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We propose a class of models of social network formation based on a mathematical abstraction of the
concept of social distance. Social distance attachment is represented by the tendency of peers to establish
acquaintances via a decreasing function of the relative distance in a representative social space. We derive
analytical resultgcorroborated by extensive numerical simulatiprshowing that the model reproduces the
main statistical characteristics of real social networks: large clustering coefficient, positive degree correlations,
and the emergence of a hierarchy of communities. The model is confronted with the social network formed by
people that shares confidential information using the Pretty Good PrifR@§p encryption algorithm, the
so-called web of trust of PGP.
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I. INTRODUCTION projection of a bipartite graph6] defined in terms of col-

Social networks are a paradigm of the complexity of hu-laborators and acts of collaborati¢8]. However, such an
man interactiong1,2]. From a reductionist point of view, €xplanation fails for other kinds of social networks, such as
social networks can be represented in terms of a set of peopf€quaintance networkg9] (which cannot be associated to
or social agents related in pairs between them by a set ¢iny particular collaboration act
peer-to-peer relationships. This structure can thus be ab- To fill this gap, in the present paper we study a class of
stracted as aetworkor graph [3,4], in which vertices rep- social network models based on the concept of social dis-
resent social agents, while the edges stand for their mutug&nce. Social distance quantifies in a mathematical way a
relations or interactions. This kind of representation placegjuite intuitive concept: the degree of closeness or acceptance
social networks in the more general context of complex netthat an individual or group feels towards another individual
works [5,6], which have attracted recently a great deal ofor group in a social network. Individuals establish thus social
attention within the statistical physics community. The ad-connections with a probability decreasing with their relative
vantage of this abstraction is that any social organization—social distance(properly defined in a characteristic social
from companies to groups of friends—can be represented &pace. The result of our models are networks showing most
a tractable mathematical object: a complex graph. Althouglef the topological properties exhibited by their real counter-
this representation allows the statistical characteristization gparts.
the topology of large real social networks, a similar reduc-
tionism representing the intricate mechanism of social net-
work formation, and its differences from the mechanisms
driving the generation of other kinds of networks, is still
missing. The recent literature reflects the fact that the structure of

Finding out the building rules of social network formation social networks is essentially different to the structure of
is not an easy task provided the myriad of particulars thabther kind of networks found in nature, such as biological
influence human interactions. Individuals sharing the samaeetworks, food webs, the World-Wide Web or the Internet
interests, common places, similar ideas or akin objectiveq5,6,8,10,1], in at least three specific issues: transitivity of
for example, tend to form acquaintances. There is a largéhe relationships between peéctustering, correlations be-
tradition in sociology(see Ref.[7] and references thergin tween the number of acquaintandesrtex degregof peers,
proposing models of random interactions between sociahnd the presence of a community structure with patterns
agents that play a certain game, and that use learning arwiosely resembling the fractal organization present in many
rationality to evolve within its social structure. Although this natural phenomengl2,13. Provided this information, any
approach provides valuable information about the way sociainodel intended to generate a network consistent with the
networks evolve, a question remains open: Could a simpléopological structure of social networks should reproduce
“nonagent based” mathematical model generate the topologihese essential characteristics.
cal structure that ensues from the observation of social net- The statistical characteristics of social networks could be
works? It has been suggested that a particular kind of sociummarized in the following three points.
networks, the so-called collaboration networks.g., re- Large clustering The number of transitive relationships
searchers linked among them by the fact of having coaubetween peers in social networks is notably large. The frac-
thored a scientific papgrcould owe their topological prop- tion of transitive relations can be measured by means of the
erties to the fact that the proper social network is actually thelustering coefficien{10], that is defined as follows: The

Il. STATISTICAL CHARACTERIZATION OF SOCIAL
NETWORKS: EMPIRICAL RESULTS
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clustering coefficient; of a vertexi is given by the ratio practice showing in some cases a self-similar structligg
between the number of triangles connected to that vestex Several author$8,12,23 have advocated this last property,
and the total number of possible triangles including it, i.e..the presence of a community structure, as the very distin-
ci=2e/ki(ki—1), wherek; is the number of connections of guishing feature of social networks, responsible for the rest
vertexi (its degreg The clustering coefficient of the net- of the properties that differentiate those from nonsocial net-
work is defined as the average gfover all the vertices in  works. There have been some attempts to model this com-
the networkc)==c;/N, whereN is the size of the network. munity aggregation assuming a hierarchical representation of
Additional information can be obtained from the averagethe world[23], however, up to now there are no models from
clustering coefficient of vertices of degreec(k) [14], which  which this particular organization results as an emergent
is related to the presence of modular structures in the ”e’Jroperty.

work [15]. Recently, it has been shown that a large value of = Tq present an example of the above properties, in the next

the average clustering coefficient in graphs can be mostlgection we will analyze in detail a real example of a large
accounted for by a simple random network model in Wh'ChsdcaIe social network: the PGP web of trust.

edges are placed at random, under the constraint of a fixe
degree distributionP(k) (defined as the probability that a
vertex is connected toneighbors, i.e., has degrke[16,17. Ill. THE WEB OF TRUST OF PGP

For networks with a scale-free degree distribution of the . . L
form P(k) ~k™?, this random construction can yield notice- The Internet provides the Iar_gest publicly commumca_tlon
able values of the clustering coefficient for finite networks,SPac€ ever known, where billions of messages are inter-
indicating that, in this case, the clustering could be a merelyhanged between peers every day. Given this enormous flow
topological property. This construction, however, cannot ex0f information, privacy can be forged quite easily. To over-
plain the large clustering coefficient observed in social netcome this inconvenience several encryption algorithms,
works with a bounded, non-scale-free degree distribuigdn aimed to maintain privacy between peers, hav_e been devel-
that is the fingerprint of social networks represented as unioP€d- The most popular of these algorithms is the Pretty-
partite graph$37,3§. Common sense suggests that this spe00d-Privacy algorithm (PGP [25,2§. This algorithm

cific way of making acquaintances described as “the friendghakes use of a pair of keys, one of them to encrypt the

of my friends are my friends” is embedded in the primaryMessage, and its counterpart to decrypt the message. Both
mechanism of social network formation. keys are generated in such a way that it is computationally

Positive degree correlationslt has been recognized infeasible to deduce one key from the other. However, the

[18,19 that real networks show degree correlations, in thePréakthrough of the PGP algorithm is the way in which these
sense that the degrees at the end points of any given edge &@YS are used: Everybody can generate its own pair of keys,
not independent. In particular, this feature can be quantita@n€ Of them is published worldwide whereas the other is kept
tively measured by computing the average degree of thé) secret. To establlsh a private communication using PGP
nearest neighbors of a vertex of degkegnn(k) [18]. In this one must get the public key of the target peer and encrypt the

. - . 2 message to be sent using this key. The receiver uses his se-
sense, nonsocial networks exhiflisassortative mixing19], g 9 y

; i . . cret key to decrypt the message and in this way privacy is
implying that highly connected vertices tend to connect t0ansured. Provided that everyone can generate a PGP key by
vertices with small degree, and vice versa. This propert

himself, if anybody wants to know if a given key belongs
translates in a decreasirg(k) function. Social networks, really to the person stated in the key, he has to verify that.
on the other hand, display a stroagsortative mixingwith  This is very easy if you know the person who created the
high degree vertices connecting preferably to highly conkey, but it is difficult if you do not know that person at all.
nected vertices, a fact that is reflected in an increakip(d) This is known as the authentication of the public key prob-
function. It has been pointed o(i20] that, for finite net- lem. A solution to this problem passes through a “signing
works, disassortative mixing can be obtained from a purelyprocedure” where a person signs the public key of another,
random model, by just imposing the condition of having nomeaning that she trusts the other person is who she claims to
more than one edge between vertices. This observation infe. This procedure generates a web of peers that have signed
plies that negative correlations can find a simple explanatiofublic keys of another based on trust, and this is the so-
in random connectivity models; explanation that, on thecalled web of trust of PGIP24].
other hand, does not apply to social networks, which must be In this paper, we analyze the web of trust as it was on July
driven by different organizational principles that favor the 2001, when it comprised 191 548 keys and 286 290 signa-
formation of groups based on similar connectivity. Analo-tures. Since we are mainly interested in the social character
gously, an alternative explanation for collaboration networksf the web of trust we only consider bidirectional signatures,
[8] does not apply in the more general context of acquaini-€., peers who have mutually signed their keys. This filtering
tance networks process guarantees mutual knowledge between connected
Community structureSocial networks possess a complex peers and makes the PGP network a reliable proxy of the
community structurg12,21,22, in which individuals typi- underlying social network. An extended analysis of the di-
cally belong to groups or communities, with a high densityrected PGP network can be found in Rg27]. After the
of internal connections and loosely connected among thentiltering process, we are left with an undirected network of
that on their turn belong to groups of groups and so onD7 243 vertices and average degflde=2.16. The giant com-
giving raise to a hierarchy of nested social communities ofoonent(GC) of this network, i.e., the largest connected sub-
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FIG. 1. Cumulative degree distribution of the whole PGP net- FIG. 2. Average clustering coefficient as a function of the de-
work (circles and the giant componeigquares As can be seen, greek of the PGP network.
there is a region with a power law decay followed by a cutoff for

degrees>40. In Fig. 3 we analyze the correlations of the PGP network,

network, comprises 10 680 vertices and its average degree ® measured by the average degree of the nearest neighbors

(K)oc=4.55. of the vertices of degreg,k,,(k). In the range of degree
The interest of the PGP network is twofold: First, it is a Values available in the plot, we observe that this is a growing

web based on trust, and the comprehension of trust networ§nction, corresponding to a network with assortative mix-

is, nowadays, crucial to understand the complexity of théng. Remarkably, the functiok,,(k) has an approximately

information society. Second, unlike collaboration networks,linear behavior, at least for not very large valueskof

this web is one of the largest reportednbipartite graphs Finally, we focus on the community structure of the web

one can build from large databases in social sciences. Thaf trust. To this purpose, we use the algorithm proposed by

consideration of this web of trust as a benchmark for theGirvan and NewmariGN) [22] to identify communities in

evaluation of the proposed social model is, thus, fully justi-complex networks. The performance of this algorithm relies

fied. on the fact that edges connecting different communities have
Our analysis will focus on the main properties of socialhigh betweenness centrality measure of vertices and edges

networks discussed at the introduction: degree distributionof the network[28], that is defined as the total number of

clustering, correlations, and community aggregation of theshortest paths among pairs of vertices of the network that

web of trust. To begin with, we analyse the degree distribupass through a given vertex or edf29]). The algorithm

tion of the PGP network. Figure 1 shows the cumulativerecursively identifies and cuts the edges with the highest be-

degree distributiorfdefined asP.(k)==,_,P(k’)], for both

the whole network and the giant component. In the case of 10° T T T T -

the whole network it is clearly visible a power law decay for

the degree distributiorP(k), with an exponent~2.6 for

small degreek <40, and a crossover towards another power

law with a higher exponent-4, for large values of the de-

gree. This change of the exponent indicates that, in contrast

to many technological networks or social collaboration net-

works [5], the PGP is not a scale-free network but has a '3—: 10"

bounded degree distribution. ™
As discussed above, clustering is one of the distinctive

features of social networks. This is also the case of the PGP

network, which shows a large clustering coefficiefit)

=0.4. In Fig. 2, we plot the clustering coeficient as a function

of the degreec(k), that is, the average clustering of vertices

of degreek. Dispite the short range of values loshown by 0

this plot, due to the limited size of the network and the 10

bounded nature of the degree distribution, we can observe k

thatc(k) is a nearly independent function of the degree. This

is surprisingly in contrast to many real networked systems in  FIG. 3. Average degree of the nearest neighbors as a function of

which it has been shown thetk) is a decreasing function of the degreek for the PGP network. This function has an approxi-

the degred15]. mately linear behavior for small values kf(see inset
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To provide a mathematical realization of this concept, we
consider a class of models of social networks in which each
vertex (individual) has associated a location in a certain so-
cial space[23], whose coordinates account for the different
characteristics that define their relative social location with
respect to the rest of the individuals. Individuals establish
social connectiongacquaintancgswith a probability de-
creasing with their relative social distance, that is defined on
the metric social space. As we will see in the following, for
general forms of the connecting probability, the model yields
networks of acquaintances with a nonvanishing clustering
W 10 1 10 10° coefficient as the number of individuals increases, plus gen-
o’ ol ol ol eral assortativépositive) correlations. For a certain range of
10 10 10 10 10 connectivity probabilities, moreover, the model reproduces a

s community structure with self-similar properties. The model
we propose reproduces the hierarchical world model pro-

FIG. 4. Cumulative community size distribution of the giant : .
. ~ - posed in Ref[23] (see alsd32]). Our approach differs, how-
component of the PGP network. The solid line has slope 0.8, indi- . . : . -
cating a community size distribution of the forR(s) ~s8 The ever, in the fact that hierarchies are not defiaegkiori, but

. . - they emerge as a result of the construction process.
dashed line shows, as comparison, a power law of expasiént Our model is defined as follows: Let us consider a set of
Inset: Binned community size distribution. The solid line has slope :
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1.8, in agreement with the slope measured from the cumulativé\I disconnected individuals which are randomly elaced
distribution. within a social space}, according to the density(h),

where the vectoh, = (h!, ... ,h%) defines the position of the
tweenness, splitting the network until the single vertex levelith individual andd,, is the dimension of{ [33,34. Each
The information of the entire process can be encoded into theubspace of{ (defined by the different coordinates of the

binary tree generated by the splitting procedure. The advanectorh) represents a distinctive social feature, such as pro-
tage of using the binary tree representation is twofold, sincgession, religion, geographic location, etc. and, in general, it
it giVES information about the different communities—which will be parametrized by means of a continuous variable with
are the branches of the tree—and, at the same time, unraveysdomain growing with the size of the population. This
the hierarchy of such communities. In Fig. 4 we explore thechoice is justified by the fact that there are not two identical
scaling of the probability of having a community of size jndjviduals and, thus, increasing the number of individuals
s,P(s), by plotting the cumulative distributionP(s)  also increases the diversity of the society. Even though it is
:E;O,:SP(S’) as a function o in log-log scale, for the giant not strictly necessary for our further development, we also
component of the PGP network. The use of cumulative disassume that different subspaces are uncorrelated and, there-
tributions instead of binned distributions is useful to reducefore, we can factorize the total density ﬂﬁ)zﬂﬂi‘lpn(h”)-

statistical noise of data and, as we shall see, it does not altg{ssuming again the independence of social subspaces, we
the results Og.the p?]pef-fTEe ?'0:];)? I):ig. 45rev_er?ls a scale-fregssign a connection probability between any two pairs of
community hierarchy of the fornP(s) ~s°, with an expo- . . . > S

nents=1.8 for over more than 3 decadgke inset of Fig. 4 individuals, by andhy, given by
shows the binned community size distribution, which leads o 4

to the same value for the expone®t This result is, indeed, r(h,hy) = > wnrn(h{‘,h}‘ , (1
quite remarkable since, in a recent paf&0,31], it has been n=1

argued that any treelike representation should lead to a Si%ﬁherew
distribution with exponent 2. This suggests that the expone "
6=1.8 should find a more complex explanation than that pr
posed in the above-mentioned work.

is a normalized weight factor measuring the impor-

Nhnce that each social attribute has in the process of forma-

Otion of connections. The key point of our model is the con-
cept of social distance across each subsp28e We assume
that given two nodes and|j with respective social coordi-

) ) o ) natesh; and ﬁ,—, it is possible to define a set of distances
To explain the above-mentioned properties in an acquaineorresponding to each subspaceiﬂ(h{‘,h?) e[0,%),n
tance(i.e., nonbipartitgnetwork, we propose a class of mod- =1 4, . Moreover, we expect that the probability of ac-

els based on the concept sbcial distance The intuitive  gyaintance decreases with social distance. Therefore, we pro-
notion that individuals establish acquaintance or fnendshlq)ose a connection probability

links whenever they feetlosein some sense, leads to the

notion of a social distance between individuals. This social N 1

distance will rule the establishment of relations, in such a ra(hi’hy) = 1 +[b;1d,(h", )]’ ()
way that individuals at short distances will have a large prob- nom

ability of being related, while individuals at large distanceswhereby, is a characteristic length scaldat, eventually, will
will be connected with low probability. control the average degreand a,>1 is a measure of ho-

IV. A CLASS OF MODELS BASED ON SOCIAL DISTANCE
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mophily [35], that is, the tendency of people to connect toplest element of this class and we will show that this over-
similar people. simplified model is, nevertheless, able to reproduce qualita-
The degree distributioR(k) of the network can be com- tively the main characteristics of real social networks.

puted using the conditional probabilig(k|ﬁ) (propagatoy

that an individual with social coordinatéshask connections V. EXAMPLE OF A SOCIAL NETWORK MODEL
[34]. We can thus write
To test the results of our model, we consider the simplest
P(K) :f p(ﬁ)g(k|ﬁ)dh, 3) case of a ;inglt_a social feature, i.€;;=1 [40]. As we will .
see, even in this case our model presents several nontrivial
properties, that are the signature of real social networks.
where dh stand§ for the meas_ure element of s_pai:eThe Considering the spack to be the one-dimensional segment
propagatorg(k|h) can be easily computed using standard[g h .1 we assign individuals a random, uniformly distrib-
te_chnques of probability theor}g4], leading to a binomial te(d, position, i.e.p(h)=1/hya,. In this way, the density of
distribution individuals in the social space is given B#N/h.,,. The
N-1)( k) k P N-1-k distance between individuals is definedddl;,hj) =|h—hj|.
)( ) ( - ) , (4) The top panel of Fig. 5 shows some typical examples of
networks generated with our model, for different values of

T L . . the parameteu.
wherek(h) is the average degree of individuals with social The model, as defined above, is homogeneous in the limit

coordinateh. For uncorrelated social subspaces, this averaga...>1, which means that all the vertex properties will

g(k|h):< k N-1 N-1

degree takes the form eventually become independent of the social coordifate
B dyy Therefore, the average degree can be calculatedkgas
k(h)=(N=1)> o, | po(h’Mr,(h"h’Mdh'". (5) =lim,__ _.k(h=hpad2), which leads to
n=1
26bm
In the case of a sparse network—constant average ky=—7". (10
degree—the propagator takes a Poisson f¢84] and the asinmla
degree distribution can simply be written as Thus, for fixeds, we can construct networks with the same
1 o . average degree and different homophily parametehby
P(k) = W f p(h)[k(h)]e ™M dh. (6)  changingb according to the previous expression. The clus-

tering coefficient can be computed by means of E),

Therefore, if the population is homogeneously distributed inyielding
the social space, the degree distribution will be bounded, in o2 -
agreement with the observations made in several real social (c) = —f(a)sir—, (12)
systems[9,12,36,39. 4’ a
The clustering coefficient is defined as the probability thatynere
two neighbors of a given individual are also neighbors them-
selves. Following Ref{34], we first compute the probability dxdy

f(a) = .
that an individual with social vecton is connected to an (e) f_m o (LY +|x=y[*) (L +|y|™)
individual with vectorh’,p(h’|h). This probability reads

(12)

Figure 6 shows the perfect agreement between simulations of

L p(ﬁ’)r(ﬁ ﬁ,) the model compared to the theoretic value EL), com-
p(h’|lh)=(N-1)——. (7 puted by numerical integration. We observe that the cluster-
k(h ing coefficient vanishes whem— 1, that is, for weakly ho-

Given the independent assignment of edges among individtmOphylllc societies, and CONVerges to a constant vatje
Is. the cl . ffici f an individual with vect =3/4whena— o« [41], which corresponds to a strongly ho-
?331,]t e clustering coefficient of an individual with veclots mophilyc society. The inset of Fig. 6 shows the clustering

coefficient as a function of the degrexk), for several val-
- I . ues of the homophily parameter. We observe t&} is, in
c(h) :f j p(h'[mr(h", ) p(h’[hdh’dh’, (8 all cases, independent of the vertex degree in agreement with
the empirical measures on the PGP network.
and the average clustering coefficient is simply given by Regarding the degree correlations, at first sight one could
conclude that, since the network is homogeneous in the so-
<c>=fp(ﬁ)c(ﬁ)dh. (9) cial spaceH, the resulting network is free of any correla-
tions. However, numerical simulations of the average degree

Our model, as defined above, describes a general class ©f the nearest neighbors as a function of the dedkggk),
models which might be useful for the modeling of different show a linear dependence kand, consequently, assortative
social networks. In the next section we will analyze the sim-mixing by degregsee Fig. J. This counterintuitive result is
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o
1)

FIG. 5. (Color online Top panel: Examples of typical networks generated for an average dégre®0,N=250,6=2, and different
values of the parameter. Bottom panel: Binary trees representing the community structure of the corresponding neseerksxt Solid
(green circles are the original vertices of the network whereas hollow circles stand for the communities generated by the GN algorithm.

a consequence of the fluctuations of the density of individu- In more real situations, however, fluctuations in the den-
als in the social space. Indeed, if individuals are placed in theity of individuals will, presumably, be originated by more
space’H with some type of randomness, they will end up complex processes or even induced by deterministic con-
forming clustergcommunitie$ of close individuals, strongly straints, leading to complex patterns within the social space.
connected among them. Therefore, an individual with largerhis complex distribution will, in general, alter the shape of
degree will most probably belong to a large cluster, and conthe degree distribution but not the assortative character of the

sequently its neighbors will have also a high degree. network. Indeed, assortative mixing by degree appears as a
common feature in any model of network formation driven
0.8 T I . T . T T I by distance attachment. It is worth mentioning that the small
S range of degrees shown in Figs. 6 and 7 is a direct conse-
i quence of the boundedness of the degree distribution. How-
ever, we expect the same behavior in models with more
0.6~ heavy tailed distributions.
A 04 L ‘looloolooiooloolooloolool 4 25 ! I ! I T I T I T I T
v " 06 - L i
L . ¢
L 04 | ""septsEssssEEEeEnnEn | . 20— "’ o * -
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FIG. 6. (Color online Main plot: Clustering coefficien{c) for 0 PN S Y S S S S E S E—
d;=1 as a function ofa and fixed average degre&)=10. The 0 5 10 15 20 2 30
solid line corresponds to the theoretical value 8d) and symbols k
are simulation results. Inset: Average clustering coefficient as a
function of the degreé for dy,=1 for different values ofx (from FIG. 7. (Color online Average nearest neighbors degree for
bottom to top,a=1.5, 2.5, and 36 In all cases, the size of the dy=1 as a function ok, for different values ofx. In all cases, the
network isN=1CP. size of the network idN=1CP.
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10° T T T T T T T T P.(s) for a=1.1, 2 and 3. Whem~ 1, the size distribution
approaches t®(s) ~ s 2, reflecting the hierarchical structure

of the network. For higher values af the hierarchy is still
preserved for large community sizes whereas for small sizes
there is a clear deviation as a consequence of clusters of
highly connected individuals which form indivisible commu-
nities, breaking thus the hierarchical structure at low levels.
These clusters are identified in the binary tree as the long
branches with many leaves at the end of the tree.

T T 11T
1110t

107

P(s)

@

VI. CONCLUSIONS

111 |||b/| vl sl

10* co vl el To sum up, in this paper we have presented a model of
10' : social network based on the concept of social distance be-

._.
<

10
Ky tween the elementéndividual9 in a social network. The
model exhibits, even in its simplest formulation, a nonzero
FIG. 8. (Color onling Cumulative size distribution obtained us- c|ystering coefficient in the thermodynamic limit, assortative
ing the GN algorithm for different values @f. As a—1 the net- degree mixing, and a hierarchic@elf-similan community
work becomes a perfectly hierarchical network characterized by &ty cture. The origin of these properties can be traced back to
power law community size distributiol(s) ~ s (dashed ling In - the very presence of communities, due to the fluctuations in
all the cases the size of the networkNs-1000. the position of individuals in social space. Our approach of-
Finally, we analyze the community structure of our fers an explanation of a real acquaintance _network, such as
model. The top panel of Fig. 5 shows three typical networksth® PGP web of trust, and opens thus new views for a further
in which the first four communities identified by the GN understanding of the structure of complex social networks.

algorithm have been highlighted in different colors. The bi-
nary trees corresponding to these networks are shown in the
bottom panel. Asr grows, the network eventually becomes a  This work has been supported by DGES of the Spanish
chain of clusters connected by a few edges. In contrast, as Government, Grant No. BFM2000-0626 and EC-FET Open
approaches 1 the network is more and more interconnecte@roject No. 1ST-2001-33555. R.P.-S. acknowledges financial
and develops a hierarchical structure. This hierarchical strusupport from the Ministerio de Ciencia y Tecnolog&pain,
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tion of community sizesP(s), in which the community size de la Informacié, Generalitat de Cataluri@pair). M.B. ac-

s is defined as the number of individuals belonging to eactknowledges financial support from the Ministerio de Ciencia
offspring during the splitting procedufé?2]. Figure 8 shows y Tecnologia through the Ramoén y Cajal program.

ACKNOWLEDGMENTS

[1] S. Wasserman and K. FauSpcial Network Analysis: Methods (1998.
and Applications(Cambridge University Press, Cambridge, [11] R. Pastor-Satorras and A. Vespigndgvolution and Structure
England, 1993 of the Internet: A Statistical Physics Approa¢@ambridge
[2] J. Scott,Social Network Analysis: A Handbog8age Publica- University Press, Cambridge, England, 2004
tions, London, 2000 [12] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Are-
[3] B. Bollobas, Modern Graph Theory(Springer-Verlag, New nas, Phys. Rev. B68, 065103(2003.
York, 1998. [13] A. Arenas, L. Danon, A. Diaz-Guilera, P. Gleiser, and R. Gui-
[4] F. Harari and R. NormanGraph Theory as a Mathematical mera, Eur. Phys. J. B8, 373(2004.
Model in Social SciencéUniversity of Michigan Press, Ann [14] A. Vazquez, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.
Arbor, 1953. E 65, 066130(2002.
[5] R. Albert and A.-L. Barabasi, Rev. Mod. Phy&4, 47 (2002. [15] E. Ravasz and A.-L. Barabasi, Phys. Rev. &, 026112
[6] S. N. Dorogovtsev and J. F. F. Mend&s/olution of Networks: (2003.
From Biological Nets to the Internet and WWWxford Uni- [16] M. E. J. Newman, inHandbook of Graphs and Networks:
versity Press, Oxford, 2003 From the Genome to the Interpetdited by S. Bornholdt and
[7] R. Skyrms and R. Pemantle, Proc. Natl. Acad. Sci. U.DA. H. G. Schuste(Wiley-VCH, Berlin, 2003, pp. 35-68.
9340(2000. [17] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev.
[8] M. E. J. Newman and J. Park, Phys. Rev. @8, 036122 E 64, 026118(2001).
(2003. [18] R. Pastor-Satorras, A. Vazquez, and A. Vespignani, Phys. Rev.
[9] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Lett. 87, 258701(200D).
Proc. Natl. Acad. Sci. U.S.A97, 11149(2000. [19] M. E. J. Newman, Phys. Rev. Let89, 208701(2002.

[10] D. J. Watts and S. H. Strogatz, Natufeondon) 393 440 [20] S. Maslov, K. Sneppen, and A. Zaliznyak, “Pattern detection

056122-7



BOGUNA et al. PHYSICAL REVIEW E 70, 056122(2004)

in complex networks: Correlation profile of the Internet,” [33] G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. Mufioz,
cond-mat/0205379. Phys. Rev. Lett.89, 258702(2002.

[21] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, “E-mail as [34] M. Bogufia and R. Pastor-Satorras, Phys. Re\6& 036112
spectroscopy: Automated discovery of community structures (2003.

5 vl\;ltfgn organiéal\t/ilorl’nzs,“ csnd-mat/OPSOSZE:\?. | Acad. Sci. US.A [35] M. McPherson, L. Smith-Lovin, and J. M. Cook, Annu. Rev.
[22] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. Sociol. 27, 415(2001).

99, 7821(2002. :

[23] D. J. WatEs P.aS. Dodds, and M. E. J. Newman, Sciepag |30 H- Ebel, L-I. Mielsch, and S. Bornholdt, Phys. Rev. &,
1302 (2002, 035103(2002).

[24] Public data about the web of trust of PGP can be found at3/l G- Bianconi and A-L. Barabasi, Europhys. Le®4, 436
www.dtype.org. (2001D. . .

[25] S. Garfinkel,PGP: Pretty Good PrivacyO'Reilly and Asso-  [38] Note that collaboration networks, emerging from cumulated

ciates, Cambridge, 1994 bipartite graphs, can show a scale-free distribution; e.g., see
[26] W. Stallings, BYTE 20, 161(1995. Ref. [37].
[27] X. Guardiolaet al., “Micro- and Macro-structure of Trust Net- [39] This form of the degree distribution is due to the particular
works,” cond-mat/0206240. connection probability Eq(2) considered. More complex
[28] L. C. Freeman, Sociometryi0, 35 (1977). forms can yield different degree distributions, even with scale-
[29] U. Brandes, J. Math. SocioR5, 163 (200). free behavior.
[30] G. Caldarelli, C. C. Cartozo, P. De Los Rios, and V. D. P.[40] Dimensionsd,, > 1 provide analogous results, M. Bogufia, R.
Servedio, Phys. Rev. 69, 035101(2004). Pastor-Satorras, A. Diaz-Guilera, and A. Arerias prepara-
[31] P. De Los Rios, Europhys. Letg6, 898 (2001. tion).
[32] J. Kleinberg, inAdvances in Neural Information Processing [41] f(«— ) can be exactly computed by noticing that the func-
Systems l4edited by T. G. Dietterich, S. Becker, and Z. tions within the integrals approach, in this limit, to step func-
Ghahraman{(MIT Press, Cambridge, MA, 2002 tions.

056122-8



