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Abstract 

In this paper we present a modification of the Dual 
Priority Scheduling Algorithm to work on shared memory 
multiprocessor systems improving the average-case 
schedulability. The proposal deals with global fixed-
priority preemptive scheduling of periodic tasks on 
identical processors. The algorithm allows to schedule 
hard real-time periodic tasks using task migration between 
different processors. Using this approach we are able to 
schedule task sets that cannot be scheduled via traditional 
partitioning methods. Extensive simulations show that the 
proposed algorithm gives higher success ratios than 
previous global scheduling schemes and traditional 
partitioning methods. 
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1. Introduction 

Multiprocessor systems have evolved rapidly in the last 
years. At the same time, the use of these powerful 
computing resources in real-time systems has opened 
several problems concerning scheduling strategies. The 
problem of determining when and where a given task must 
execute without missing its deadline or compromising 
other task deadlines in multiprocessor systems often 
becomes intractable. Besides, when the scheduling is 
possible, algorithms that are optimal for uniprocessor 
systems are not necessarily optimal when the number of 
processors increases [1] (it is well known that optimal 
scheduling for multiprocessors systems is a NP-Hard 
problem). Nevertheless, the great availability of these 
systems has made them interesting for the real-time 
community and the research in this area has been 
reactivated in the last years. Usually, two alternatives are 
proposed to schedule tasks in these systems: (i) local 
scheduling or partitioning method; this methodology first 
allocates statically periodic tasks to processors and, after 
that, an optimal uniprocessor scheduling algorithm is used 
individually on each processor. And (ii) global scheduling 
or non-partitioning method; in this case there is a global 
scheduler that dynamically binds periodic tasks to 
processors, obtaining dynamic load balancing, fault 
tolerance, etc. 

Traditionally the first method is used, mainly because it 

takes advantage of well-known uniprocessor strategies and 
because often the average-case performance is higher than 
the average-case of the global scheduling.  

However, recently the second method is receiving more 
attention from the research community that has evaluated 
the differences between both alternatives. More of them 
have dealt with utilization upper bounds for the Global 
Rate Monotonic Scheduling (GRMS) using these bounds 
as a necessary schedulability condition and to perform new 
tasks admission control. Unfortunately these upper bounds 
are too pessimistic and produce low processor utilizations. 
Hence, to find schedulability in heavy loaded systems the 
straight solution consists in their simulation. In particular, 
in [2] it is showed that the partitioning method is not 
necessarily the best approach. 

Nevertheless, the global scheduling method has some 
important drawbacks: no efficient schedulability tests exist, 
no optimal priority-assignment is known, multiprocessor 
anomalies appear and computational complexity increases. 
Some of these drawbacks can be avoided using heuristics. 

In this paper we have modified the Dual Priority 
algorithm [3-5], that we will call Modified Global Dual 
Priority (MGDP), to use the spare capacity of processor to 
serve some selected periodic tasks instead of serving 
aperiodic tasks. With this algorithm every task execution 
might run at two different priority levels and on different 
processors. This gives the scheduler flexibility to fit tasks 
into processor capacities increasing the utilization.  

2. Framework and Assumptions 

We consider a real-time multiprocessor system with m 
symmetrical processors and shared memory. All tasks are 
considered independent and can be preempted at any time. 
Each task τi has a worst-case computation requirement Ci, 
a period Ti and a deadline Di, assumed to satisfy Di ≤ Ti. 
The worst-case analysis is assumed to include the initial 
cache misses (i.e., every execution of a task starts in an 
empty state). Therefore, the first execution of every 
instance will be considered neither a preemption nor a 
migration. Each periodic task has an utilization factor 
defined as ui= Ci/Ti. The utilization of the task set is U=�ui 
and is assumed to be lower or equal than the capacity of 
the system (U≤m). Finally, we assume all overheads for 
context switching, task scheduling, task pre-emption and 
migration to be zero. Note that we also assume that every 



   

task executes its worst-case execution time. Nevertheless, 
in some experiments we will consider also the number of 
preemptions and migrations in order to compare different 
algorithms. 

3. Global Dual Priority Scheduling 

The Dual Priority (DP) uniprocessor scheduling 
algorithm has many good properties (to mention one, it 
achieves very good mean aperiodic response times). 
However, the most important characteristic is that, 
although it is a fixed priority system, it almost has the 
flexibility of dynamic priority systems. 

The Dual Priority Algorithm for uniprocessors is based 
on the offline computation of periodic tasks worst-case 
response time, using a recurrent formula (1), which in turn 
is also used as a scheduling test [6]. 

This recurrent formula is used pre-runtime to compute 
the worst-case response time of periodic tasks (the final Wi 

is the computation requirement of task τi and all higher 
priority tasks (hp(i))) interference. The key element of this 

approach is that the periodic task τi can be delayed until its 
promotion time (=Di – Wi) and still be guaranteed to meet 
its deadline. During runtime, a periodic task starts with a 
low priority level (lower than aperiodic tasks) and at 
promotion time its priority is raised to a higher level where 
it will only receive the interference of other higher priority 
promoted tasks, guaranteeing its deadline. This provides 
the scheduling algorithm with a duality in the treatment of 
the tasks depending on the interferences, and therefore it 
inherits some good characteristics from fixed priority 
algorithms and some from dynamic priority algorithms. 
This duality could be well adapted to multiprocessors 
systems, for example to serve aperiodic requests or to 
increase periodic task sets schedulability. In fact, the 
original uniprocessor DP [4] purpose was to increase the 
periodic utilization of the processor. This was done by 
establishing a promotion to a higher priority for periodic 
tasks that otherwise would miss their deadline with the 
rate-monotonic priority assignment. Our idea is that within 
the multiprocessor domain it is possible to increase the 
number of schedulable task sets even more because 
conflictive periodic tasks (or the higher priority tasks that 
interfere with them) may use other processors spare 
capacity. 

Unfortunately, formula (1) is not valid for 
multiprocessors. Therefore, we propose to use the DP in a 
hybrid conformation between local and global scheduling 
(MGDP). At design time all periodic tasks are statically 
distributed among processors and their promotion times 
are computed. At run time it is possible to execute periodic 
tasks in any processor during a period of time (dynamic 
phase) and execute them into a predefined processor after 

their promotion time (static phase) (see Figure 1). Hence, 
there are two priority levels: the Low Priority Level (LPL) 
and the High Priority Level (HPL).  Accordingly, every 
task has two priorities, one of each band, but only one is 
active: at start time it has its LPL and after the promotion it 
has its HPL. The priority assignment in the LPL can be 
arbitrary. Usually we establish a Global Rate Monotonic 
assignment. On the other hand, the HPL must use local 
Rate Monotonic order to guarantee task deadlines.  

Figure 1: Periodic tasks allocation phases in MGDP  
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The design time distribution of periodic tasks among 
processors is performed by an adapted version of RM-
FFDU partitioning algorithm to Dual Priority.  

First, we sort the task set using rate-monotonic order 
and we set the LPL. After that, we use RM-FFDU [7] to 
pre-allocate tasks to processors. In heavy loaded systems, 
there will be some remaining tasks impossible to allocate. 
In this case, we assign the remaining tasks to processors 
with the lowest utilizations, overloading them. Obviously 
overloaded processors will not pass the schedulability test 
but we will tag this task as not-guaranteed and the 
processor as overloaded. At run-time other processor spare 
capacity will help these not-guaranteed tasks to meet their 
deadlines. 
After that, we set a rate-monotonic priority assignment in 
HPL for local tasks. The following step consists in 
computing the promotion times using the uniprocessor 
formula (1) and setting it to zero for not-guaranteed tasks, 
i.e. immediate promotion. At the same time, to meet a not-
guaranteed task deadline we give its higher priority tasks 
preference to be executed in other processors. Therefore, 
we assign them the higher priorities in the LPL. By doing 
this we reduce the higher priority tasks interference and 
therefore not-guaranteed tasks may possibly finish on 
time. We tag these high priority tasks as selected-tasks. 

The runtime process is illustrated on Figure 2. When a 
task arrives it is queued in a Global Ready Queue (GRQ). 
In this queue, selected-tasks have higher priority than the 
other periodic tasks. They are queued according to a global 
rate-monotonic priority assignment relative to all selected-
tasks. The remaining periodic tasks are sorted according to 
their fixed low priority. The global scheduler (GS) selects 
the first m tasks from this queue to execute on the m 
processors. Additionally, there are m High Priority Local 
Ready Queues (HPLRQi with i in [1..m]) used to queue 
promoted periodic tasks. When a periodic task τpi is 
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promoted it is moved from the GRQ to its corresponding 
processor HPLRQp. Processors with promoted periodic 
tasks are not allowed to execute tasks from the GRQ. Note 
that a promotion implies a change in priority and can cause 
a pre-emption. At promotion time, a periodic task must 
execute in its originally designated processor, where it will 
only receive the interference of the higher priority 
promoted tasks, guaranteeing its deadline. Note that 
sometimes this condition will cause a promoted task to 
migrate from a processor to its designated processor. 

Figure 2: DP Global Scheduler. Squares represent 
processors, circles schedulers and rectangles queues. For 
any processor Pi , if HPLRQi is not empty Pi executes the 
first promoted task. Otherwise Pi executes the first task 
from GRQ. 

Within this scheme, while a periodic task is not 
promoted, it can be executed in any processor. This 
reduces the number of periodic task waiting for a specific 
processor, taking advantage of idle processors, advancing 
periodic work and making the system ready for future 
‘overloads’ . 

4. Results and Discussion 

In this section we perform an average-case performance 
evaluation comparing the global scheduling detailed in the 
previous section (MGDP) versus both global and local 
schedulers from the literature [2]. The evaluation 
methodology we have used is based on the simulation of 
extensive randomly generated synthetic task sets. We test 
the average-case performance and robustness of the 
scheduling algorithms under an extent range of situations.  

We use the Success Ratio (the fraction of all generated 
task sets that are successfully scheduled with respect to an 
algorithm) as the performance measure for average-case 
performance. Unless otherwise stated, we have used the 
same experimental setup used in [2] (m=4, 
n=uniform(4,12), Ti ∈ { 100,200,300,...,1600} , E[ui]=0.5,  
stddev[ui]=0.4). The only difference is that our synthetic 
task generator discards the unfeasible cases (where the 
total load generated is greater than the available capacity) 
because it would introduce a distortion of the real 
algorithm’s performance. For simulations in figures 3 to 6 

the success ratio is computed as the average of 2,000,000 
task sets. Hence, with a 95% confidence, we obtain an 
error of the success ratio that is less than 0.1%.  

We have used two versions of a partitioning algorithm 
(RM-FFDU) as a reference for the non-partitioning 
algorithms. One version uses the sufficient schedulability 
test from Liu and Layland [8] (with polynomial time 
complexity) and the other (RM-FFDU+respan uses the 
necessary and sufficient schedulability test from Joseph 
and Pandya [6] (with pseudo-polynomial time complexity). 
Obviously, the later needs more offline computational time 
but achieves higher success ratio, being a good reference. 
This partitioning method was found in [2] to achieve the 
highest success ratio for the proposed experimental setup. 
We have also simulated three global schedulers: GRMS, 
AdaptativeTkC and MGDP. All of them use the 
‘preemption-aware’  characteristic described in [2], i.e., all 
the dispatchers take into account the previous state to 
minimize the number of preemptions. 

In Figure 3 we can see that RM-FFDU+respan 
outperforms all global schedulers but MGDP. This is so 
because the success ratio for MGDP includes all cases 
scheduled by RM-FFDU and a portion of the remaining. 
When the number of processors increases there are more 
resources available and therefore all algorithms increase 
their success ratio. We observe a crossover from two to 
three processors. Hence, we have analyzed the synthetic 
task sets generated for two processors. We have concluded 
that the generator has problems with this parameter set and 
it tends to generate easy to schedule task sets (i.e., with 
low loads) and this increases the success ratio. We have 
also conducted simulations fixing the number of 
processors to four and varying the rest of parameters, but 
their figures are not included for the sake of space. 
Increasing the number of tasks or their utilization is 
equivalent to reducing the number resources (because the 
number of processors remains the same). In these 
situations MGDP behaves better than the rest because it 
has two priority levels and breaks periodic task execution 
in two phases and they are easier to fit into a resource (i.e. 
a processor). For example, for E[U]= 90%, MGDP success 
ratio is 70% and with AdaptativeTkC is 35%. For E[n]= 
12,  MGDP success ratio is 75% and with AdaptativeTkC 
39%. In Figure 4 we have focused on task sets with heavy 
loads because they are the most difficult to schedule. We 
have used the same synthetic task set generator and 
parameter set but we have classified the resulting tasks sets 
according to the total load generated. First of all, we 
observe that the range 85%-90% is the average-case upper 
bound as it happens in the uniprocessor domain. Second, 
the partitioning algorithm has a sudden drop at 85% 
because the discretization of the bin and task sizes. It 
usually reaches a point when tasks have sizes that do not fit 
into any processor. On the other hand, MGDP is able to fit 
tasks to processors exceeding its total capacity (i.e. can 
overflow the bins). This allows to maintain high success 
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ratios until a point (95% approximately) where the total 
load is so high that idle processors cannot help overloaded 
processors. 

To be more realistic, the preemption and migration 
costs should be considered. For the experiments in Figure 
5 we have simulated 5,000 task sets for each point and we 
have measured the preemption and migration densities 
(the number of preemptions or migrations divided by the 
length of the simulation respectively). To be fair we have 
only considered the task sets that were schedulable by all 
the algorithms. For low periodic loads the Dhall’s effect is 
observed: partitioning algorithms have more preemptions 
than non-partitioning algorithms. On the other hand, 
MGDP has more preemptions than AdaptativeTkC. This is 
because tasks can be preempted in both phases, the 
dynamic and again in the static phase. These two phases 
give MGDP flexibility and therefore a higher success ratio. 
However, if preemptions and migration costs were 
significant it would reduce the success ratio achieved. In a 
future work we will study the way of reducing the number 
of preemptions in MGDP. 
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Figure 3: E[n]=8 E[u]=0.5 stddev[u]=0.4
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Figure 4: m=4 E[n]=8 E[u]=0.5 stddev[u]=0.4
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Figure 5: m=4 E[n]=8 E[u]=0.5 stddev[u]=0.4
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