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We present an analytical approach for bond percolation on multiplex networks and use it to
determine the expected size of the giant connected component and the value of the critical bond
occupation probability in these networks. We advocate the relevance of these tools to the modeling
of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from
studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly
irrelevant case of a bond occupation probability that does not depend on the layer. Although we find
that in many cases the predictions of our theory for multiplex networks coincide with previously
derived results for monoplex networks, we also uncover the remarkable result that for a certain
class of multiplex networks, well described by our theory, new critical phenomena occur as multiple
percolation phase transitions are present. We provide an instance of this phenomenon in a multiplex
network constructed from London rail and European air transportation datasets.

PACS numbers: 89.75.Hc, 64.60.aq, 64.60.ah, 87.23.Ge

I. INTRODUCTION

In recent years there has been a heightened interest
within the network science community in the properties
of multilayer networks [1, 2]. In this regard, after the
seminal work of Leicht and D’Souza [3], an extensive
body of literature has emerged concerning the robust-
ness of various subclasses of multilayer networks, most
prominently interdependent networks [4-14], as well as
interconnected networks [3, 15-18], networks of networks
[19, 20], and multiplex networks [21-30].

Significant progress has been made in understanding
the percolation properties of multilayer networks and
some surprising features have been uncovered [4, 5, 8, 19].
For example, dependency links can have a dramatic im-
pact on cascading failure events and as a consequence
critical phenomena in a network formed of interdepen-
dent networks can be very different to those observed
in monoplex networks. In some instances this can mean
that a network of networks as a whole will be more fragile
than its constituent parts taken in isolation [8, 10, 31].

Ostensibly, the questions that are of most interest with
regard to multilayer network robustness are well estab-
lished. Except for Refs. [22, 26], the aforementioned lit-
erature deals almost exclusively with site percolation and
variants thereof. Moreover, by far the most common
measure of robustness used is the expected size of the
mutually connected giant component (MCGC). However,
other existing ways of tackling the question of robustness
should not be neglected. In particular, bond percolation
and the expected size of the giant connected component
(GCC) may be especially relevant to the study of the
robustness of multiplex networks.

A multiplex network is a type of multilayer structure
in which a set of N nodes are interconnected by M dif-
ferent sets of edges, where each set of edges exists in a

unique layer and the same set of nodes is replicated across
all layers. In the particular case in which there are no
inter-layer links (or when they can be discarded), a mul-
tiplex network reduces to an edge-colored graph in which
the color of an edge corresponds to the set to which it
belongs. Thus, layers (colors) can be used to represent
distinct kinds of interactions. For example, the network
of passenger airline routes within Europe can be repre-
sented as a multiplex network with nodes corresponding
to airports, edges to routes, and each layer to the airline
operating on a unique subset of these routes.

From a modeling perspective, site percolation on such
a network, which begins with the removal of a fraction
1 — p of its nodes and all adjoining edges (where p is
termed the site occupation probability), corresponds to
the removal of the same fraction of airports and all ad-
joining routes. This in turn can lead to the shutdown of
airports that were once connected to those removed, and
so on from airport to airport. When this propagation
of failures ceases the MCGC, if it exists, corresponds to
the remaining component of the network that contains
pairs of airports that are connected by all airlines; i.e.,
by routes of every color. By contrast, in bond percola-
tion a fraction 1 —p of edges are removed (where p is now
termed the bond occupation probability) corresponding
to the removal by a set of airlines of their services to a
set of airports. At the end of the propagation of failures
instigated by this initial removal the GCC, if it exists,
corresponds to the remaining component of the network
that contains pairs of airports that are connected by one
or more airlines; i.e., by a route of any color. We contend
that from the point of view of passengers navigating their
way through the network the GCC may be a more perti-
nent measure of robustness as their primary concern will
generally be to get to their destination irrespective of the
airline that gets them there. It also appears that a more



likely cause of disruption might be the closure of routes
not airports. Similar arguments can be given for study-
ing bond percolation and the GCC on other varieties of
multiplex transportation or communication networks.

However, a valid question may be raised as to whether
it is necessary to consider the full multiplex structure in
order to tackle such a problem [32]. After all, one could
simply project a multiplex network to a monoplex net-
work by ignoring the colors of edges and aggregating the
layers. One would then calculate the expected GCC size
in the type of network for which it was originally defined.
In this paper we address this question by revealing the
structural constraints under which a multiplex network
and its projection give the same results for the expected
size of the GCC and the value of the critical bond occu-
pation probability p.. We find that a particular class of
multiplex networks for which the results differ also man-
ifests multiple percolation phase transitions reminiscent
of those observed in Refs. [33] and [34] for clustered and
modular networks, respectively.

The remainder of this paper is structured as follows. In
Sec. IT we present our analytical approach for bond perco-
lation on multiplex networks and show how to calculate
the expected GCC size and p. in the edge-colored and
projected versions of said networks, respectively. The re-
sults for each version together constitute two separate but
overlapping theories. In Sec. III we outline several cases
in which these two theories coincide. Section I'V describes
the construction of a particular class of multiplex net-
works for which the theories differ dramatically in their
predictions as outlined above. In Sec. V we show that a
multiplex network constructed from London rail [25] and
European air [35] transportation datasets exhibits perco-
lation behavior similar to that of the multiplex networks
of Sec. IV. We conclude in Sec. VI.

II. BOND PERCOLATION ANALYSIS

The fundamental property that we use to describe
a multiplex network is its multidegree distribution
P, which gives the probability that a randomly cho-

sen node in the network has multidegree vector k=
(k1,... ka,...,kn), where k, is the degree of the node
in layer «; i.e., the number of edges of type « incident
on the node. Let K be the aggregated degree of the
node over all layers. Then the degree distribution of the
projected network Pk is given by summing Pr over all
multidegrees that sum to K:

Px= Y P (1)
3
Do ka=K

We want to calculate the expected size of the GCC
after a process in which each edge of the network is oc-
cupied with probability p irrespective of its color. This
is equivalent to calculating the probability S that a ran-
domly chosen node is in the GCC. As each layer of our

multiplex is created by the configuration model and is
of order N — oo clustering is negligible [36] and we can
approximate the network as a tree with a randomly cho-
sen node A as its root. Let the word active signify that
a node is part of the GCC and inactive that it is not.
Then the value of S is given by calculating the proba-
bility of activation of A after a process of level-by-level
activations from child nodes on one level to their parents
on the next level closest to A.

Let g, be the probability that a randomly selected
node connected to its parent by an edge of type « is ac-
tive given that its parent is not, then foralla =1,..., M
the following equation holds

Go=1-) %Pg(l —pgo)™ " [T (1= pgp)™. (2)
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The term (ko /(ka))P; (where (-) denotes the mean) is
the probability that the node at the end of an edge of
type a has multidegree P and the remaining terms in
the summation express the probability that the children
of this node are all inactive. Solving Eq. (2) for ¢, we
find ¢}, the probability that a child of A connected to it
by an edge of type « is active. We then have the following
equation:

M

§=1-3 P [[(pg). (3)
E

a=1

The differences between Egs. (3) and (2) follow from the
fact that the root has no parent.

Let us label the right-hand side of Eq. (2) as Q. =
Q«(q). To find an expression for p. we must linearize Q)
and examine the eigenvalues of the matrix

() wfe

()
=0

The expected size of the GCC is non-zero when the
largest eigenvalue of this matrix is positive, Apax > 0.
One can define the matrix

where

0Qq
aQﬂ

Ba5:<

(6)

and it is easy to see that the largest eigenvalue .5 of B
is related to Apax 88 Amax = Pltmax —P— 1. Therefore, the
critical bond occupation probability in the edge-colored
network can be expressed as

1
Hmax — 1 .

(7)

DPe =

The authors of Refs. [37, 38] have applied a similar ap-
proach to find the critical bond occupation probability



in a class of coupled networks, different to the multiplex
networks of this paper, which they used to study over-
laying social-physical networks.

Next, suppose that we ignore the colors of edges and
aggregate the layers of the multiplex network, thereby
obtaining its monoplex projection. By similar arguments
to before the probability that a randomly selected node
in the projected network is active given that its parent is
inactive is given by

g=1- Zégpm —pa)< (8)
K

and the expected size of the GCC is

S=1-) Px(1-pi)~, (9)
K

where ¢* is found by solving Eq. (8) for g. This result
was previously derived in Ref. [39].

The critical bond occupation probability in the pro-
jected network may be obtained by labeling the right-
hand side of Eq (9) as Q = Q(g) and solving the condi-
tion Q(0) = 1 for p [39]. By doing this we obtain

K
= ) i (10

This is a well-known result for percolation on monoplex
networks [40].

III. COMPARISON OF THEORIES

We will now examine several cases where the results
we have derived for bond percolation on the edge-colored
and projected versions of a multiplex network coincide.

A. TUncorrelated layers

To begin with let us consider some particular cases
where the layers of the multiplex network are uncorre-
lated; i.e., where there is no correlation between the de-
grees of the different types of edges incident on each node.

Case 1: For a 2-layer multiplex network in which
(kiks) = (k1)(ka), (k) < oo, and (k3) < oo, the criti-
cal bond occupation probabilities of the edge-colored and
projected networks are equal, p. = p., provided

() = (k1) _ () — (o)? "
(k1) (k2)

Note that we are not imposing equal mean degrees in
each layer. In the particular case where the multiplex
consists of two Poisson random networks Eq. (11) is triv-
ially satisfied as both sides equal 1.

The derivation of Eq. (11) is as follows. The critical
bond occupation probability p. in the edge-colored ver-
sion of the multiplex is given by Eq. (7), where pmax is
the positive root of au? + by + ¢ = 0 with a = —1,

b:@+@

(k1) (ko) (12)

and

(ko) — (B2 (R2)
R TR YRR (13)

According to Eq. (10), the critical bond occupation prob-
ability in the monoplex projection of the multiplex is

5. = (k1) + (ko)
(k1 F k2)?) — (k1) — (ko)

(14)

By setting p. = p. and then applying (ki1ke) = (k1) (k2)
we recover Eq. (11).

Case 2: For an M-layer multiplex network in which
(kaks) = (ka)(ks), (ka) = (kg), (k2) = (K2), and
(k2) < oo for all @, 3 = 1,..., M, we also have that the
critical bond occupation probabilities of the edge-colored
and projected networks are equal.

For the derivation of this property, we first define z =
(ko) and 0 = (k2) for all @« = 1,...,M. Then from
Eq. (6) we obtain

det B —pl) = [f+ Mz —p] (f =)™, (15)

where f = f(0,z) = (0/z) — z. This gives us fimax =
f + Mz, and therefore from Eq. (7) we have

1

o (16)

yzs

For the monoplex projection, we have p. = 1/(f +
Mz — 1) directly from Eq. (10), thus p. = p..

B. Correlated layers

Next, let us consider multiplex networks with posi-
tively correlated layers. There is a straightforward way
to define a 2-layer multiplex network with this attribute.
Let pg, and pg, be the degree distributions of each layer,
respectively. Then the multidegree distribution Py, x, of
the multiplex network can be defined as

Pry ky = VP, Oky ey + (1= V) pry iy (17)

where v € [0,1] is a parameter governing the correlation
between the two layers. We can measure this correlation
with the Pearson correlation coefficient r, which is related
to v by the following formula:

() — ) ke)
V) = (h0? /) = (ka)?

r=v

(18)



Note that each average in this formula is calculated on
a single layer. Therefore, this expression can be used
to create a multiplex network with a desired correlation
between k; and ks.

From the linearity of the multidegree distribution in
Eq. (17), it is easy to see that if p. = p. in the uncorre-
lated case (v = 0), then the only possibility for p. and p,.
to be different is the maximally correlated case (v = 1).

Case 3: If we have an M-layer multiplex network,
where (i) the layers of the multiplex are maximally cor-
related Py = pg, O, =ky=-..=ky, and (ii) (k2) < oo for all
a=1,...,M, then p. = p,.

From condition (i) we have (k,) = (k1) for all o =
1,..., M, so the elements of matrix B in Eq. (6) are all
Bap = (k%)/{k1). Therefore, pmax = M(k?)/(k1) and
from Eq. (7) we obtain

1

Pe = 703

. (19)
Mg -1

From Eq. (10) we directly have p. = 1/(M (k?)/(k1) — 1),
thus p. = pe.

So far we have only looked at the value of the critical
bond occupation probability in the edge-colored and pro-
jected networks. However, there is a remarkable result
for multiplex networks made of layers that are Poisson
random networks. To wit, it can not only be proved that
pe = P but also that S = S for all values of p € [0, 1].

Case 4: Suppose we have a 2-layer multiplex network,
where each layer o € {1, 2} is defined by a Poisson degree
distribution pp, = e~*ezk /k,, with z, = (k,). Then
S = S for all p € [0,1] if (¢) the layers of the network are
uncorrelated, with Py, k, = Pk, Pr,, Or (i1) the layers are
maximally correlated, with Py, r, = pk; Oky ks -

We first consider the networks defined by condition (7).
From Eq. (2) we have

fo =1 — e~ (1H22)Pda (20)

for « € {1,2}. Similarly, from the Eq. (8) we have
g=1- e~ (z1+22)pq (21)

Thus, g1 = g2 = ¢ = ¢q and so solving either Eq. (20) or
(21) for ¢ and substituting this solution into Egs. (3) and
(9), respectively, we obtain S = S for any p.

Next, applying condition (ii), Eq. (2) gives us

Goa=1—(1— pqa)ezpqa(pqa—%’ (22)

for o € {1,2}, and Eq. (8) gives us
g=1- (1— pg)eivi-2). (23)
Thus, as for condition (i), we have ¢1 = ¢2 = ¢ = q and
in the same manner as before we obtain S = S for any p.
From Case 4 we can also deduce that any linear com-

bination of two Poisson layers with positive correlations
yields S = S for all p € [0, 1].
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FIG. 1. Expected size of the GCC as a function of p for

(a) a maximally correlated 2-layer multiplex network made
of two Poisson random networks; (b) an uncorrelated 3-layer
multiplex network made of one Poisson random network and
two scale-free networks. Numerical simulations are averaged
over 100 realizations, and N = 10°. Peaks in the expected
size of the SLCC indicate percolation transitions.

The results of this section have shown that in many
cases of interest the predictions of the edge-colored and
projected theories will coincide. We illustrate this fact in
Fig. 1, where we compare the predictions of both theories
for the value of S against the results of numerical sim-
ulations of bond percolation on synthetic multiplex net-
works with 2 layers (Fig. 1(a)) and 3 layers (Fig. 1(b)).
In both figures we include plots of the expected size of
the second largest connected component (SLCC) to in-
dicate the location of the percolation transitions [41]. In
Fig. 1(a) the multiplex network consists of two Poisson
random networks, one with mean degree z = 3 and the
other with z = 8. The layers are maximally correlated
(v = 1). In Fig. 1(b) the multiplex network consists of
one Poisson random network with z = 3 and two scale-
free networks, one with exponent v = 2.7 and the other
with v = 3. The degree distribution for each of these
layers is given by the following power-law

ko

Pro = 70y, Ry (24)

where (v, k2") = 37 (i + k2) 77 is the Hurwitz zeta
function and k™ is the minimum degree in the layer [42].
We set k™% = 1 for both scale-free layers (o € {2,3}).
All layers are uncorrelated (v = 0).



IV. MULTIPLE PERCOLATION PHASE
TRANSITIONS

The results of Sec. III are for multiplex networks with
layers that are either uncorrelated or correlated with each
other. In this section we consider a class of multiplex
networks with layers that are highly anticorrelated. In
these networks if a randomly chosen node is incident on
an edge of a particular color, then it is highly unlikely
that it is also incident on edges of any other color. We
can construct such multiplex networks as follows. For
simplicity we describe only the 2-layer case.

We begin with a maximally anticorrelated multiplex
network with multidegree distribution

1

20k26k1,0 . (25)

Py ko = %Pkﬁkz,o +
This network consists of two completely separate layers,
with half of the edges of type 1 and the other half of
type 2. To allow the GCC to span both layers we then
connect them by allowing several nodes to be incident on
edges of both types. We ensure that the relative number
of these nodes is small in order to maintain high anticor-
relation.

The results of bond percolation on this type of mul-
tiplex network are illustrated in Fig. 2. The multiplex
network in Fig. 2(a) consists of two Poisson random net-
works, one with mean degree z = 3 and the other with
z = 9. In Fig. 2(b) the multiplex network consists of
three Poisson random networks with z = 3, z = 6, and
z = 18, respectively. In both multiplex networks only
100 nodes out of a total of N = 10° are incident on
edges of every color. We refer to this subset of nodes as
the overlap between layers. Each of the remaining nodes
are incident on edges of one color only. Therefore, both
networks have highly anticorrelated layers. We see from
Fig. 2 that these anticorrelated multiplex networks ex-
hibit multiple percolation phase transitions, and that the
number of these transitions corresponds to the number
of layers. The theory for bond percolation based on the
monoplex projection of the multiplex network is no longer
accurate but our edge-colored theory of Sec. II accurately
matches the numerical simulation results. The mecha-
nism behind this phenomenon is that the most fragile (in
terms of bond percolation) layer induces the degradation
of the multiplex even though the other layer can still be
perfectly operative, and because the way in which this
happens is non-linear it cannot be described simply by
the superposition of layers.

Note that if we relax the anticorrelation constraint,
the above phenomenon can still be observed, see Fig. 3.
In this example, the multiplex network consists of three
Poisson random networks, each with N = 10* and
z = b0, z = 8, and z = 6, respectively. The overlap
between the first and second layers is 10% nodes, and the
overlap between the second and third layers is also 103
nodes, but these two overlapping sets are distinct. Al-
though this multiplex can be viewed as being formed of
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FIG. 2. Expected size of the GCC as a function of p for

(a) a 2-layer multiplex network made of two Poisson random
networks; (b) a 3-layer multiplex network made of three Pois-
son random networks. Both networks are highly anticorre-
lated. Numerical simulations are averaged over 100 realiza-
tions, N = 10°, and the overlap has 100 nodes. Peaks in the
expected size of the SLCC indicate percolation transitions.

five clearly differentiated subsets of nodes, Fig. 3 displays
only a double percolation transition, which is perfectly
captured by the edge-colored theory but not by the the-
ory based on the monoplex projection of the multiplex.

We posit that the reason we observe these multiple
percolation transitions is as follows. When each layer
of the multiplex network is designed to support a differ-
ent dynamical process from those occurring on the other
layers, as happens in multiplex transportation networks
where layers can correspond, for example, to subway,
road, train, etc., different connectivity patterns can be
expected to emerge (e.g., different degree distributions,
or the same degree distribution with different average
degrees, etc.), and often these connectivity patterns will
be anticorrelated (e.g., in geographic space, covering dif-
ferent areas). The emergence of multiple transitions is
a consequence of these different connectivity patterns.
This effect is similar to that observed in modular net-
works, where in essence each module is separable from
the other by deleting a few links, but not equivalent.
The differences are subtle but important. In the case
of multiplex networks, the construction of anticorrelated
layers is responsible for the emergence of distinct struc-
tural patterns, not necessarily modules but with similar
properties. In the multiplex case, there is a set of nodes
that are common to both layers, this intersection forms
a new structural pattern that can differ from the original
distributions of each layer, and indeed it usually does.
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FIG. 3. Expected size of the GCC as a function of p for
a 3-layer multiplex network made of three Poisson random
networks. BEach layer contains N = 10* nodes. Layers 1
and 2 have an overlap of 10® nodes, as do layers 2 and 3.
Peaks in the expected size of the SLCC indicate percolation
transitions.

V. REAL-WORLD ANTICORRELATED
MULTIPLEX NETWORKS

In this section we provide an example of the phe-
nomenon of multiple percolation phase transitions in a
real-world anticorrelated multiplex network. The net-
work in question is a 2-layer multiplex constructed from
the London rail transportation network [25] and the Eu-
ropean air transportation network [35].

The dataset used to construct the London rail trans-
portation layer is itself a 3-layer multiplex network of
order 369, where nodes are train stations and edges are
undirected routes between them. The 3 types of routes
in this network are underground, overground, and DLR.
To construct the first layer of our multiplex network we
aggregate the layers of this rail transportation network
and make the resulting monoplex network unweighted.
The dataset used to construct the EU air transportation
layer is a 37-layer multiplex network of order 450, where
nodes are airports and edges are undirected routes be-
tween them. Each of the 37 different types of route cor-
responds to a non-overlapping subset of routes operated
by a unique airline. Once again to construct the second
layer of our multiplex network we aggregate the layers of
this air transportation network and make the resulting
monoplex network unweighted.

At this point in the construction of our multiplex net-
work the layers are completely separate. We connect the
layers by observing that several of the stations in the Lon-
don rail network are located at or within walking distance
of the airports in the EU air transportation network. For
example, there are 5 stops in the underground network at
various terminals within Heathrow airport. If we define
walking distance as no more than 30 minutes, then there
are 10 nodes that are incident on both rail routes and air
routes. Taking account of this fact gives us a connected
but still highly anticorrelated multiplex network.

In Fig. 4 we show the results of bond percolation on
this network. It is clear from this figure that multiple
percolation phase transitions are present. Note that as
our approach is derived for multiplex networks with lay-
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FIG. 4. Expected size of the GCC as a function of p for a
2-layer multiplex network constructed from the London rail
transportation network and the EU air transportation net-
work. Numerical simulations are averaged over 1000 real-
izations. Peaks in the expected size of the SLCC indicate
percolation transitions.

ers that are each internally unclustered, uncorrelated by
degree, and of order N — oo its accuracy in this case is
affected by the network’s complexity and finite size.

The significance of the network construction we have
described is that it informs us of the ability of a traveler
to traverse the London rail transportation system, reach
a London airport, and connect to various destinations
in Europe in the event of random failures within either
layer. Reading Fig. 4 from right to left we see that, as
p decreases, the depletion of the multiplex network is in-
duced by the depletion of the rail transportation layer
(which is the last layer to be incorporated into the GCC
as the occupation probability p increases). Findings like
this could have novel implications for the European air
transportation system, as it highlights the fact that the
robustness of this system, at least with respect to con-
nections between London and the rest of Europe, is influ-
enced by the fragility of the rail network, which is local-
ized entirely within London. Obviously this result does
not take into account other redundant connections like
the bus transportation system or the road network, how-
ever it is an illustration of how the interconnectivity of
networked structures may suffer from fragilities induced
by the most vulnerable layer.

From the evidence we have provided in this section
and the previous one, we can expect that other anticor-
related multiplex networks, that may exist within real-
world complex systems, may exhibit similar percolation
properties.

VI. CONCLUSION

In this paper we have examined the process of bond
percolation on multiplex networks. We have described an
analytical approach to determine the expected size of the
GCC and the value of the critical bond occupation prob-



ability. We have discussed why it is interesting to study
these properties and addressed questions concerning the
differences between bond percolation on a multiplex net-
work and its monoplex projection. We have found that if
the layers of the multiplex are uncorrelated or correlated
with each other, then the bond percolation threshold can
be the same in the monoplex projection as in the fully
edge-colored multiplex. In fact, for multiplex networks
composed of 2 layers that are uncorrelated or maximally
correlated with each other and that both have Poisson
degree distributions the expected GCC size is the same
in the edge-colored multiplex and its monoplex projec-
tion for all values of the bond occupation probability.
These results would seem to suggest that for the pro-
cess of bond percolation at least the monoplex projection
of a multiplex network tells us all we need to know about
its phase transition picture. However, when we consid-
ered multiplex networks with highly anticorrelated lay-
ers we observed multiple percolation phase transitions.
Our theory for edge-colored networks was able to cap-
ture this phenomenon but the theory for the monoplex
projection was no longer accurate. We have shown how

multiple percolation transitions can occur in a real-world
complex system, namely a transportation system com-
posed of the rail transportation network of London and
the EU air transportation network. We anticipate that
this phenomenon can be observed in other multiplex net-
works with anticorrelated layers across a diverse range of
complex systems and scientific domains.
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