
Models of social networks based on social distance attachment

Marián Boguñá,1 Romualdo Pastor-Satorras,2 Albert Díaz-Guilera,1 and Alex Arenas3
1Departament de Física Fonamental, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain

2Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
3Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

(Received 14 April 2004; published 22 November 2004)

We propose a class of models of social network formation based on a mathematical abstraction of the
concept of social distance. Social distance attachment is represented by the tendency of peers to establish
acquaintances via a decreasing function of the relative distance in a representative social space. We derive
analytical results(corroborated by extensive numerical simulations), showing that the model reproduces the
main statistical characteristics of real social networks: large clustering coefficient, positive degree correlations,
and the emergence of a hierarchy of communities. The model is confronted with the social network formed by
people that shares confidential information using the Pretty Good Privacy(PGP) encryption algorithm, the
so-called web of trust of PGP.
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I. INTRODUCTION

Social networks are a paradigm of the complexity of hu-
man interactions[1,2]. From a reductionist point of view,
social networks can be represented in terms of a set of people
or social agents related in pairs between them by a set of
peer-to-peer relationships. This structure can thus be ab-
stracted as anetworkor graph [3,4], in which vertices rep-
resent social agents, while the edges stand for their mutual
relations or interactions. This kind of representation places
social networks in the more general context of complex net-
works [5,6], which have attracted recently a great deal of
attention within the statistical physics community. The ad-
vantage of this abstraction is that any social organization—
from companies to groups of friends—can be represented as
a tractable mathematical object: a complex graph. Although
this representation allows the statistical characteristization of
the topology of large real social networks, a similar reduc-
tionism representing the intricate mechanism of social net-
work formation, and its differences from the mechanisms
driving the generation of other kinds of networks, is still
missing.

Finding out the building rules of social network formation
is not an easy task provided the myriad of particulars that
influence human interactions. Individuals sharing the same
interests, common places, similar ideas or akin objectives,
for example, tend to form acquaintances. There is a large
tradition in sociology(see Ref.[7] and references therein)
proposing models of random interactions between social
agents that play a certain game, and that use learning and
rationality to evolve within its social structure. Although this
approach provides valuable information about the way social
networks evolve, a question remains open: Could a simple
“nonagent based” mathematical model generate the topologi-
cal structure that ensues from the observation of social net-
works? It has been suggested that a particular kind of social
networks, the so-called collaboration networks(e.g., re-
searchers linked among them by the fact of having coau-
thored a scientific paper) could owe their topological prop-
erties to the fact that the proper social network is actually the

projection of a bipartite graph[6] defined in terms of col-
laborators and acts of collaboration[8]. However, such an
explanation fails for other kinds of social networks, such as
acquaintance networks[9] (which cannot be associated to
any particular collaboration act).

To fill this gap, in the present paper we study a class of
social network models based on the concept of social dis-
tance. Social distance quantifies in a mathematical way a
quite intuitive concept: the degree of closeness or acceptance
that an individual or group feels towards another individual
or group in a social network. Individuals establish thus social
connections with a probability decreasing with their relative
social distance(properly defined in a characteristic social
space). The result of our models are networks showing most
of the topological properties exhibited by their real counter-
parts.

II. STATISTICAL CHARACTERIZATION OF SOCIAL
NETWORKS: EMPIRICAL RESULTS

The recent literature reflects the fact that the structure of
social networks is essentially different to the structure of
other kind of networks found in nature, such as biological
networks, food webs, the World-Wide Web or the Internet
[5,6,8,10,11], in at least three specific issues: transitivity of
the relationships between peers(clustering), correlations be-
tween the number of acquaintances(vertex degree) of peers,
and the presence of a community structure with patterns
closely resembling the fractal organization present in many
natural phenomena[12,13]. Provided this information, any
model intended to generate a network consistent with the
topological structure of social networks should reproduce
these essential characteristics.

The statistical characteristics of social networks could be
summarized in the following three points.

Large clustering. The number of transitive relationships
between peers in social networks is notably large. The frac-
tion of transitive relations can be measured by means of the
clustering coefficient[10], that is defined as follows: The
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clustering coefficientci of a vertex i is given by the ratio
between the number of triangles connected to that vertexei,
and the total number of possible triangles including it, i.e.,
ci =2ei /kiski −1d, whereki is the number of connections of
vertex i (its degree). The clustering coefficient of the net-
work is defined as the average ofci over all the vertices in
the network,kcl=oici /N, whereN is the size of the network.
Additional information can be obtained from the average
clustering coefficient of vertices of degreek, c̄skd [14], which
is related to the presence of modular structures in the net-
work [15]. Recently, it has been shown that a large value of
the average clustering coefficient in graphs can be mostly
accounted for by a simple random network model in which
edges are placed at random, under the constraint of a fixed
degree distributionPskd (defined as the probability that a
vertex is connected tok neighbors, i.e., has degreek) [16,17].
For networks with a scale-free degree distribution of the
form Pskd,k−g, this random construction can yield notice-
able values of the clustering coefficient for finite networks,
indicating that, in this case, the clustering could be a merely
topological property. This construction, however, cannot ex-
plain the large clustering coefficient observed in social net-
works with a bounded, non-scale-free degree distribution[9]
that is the fingerprint of social networks represented as uni-
partite graphs[37,38]. Common sense suggests that this spe-
cific way of making acquaintances described as “the friends
of my friends are my friends” is embedded in the primary
mechanism of social network formation.

Positive degree correlations. It has been recognized
[18,19] that real networks show degree correlations, in the
sense that the degrees at the end points of any given edge are
not independent. In particular, this feature can be quantita-
tively measured by computing the average degree of the

nearest neighbors of a vertex of degreek, k̄nnskd [18]. In this
sense, nonsocial networks exhibitdisassortative mixing[19],
implying that highly connected vertices tend to connect to
vertices with small degree, and vice versa. This property

translates in a decreasingk̄nnskd function. Social networks,
on the other hand, display a strongassortative mixing, with
high degree vertices connecting preferably to highly con-

nected vertices, a fact that is reflected in an increasingk̄nnskd
function. It has been pointed out[20] that, for finite net-
works, disassortative mixing can be obtained from a purely
random model, by just imposing the condition of having no
more than one edge between vertices. This observation im-
plies that negative correlations can find a simple explanation
in random connectivity models; explanation that, on the
other hand, does not apply to social networks, which must be
driven by different organizational principles that favor the
formation of groups based on similar connectivity. Analo-
gously, an alternative explanation for collaboration networks
[8] does not apply in the more general context of acquain-
tance networks

Community structure. Social networks possess a complex
community structure[12,21,22], in which individuals typi-
cally belong to groups or communities, with a high density
of internal connections and loosely connected among them,
that on their turn belong to groups of groups and so on,
giving raise to a hierarchy of nested social communities of

practice showing in some cases a self-similar structure[12].
Several authors[8,12,22] have advocated this last property,
the presence of a community structure, as the very distin-
guishing feature of social networks, responsible for the rest
of the properties that differentiate those from nonsocial net-
works. There have been some attempts to model this com-
munity aggregation assuming a hierarchical representation of
the world[23], however, up to now there are no models from
which this particular organization results as an emergent
property.

To present an example of the above properties, in the next
section we will analyze in detail a real example of a large
scale social network: the PGP web of trust.

III. THE WEB OF TRUST OF PGP

The Internet provides the largest publicly communication
space ever known, where billions of messages are inter-
changed between peers every day. Given this enormous flow
of information, privacy can be forged quite easily. To over-
come this inconvenience several encryption algorithms,
aimed to maintain privacy between peers, have been devel-
oped. The most popular of these algorithms is the Pretty-
Good-Privacy algorithm(PGP) [25,26]. This algorithm
makes use of a pair of keys, one of them to encrypt the
message, and its counterpart to decrypt the message. Both
keys are generated in such a way that it is computationally
infeasible to deduce one key from the other. However, the
breakthrough of the PGP algorithm is the way in which these
keys are used: Everybody can generate its own pair of keys,
one of them is published worldwide whereas the other is kept
in secret. To establish a private communication using PGP
one must get the public key of the target peer and encrypt the
message to be sent using this key. The receiver uses his se-
cret key to decrypt the message and in this way privacy is
ensured. Provided that everyone can generate a PGP key by
himself, if anybody wants to know if a given key belongs
really to the person stated in the key, he has to verify that.
This is very easy if you know the person who created the
key, but it is difficult if you do not know that person at all.
This is known as the authentication of the public key prob-
lem. A solution to this problem passes through a “signing
procedure” where a person signs the public key of another,
meaning that she trusts the other person is who she claims to
be. This procedure generates a web of peers that have signed
public keys of another based on trust, and this is the so-
called web of trust of PGP[24].

In this paper, we analyze the web of trust as it was on July
2001, when it comprised 191 548 keys and 286 290 signa-
tures. Since we are mainly interested in the social character
of the web of trust we only consider bidirectional signatures,
i.e., peers who have mutually signed their keys. This filtering
process guarantees mutual knowledge between connected
peers and makes the PGP network a reliable proxy of the
underlying social network. An extended analysis of the di-
rected PGP network can be found in Ref.[27]. After the
filtering process, we are left with an undirected network of
57 243 vertices and average degreekkl=2.16. The giant com-
ponent(GC) of this network, i.e., the largest connected sub-
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network, comprises 10 680 vertices and its average degree is
kklGC=4.55.

The interest of the PGP network is twofold: First, it is a
web based on trust, and the comprehension of trust networks
is, nowadays, crucial to understand the complexity of the
information society. Second, unlike collaboration networks,
this web is one of the largest reportednonbipartitegraphs
one can build from large databases in social sciences. The
consideration of this web of trust as a benchmark for the
evaluation of the proposed social model is, thus, fully justi-
fied.

Our analysis will focus on the main properties of social
networks discussed at the introduction: degree distribution,
clustering, correlations, and community aggregation of the
web of trust. To begin with, we analyse the degree distribu-
tion of the PGP network. Figure 1 shows the cumulative
degree distribution[defined asPcskd=ok8=k

` Psk8d], for both
the whole network and the giant component. In the case of
the whole network it is clearly visible a power law decay for
the degree distributionPskd, with an exponent,2.6 for
small degrees,k,40, and a crossover towards another power
law with a higher exponent,,4, for large values of the de-
gree. This change of the exponent indicates that, in contrast
to many technological networks or social collaboration net-
works [5], the PGP is not a scale-free network but has a
bounded degree distribution.

As discussed above, clustering is one of the distinctive
features of social networks. This is also the case of the PGP
network, which shows a large clustering coefficient,kcl
=0.4. In Fig. 2, we plot the clustering coeficient as a function
of the degreec̄skd, that is, the average clustering of vertices
of degreek. Dispite the short range of values ofk shown by
this plot, due to the limited size of the network and the
bounded nature of the degree distribution, we can observe
that c̄skd is a nearly independent function of the degree. This
is surprisingly in contrast to many real networked systems in
which it has been shown thatc̄skd is a decreasing function of
the degree[15].

In Fig. 3 we analyze the correlations of the PGP network,
as measured by the average degree of the nearest neighbors

of the vertices of degreek, k̄nnskd. In the range of degree
values available in the plot, we observe that this is a growing
function, corresponding to a network with assortative mix-

ing. Remarkably, the functionk̄nnskd has an approximately
linear behavior, at least for not very large values ofk.

Finally, we focus on the community structure of the web
of trust. To this purpose, we use the algorithm proposed by
Girvan and Newman(GN) [22] to identify communities in
complex networks. The performance of this algorithm relies
on the fact that edges connecting different communities have
high betweenness(a centrality measure of vertices and edges
of the network[28], that is defined as the total number of
shortest paths among pairs of vertices of the network that
pass through a given vertex or edge[29]). The algorithm
recursively identifies and cuts the edges with the highest be-

FIG. 1. Cumulative degree distribution of the whole PGP net-
work (circles) and the giant component(squares). As can be seen,
there is a region with a power law decay followed by a cutoff for
degreesk.40.

FIG. 2. Average clustering coefficient as a function of the de-
greek of the PGP network.

FIG. 3. Average degree of the nearest neighbors as a function of
the degreek for the PGP network. This function has an approxi-
mately linear behavior for small values ofk (see inset).
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tweenness, splitting the network until the single vertex level.
The information of the entire process can be encoded into the
binary tree generated by the splitting procedure. The advan-
tage of using the binary tree representation is twofold, since
it gives information about the different communities—which
are the branches of the tree—and, at the same time, unravels
the hierarchy of such communities. In Fig. 4 we explore the
scaling of the probability of having a community of size
s,Pssd, by plotting the cumulative distributionPcssd
=os8=s

` Pss8d as a function ofs in log-log scale, for the giant
component of the PGP network. The use of cumulative dis-
tributions instead of binned distributions is useful to reduce
statistical noise of data and, as we shall see, it does not alter
the results of the paper. The plot in Fig. 4 reveals a scale-free
community hierarchy of the formPssd,s−d, with an expo-
nentd=1.8 for over more than 3 decades(the inset of Fig. 4
shows the binned community size distribution, which leads
to the same value for the exponentd). This result is, indeed,
quite remarkable since, in a recent paper[30,31], it has been
argued that any treelike representation should lead to a size
distribution with exponent 2. This suggests that the exponent
d=1.8 should find a more complex explanation than that pro-
posed in the above-mentioned work.

IV. A CLASS OF MODELS BASED ON SOCIAL DISTANCE

To explain the above-mentioned properties in an acquain-
tance(i.e., nonbipartite) network, we propose a class of mod-
els based on the concept ofsocial distance. The intuitive
notion that individuals establish acquaintance or friendship
links whenever they feelclose in some sense, leads to the
notion of a social distance between individuals. This social
distance will rule the establishment of relations, in such a
way that individuals at short distances will have a large prob-
ability of being related, while individuals at large distances
will be connected with low probability.

To provide a mathematical realization of this concept, we
consider a class of models of social networks in which each
vertex (individual) has associated a location in a certain so-
cial space[23], whose coordinates account for the different
characteristics that define their relative social location with
respect to the rest of the individuals. Individuals establish
social connections(acquaintances) with a probability de-
creasing with their relative social distance, that is defined on
the metric social space. As we will see in the following, for
general forms of the connecting probability, the model yields
networks of acquaintances with a nonvanishing clustering
coefficient as the number of individuals increases, plus gen-
eral assortative(positive) correlations. For a certain range of
connectivity probabilities, moreover, the model reproduces a
community structure with self-similar properties. The model
we propose reproduces the hierarchical world model pro-
posed in Ref.[23] (see also[32]). Our approach differs, how-
ever, in the fact that hierarchies are not defineda priori, but
they emerge as a result of the construction process.

Our model is defined as follows: Let us consider a set of
N disconnected individuals which are randomly placed

within a social space,H, according to the densityrshWd,
where the vectorhW i ;shi

1,… ,hi
dHd defines the position of the

ith individual anddH is the dimension ofH [33,34]. Each
subspace ofH (defined by the different coordinates of the

vectorhW) represents a distinctive social feature, such as pro-
fession, religion, geographic location, etc. and, in general, it
will be parametrized by means of a continuous variable with
a domain growing with the size of the population. This
choice is justified by the fact that there are not two identical
individuals and, thus, increasing the number of individuals
also increases the diversity of the society. Even though it is
not strictly necessary for our further development, we also
assume that different subspaces are uncorrelated and, there-

fore, we can factorize the total density asrshWd=Pn=1
dH rnshnd.

Assuming again the independence of social subspaces, we
assign a connection probability between any two pairs of

individuals,hW i andhW j, given by

rshW i,hW jd = o
n=1

dH
vnrnshi

n,hj
nd, s1d

wherevn is a normalized weight factor measuring the impor-
tance that each social attribute has in the process of forma-
tion of connections. The key point of our model is the con-
cept of social distance across each subspace[23]. We assume
that given two nodesi and j with respective social coordi-

nateshW i and hW j, it is possible to define a set of distances
corresponding to each subspace,dnshi

n,hj
ndP f0,`d ,n

=1,… ,dH. Moreover, we expect that the probability of ac-
quaintance decreases with social distance. Therefore, we pro-
pose a connection probability

rnshi
n,hj

nd =
1

1 + fbn
−1dnshi

n,hj
ndgan

, s2d

wherebn is a characteristic length scale(that, eventually, will
control the average degree) and an.1 is a measure of ho-

FIG. 4. Cumulative community size distribution of the giant
component of the PGP network. The solid line has slope 0.8, indi-
cating a community size distribution of the formPssd,s−1.8. The
dashed line shows, as comparison, a power law of exponents−2.
Inset: Binned community size distribution. The solid line has slope
1.8, in agreement with the slope measured from the cumulative
distribution.
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mophily [35], that is, the tendency of people to connect to
similar people.

The degree distributionPskd of the network can be com-

puted using the conditional probabilitygskuhWd (propagator)

that an individual with social coordinateshW hask connections
[34]. We can thus write

Pskd =E rshWdgskuhWddh, s3d

wheredh stands for the measure element of spaceH. The

propagatorgskuhWd can be easily computed using standard
techniques of probability theory[34], leading to a binomial
distribution

gskuhWd = SN − 1

k
DS k̄shWd

N − 1
DkS1 −

k̄shWd
N − 1

DN−1−k

, s4d

where k̄shWd is the average degree of individuals with social

coordinatehW. For uncorrelated social subspaces, this average
degree takes the form

k̄shWd = sN − 1do
n=1

dH
vnE rnsh8ndrnshn,h8nddh8n. s5d

In the case of a sparse network—constant average
degree—the propagator takes a Poisson form[34] and the
degree distribution can simply be written as

Pskd =
1

k!
E rshWdfk̄shWdgke−k̄shWddh. s6d

Therefore, if the population is homogeneously distributed in
the social space, the degree distribution will be bounded, in
agreement with the observations made in several real social
systems[9,12,36,39].

The clustering coefficient is defined as the probability that
two neighbors of a given individual are also neighbors them-
selves. Following Ref.[34], we first compute the probability

that an individual with social vectorhW is connected to an

individual with vectorh8W ,psh8W uhWd. This probability reads

psh8W uhWd = sN − 1d
rsh8W drshW,h8W d

k̄shWd
. s7d

Given the independent assignment of edges among individu-

als, the clustering coefficient of an individual with vectorhW is
[34]

cshWd =E E psh8W uhWdrsh8W ,h9W dpsh9W uhWddh8dh9, s8d

and the average clustering coefficient is simply given by

kcl =E rshWdcshWddh. s9d

Our model, as defined above, describes a general class of
models which might be useful for the modeling of different
social networks. In the next section we will analyze the sim-

plest element of this class and we will show that this over-
simplified model is, nevertheless, able to reproduce qualita-
tively the main characteristics of real social networks.

V. EXAMPLE OF A SOCIAL NETWORK MODEL

To test the results of our model, we consider the simplest
case of a single social feature, i.e.,dH=1 [40]. As we will
see, even in this case our model presents several nontrivial
properties, that are the signature of real social networks.
Considering the spaceH to be the one-dimensional segment
f0,hmaxg, we assign individuals a random, uniformly distrib-
uted, position, i.e.,rshd=1/hmax. In this way, the density of
individuals in the social space is given byd=N/hmax. The
distance between individuals is defined asdshi ,hjd;uhi −hju.
The top panel of Fig. 5 shows some typical examples of
networks generated with our model, for different values of
the parametera.

The model, as defined above, is homogeneous in the limit
hmax@1, which means that all the vertex properties will
eventually become independent of the social coordinateh.
Therefore, the average degree can be calculated askkl
=limhmax→`k̄sh=hmax/2d, which leads to

kkl =
2dbp

a sinp/a
. s10d

Thus, for fixedd, we can construct networks with the same
average degree and different homophily parametera, by
changingb according to the previous expression. The clus-
tering coefficient can be computed by means of Eq.(8),
yielding

kcl =
a2

4p2 fsadsin2p

a
, s11d

where

fsad =E
−`

` E
−`

` dxdy

s1 + uxuads1 + ux − yuads1 + uyuad
. s12d

Figure 6 shows the perfect agreement between simulations of
the model compared to the theoretic value Eq.(11), com-
puted by numerical integration. We observe that the cluster-
ing coefficient vanishes whena→1, that is, for weakly ho-
mophyllic societies, and converges to a constant valuekcl
=3/4 whena→` [41], which corresponds to a strongly ho-
mophilyc society. The inset of Fig. 6 shows the clustering
coefficient as a function of the degree,c̄skd, for several val-
ues of the homophily parameter. We observe thatc̄skd is, in
all cases, independent of the vertex degree in agreement with
the empirical measures on the PGP network.

Regarding the degree correlations, at first sight one could
conclude that, since the network is homogeneous in the so-
cial spaceH, the resulting network is free of any correla-
tions. However, numerical simulations of the average degree

of the nearest neighbors as a function of the degree,k̄nnskd,
show a linear dependence onk and, consequently, assortative
mixing by degree(see Fig. 7). This counterintuitive result is
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a consequence of the fluctuations of the density of individu-
als in the social space. Indeed, if individuals are placed in the
spaceH with some type of randomness, they will end up
forming clusters(communities) of close individuals, strongly
connected among them. Therefore, an individual with large
degree will most probably belong to a large cluster, and con-
sequently its neighbors will have also a high degree.

In more real situations, however, fluctuations in the den-
sity of individuals will, presumably, be originated by more
complex processes or even induced by deterministic con-
straints, leading to complex patterns within the social space.
This complex distribution will, in general, alter the shape of
the degree distribution but not the assortative character of the
network. Indeed, assortative mixing by degree appears as a
common feature in any model of network formation driven
by distance attachment. It is worth mentioning that the small
range of degrees shown in Figs. 6 and 7 is a direct conse-
quence of the boundedness of the degree distribution. How-
ever, we expect the same behavior in models with more
heavy tailed distributions.

FIG. 5. (Color online) Top panel: Examples of typical networks generated for an average degreekkl=10,N=250,d=2, and different
values of the parametera. Bottom panel: Binary trees representing the community structure of the corresponding networks(see text). Solid
(green) circles are the original vertices of the network whereas hollow circles stand for the communities generated by the GN algorithm.

FIG. 6. (Color online) Main plot: Clustering coefficientkcl for
dH=1 as a function ofa and fixed average degree,kkl=10. The
solid line corresponds to the theoretical value Eq.(11) and symbols
are simulation results. Inset: Average clustering coefficient as a
function of the degreek for dH=1 for different values ofa (from
bottom to top,a=1.5, 2.5, and 3.5). In all cases, the size of the
network isN=105.

FIG. 7. (Color online) Average nearest neighbors degree for
dH=1 as a function ofk, for different values ofa. In all cases, the
size of the network isN=105.
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Finally, we analyze the community structure of our
model. The top panel of Fig. 5 shows three typical networks,
in which the first four communities identified by the GN
algorithm have been highlighted in different colors. The bi-
nary trees corresponding to these networks are shown in the
bottom panel. Asa grows, the network eventually becomes a
chain of clusters connected by a few edges. In contrast, asa
approaches 1 the network is more and more interconnected
and develops a hierarchical structure. This hierarchical struc-
ture can be quantified by means of the cumulative distribu-
tion of community sizes,Pcssd, in which the community size
s is defined as the number of individuals belonging to each
offspring during the splitting procedure[12]. Figure 8 shows

Pcssd for a=1.1, 2 and 3. Whena,1, the size distribution
approaches toPssd,s−2, reflecting the hierarchical structure
of the network. For higher values ofa the hierarchy is still
preserved for large community sizes whereas for small sizes
there is a clear deviation as a consequence of clusters of
highly connected individuals which form indivisible commu-
nities, breaking thus the hierarchical structure at low levels.
These clusters are identified in the binary tree as the long
branches with many leaves at the end of the tree.

VI. CONCLUSIONS

To sum up, in this paper we have presented a model of
social network based on the concept of social distance be-
tween the elements(individuals) in a social network. The
model exhibits, even in its simplest formulation, a nonzero
clustering coefficient in the thermodynamic limit, assortative
degree mixing, and a hierarchical(self-similar) community
structure. The origin of these properties can be traced back to
the very presence of communities, due to the fluctuations in
the position of individuals in social space. Our approach of-
fers an explanation of a real acquaintance network, such as
the PGP web of trust, and opens thus new views for a further
understanding of the structure of complex social networks.
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