dual Priority Scheduling", Real-
Time Systems Symposium, pp. 100-109, 1995

[4] Burns, A., Wellings, A.J., "Dual Priority Assignment: A
Practical Method for Increasing Processor Utilization",
Proceedings of the Fifth Euromicro Workshop on Real-time
Systems, pp. 48-53, 1993

[5] Banús, J.M, Arenas, A., Labarta, J., "Dual Priority
Algorithm to Schedule Real-Time Tasks in a Shared
Memory Multiprocessor", Workshop on Parallel and
Distributed Real-Time Systems, 2003

[6] Joseph, M., Pandya, P., "Finding Response Times in a Real-
Time System", British Computer Society Computer Journal,
29(5): 390-395, Cambridge University Press, 1986

[7] Davari, S., Dhall, S.K., “An On Line Algorithm for Real-
Time Task Allocation” , Real-Time Systems Symposium, pp.
194-199, 1986

[8] Liu, C.L., Layland, J.W., "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment",
Journal of the Association for Computing Machinery, vol.
20(1), pp. 46-61, 1973

Figure 3: E[n]=8 E[u]=0.5 stddev[u]=0.4

0%

20%

40%

60%

80%

100%

2 3 4 5 6

number of processors (m)

Su
cc

es
s

R
at

io

RMFFDU
RMFFD+respan
GRM
AdaptativeTkC
MGDP

Figure 4: m=4 E[n]=8 E[u]=0.5 stddev[u]=0.4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

75% 80% 85% 90% 95%

periodic load

Su
cc

es
s

R
at

io

RMFFD+respan
GRM
AdaptativeTkC
MGDP

Figure 5: m=4 E[n]=8 E[u]=0.5 stddev[u]=0.4

0,004

0,006

0,008

0,010

0,012

0,014

0,016

75,0% 80,0% 85,0% 90,0%

periodic load

P
re

em
pt

io
n

+
 M

ig
ra

ti
on

 D
en

si
ti

es

RMFFD+respan

GRM

AdaptativeTKC

MGDP

