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Abstract

In this paper, we present a modification of the Dual
Priority scheduling algorithm, for hard real-rime SYStems,
that iakes advantage of its performance to efficiently
improve energy saving. The approach exploit the priority
scheme to lengthen the runtime of tasks reducing the speed
of the processor and the voltage supply, thereby saving
energy by spreading run cyeles up io the maximal time
constraints allowed., We show by simulation that our
approach improves the energy saving obtained with o pre-
emptive Fixed Priority scheduling,

1. Intreduction

The design of portable digital sysiems has a major
drawback in the constraint of Jow power consumption {1]
from the operability and lifelong of the systems point of
view.' A lot of efforts have been made during the last
decade to minimize this problem, but the high performance
of modern micro-processors and micro-controllers jointly
with the increasing functionality of them obtained via
software  still requires improvements in the power-
efficiency context.

in the use of scheduling strategies to save energy there
exist two main approaches to reduce power consumption of
processors, these approaches are speed reduction of the
processor and power-down. The first approach consist in to
turn fow the clock frequency along with the supply of
voltage whenever the system does not require its maximum
performance. The second approach simply turns off the
power when there are not tasks to execute in prevision,
apart from the minimal amount of energy required by the
idle processor state (clock generation and timer circuits).
Both approaches are well suited for energy saving but their
applicability should be accurately designed o abtain
reliable operability, especially in hard real-time systems
[2,3].
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Recently, Shin et al. [4] have proposed a power-
efficient version of the Fixed Priority scheduling for hard
real-time  system that deal with the two approaches
presented before. The main idea in their study is the use of
a pre-emptive Fixed Priority scheduling (Rate Monotonic
scheduling RMS [5] or Peadiine Monotonic scheduling
DMS) to organize the tasks according with the pre-emptive
priority scheduler into a run quene that is used o exploit
both, execution time variation and idle time intervals, to
save energy by reducing speed and voltage or power down,
The process ensures that all tasks meet their deadlines,
However, the strategy of Shin et al. [4] can only reduce the
speed of the processor when there is only one task in the
Tun quewe, or bring the processor to power-down mode
when there is an idle interval, otherwise the processor
works at the maximum speed.

In this paper we present an improvement of the sirategy
followed by Shin et al. [4] by using a modification of the
Dual Priority scheduling, first proposed by Davis and
Wellings [6]. We harness the ability of the Dual Priority to
execute periodic tasks as late as possible to save energy.

The Dual Priority scheme was designed to execute
aperiodic tasks without deadlines as soon as possible while
preserving the deadline constrainis of the periodic tasks.
The algorithm is implemented as a three queue stracture.
The upper run queue, the apetiodic run queue and the
iower run queue. Whenever a periodic task is ready to be
executed enters the lower run quete, eventually this task
can be pre-empted by an aperiodic task, and finally, if the
task can not he delayed more because otherwise its
deadline conld be compromised, the task promotes to the
HPPET Tun queue where its execution is prioritized.

This scenario is interesting even when no aperiodic
tasks are present, as in onr case of study, in this particular
case the algorithm needs only two queues. The energy-
reduction is obtained mainly by means of speed and
voltage reduction and sometimes using power-dawn, Qur
approach consist i: to run the tasks at the lowest speed that




makes possible that the active task and the rest of tasks
meet their timing constraints, without imposing the
constraint of Shin et al. [4] of only one task in the run
queue to save energy, and power-down the processor when
there is an idie interval,

This approach is especially interesting because the
quadratic dependency of the power dissipation, in CMOS
circuits, in the voltage supply [1]. The power dissipation
satisfies approximately the formula

Pz ptCLVdefclk
where p is the probability of switching in power transition,
Cy. is the loading capacitance, Vy, the voltage sapply and
Jen - the clock frequency. That means that it is always
energetically favorable to perform stowly and at low
voltage than quickly at high voltage.

The basic idea of the modified algorithin we present is
to organize the run tasks in two levels of priorities. In the
highesi level there are the periodic tasks that their
execution can ne longer be delayed by tasks from the lower
priority level otherwise they can miss their deadlines, The
second level is occupied by those periodic tasks whose
execution time can still be delayed without compromising
the meeting of their deadlines. In its turn, each of the two
levels is hierarchically organized according to any static
priority assignment. To obfain an exira save in power
another slight modification is introduced, the lower run
queue is sorted by the promotional times instead of by
fixed priorities. This approach is simple enough to be
implemented in most of the kernels, in comparison with
Shin et al. [4], we only use an extra run queue and a
promotion time for each periodic task in the system. Then,
the amount of extra complexity introduced by this new
algerithm is minimal,

The paper is organized as follows, in the next section
we describe the basics of the Dual Priority scheduling.
Section 3 is devoted to the modification of the algorithm to
reduce energy consumption. Finally, in section 4 we
present the experimental results and the comparison with
Power Low Fixed Priority scheduling, and in section 5 we
draw the conclusions.

2. Dual Priority Scheduling

We assume that the framework of the hard reai-time
sysiem we are going to deal with is made up of periodic
tasks', These tasks — numbered 1 <i < n —— are specified
by their periods, worst case execution times and deadlines
(Ti, C; and D; respectively).

The system is organized as concurrent tasks ruled by a
pre-emptive priority-based scheduler whose details are
described below. The computation times for context
switching and for the scheduler are assumed t0 be
negligible, this enable us to perform  the analysis

! The results are not exclusive for periodic tasks. We have considered
only pertodic tasks as a matter of simplicity,

straightforward without danger of loosing generality. The

extent to which these assumptions are realistic i discussed

in the analysis of the algorithm given in [6), and it turns out
to be practical if the switch is subsumed to the worst case
execution times of the different tasks,

The mechanics of the algorithm is the following: Let us
assume that the tasks have some initial priorities assigned
according to a fixed priority criterion in such a way that
two different tasks have never the same priority. This
initial priorities are altered by the scheduler according to
the following scheme, first, two levels of priorities are
organized, the highest level, or upper run gueve (URQ) is
for tasks that can no longer be delayed by less priority
tasks otherwise they will miss their deadlines. The second
level, or lower run queve (LRQ) is occupied by those
periodic tasks whose execution time can st} be delayed
without compromising the meeting of their deadlines.

The scheduling algorithm is driven by the activation
times of the tasks and the promotion instants to the URQ,
whenever one of this time signals appears, in the following
way, ift
I The signal is the activation time (Tay) for some

periodic tasks. In this case for all tasks with activation
times less or equal o the current time I, the relative
promotion tirne instant is pre-computed as Li=D,; — R,
(R; corresponds to the worst case response time [8)),
this value can be computed off line and provides the
maximuir time a task can be delayed so that it can still
meet its deadline. Those tasis with Li=0 are promoted
to the URQ, and the rest remain in the LRQ. After that
we compute the absolute promotion time instant for
the k"™ activation of task in the LRQ as Lp=Ta+1,,
and a timer is activated to this value,

2. The signal is a promotion time instant. In this case, al}
tasks in the LRO with Lik £ tc (current time) are
moved to the URQ. Now, L;, corresponds to Ly, =D, -
Ri, where Dy is the absclute deadline for the k™
activation of task i (t0:+ KT+ Dy, where t0i is the first
instant arrive time.

Finally, the next executing task is selected by picking
the highest priority task from the highest non empty
priority levels (i.e. URQ or LRQ, in this order).

This algorithm was conceived to schedule tasks with
hard deadlines in a hard real-time environment containing
periodic, sporadic and adaptive tasks coexisting. In this
complex scenario there appears spare time due to tasks not
consuming all its worst execution time. The on-line
solution that Dual Priority scheduling presents is operative
in the vast majority of kernels and computationally
efficient [6,7]. Our goal is to take advantage of this
performance from the energy saving point of view, the
scheduling algorithm can be modified to extract the
maximum time extension allowed by the real-time system,
and this lengthen of time execution will be accompanied of
a speed and voltage supply reduction, and finally energy
reduction, as we explain in the next section,
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3. Power-Low Modified Dual Priority
Scheduling

We have modified the Dual Priority Scheduling
algorithm to help power saving in a bard real-time System,
The original Dual Priority guarantees to meet the temporal
constraints, then our modification only needs to care ahout
when and how to reduce energy by slowing speed and
voltage joinily (we are assuming a linear relation between
speed and voltage supply decreasing). Figure 1 shows the
pseude code for the PLMDP (Power Low Modified Dual
Priority Scheduling) that works as follows:

t. Hf both queues URQ and LRQ are empty, then the
power-down mode is activated until the arrival of the
next task ta,.

2. M the queve URQ) is empty but there are tasks in LRQ
then the task i with the highest priority (ordered in
terms of absolute promotion time L for the k"
actrvation) is activated (line L6). Before execution we
need to fix the ratio of processor speed according with
the maximum spreading in time we are allowed, The
speed ratio is calculated following the heuristics
proposed by Shin et al. [4] that is built on the
asstunption that the delay is negligible. The safeness
of the system under these conditions is proved on
theorem 1 of the cited work. We calculate the time
until the next signal for the current active task to
promote Tp; as the difference between ta; plus the
deadline, and R; (worst case response time), see line
L7. After that we determine the time we dispose
before some other task will promote to the URQ. Tf
there is a task that has not vet arrived, but with a
promotion time shorter than the promotion time of the
active fask, then this task will preempt the active task.
Before the arrival time of this task we have a time
interval to execute the active task reducing speed (see
L8-L9). In this case the speed of the processor should
be the minimum possible speed. On the other hand, if
the next promation time will be the promotion time of
the active task, it is discarded for the calculation
because it do not impose a major restriction, then we
should fook for the following promotion time. If the
following promotion time comes from a higher priority
task T; then we can execute the active task until this
time tp; reducing speed. To assign the corresponding
speed in this case we calculate the amount of work that
the fask should execute (7). I} will be the minimum
time of the difference between the promotion time of
T and the promotion time of T; and the remaining of
Ci. If the task T; has less priority then we can execute
the active task during the time interval defined by this
promotion time plus the WCET of the active task,
because in the calculation of the R; we are taking into
account the consumption of all the WCET (see L11-
L.16). Now Y} will be the minimum time of the

ditference between the promotion time of T; plus the
WCET of T, and the promotion time of T, and the
remaining of C;.

3. If the URQ has only one task to execute, then this is
the active task and the processor speed is calculated
{line 1.20) as the quotient between the minimam time
of the next promotion time and the rematning C; and
the total time available to execute this tasks, that now
is the minimum between the next promotion time and
the curreni task deadline (sce L21-1.23)

4. If they are more than one task in the URQ, then we
execute at maximum speed allowed by the processor
(see L25-1.26)

At practice it is obvious that only certain discrete values
of the frequency of the clock, and then speed, are available,
in this case the selection is always a frequency equal or
farger than the calculated one to ensure time constraints,
To see the difference between this algorithm and the
LPFPS we have include a toy example in the annex.

LI if ermpty(URQ) then
| if empty(LRQ) then

I3 Set timer to {next ta; - wake up delay)
L4 Enier power-down mode
L3 else
L6 Active task | = LR(Q.head
L7 i.pj ={a; + Di - Ri
L8 if1a, < tp; and tp, < tp; then
Lo Speed =
ta, —fc
Li0 alse
L1t i tpj< tp,+C; then - jehp(), melp()
Li2 Speed :Ex_m(tpj ~tp;, remaining(C, )
min(tpj Jid) —tc
Li3 oise
Li4 Speed = min(lp,, +C; - tp;, remainingC,))
P min{tp,, +C;,td; ) ~tc
L15 endif
L6 endif
1y7 Execute task_i
LIB  engif
Li9 else

120 Active Task = URQ.head;
L2l if URQ.head next = NIL then

min(tp, , remainigC;))

122 Speed ratio = -
min{tp,,td;) —1c
£23 Execute task_i
L24  alse
L25 Speed = 1.0
L26 Execute task_i
L27  endif
L28 endif

Figure 1, Pseudo code PLMDP
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4. Experimental results

To check the capabilities of the PLMDP approach, we
have simulated several examples and compared the total
energy results (per hyper-peried) obtained in front of the
Low Power Fixed Priority Scheduling (LPFPS) proposed
by Shin et al. {4]. We collected some of the experiments
used by Shin et al: the Avionics task set {9], an Inertial
Navigation System (INS) [10], and a Computerized
Control Machine (CCM) [11].

The two first sets represent critical mission applications
and the last one is an automatic conirol for specific
machinery. The results are pictured in Figures 2 to 4,
respectively. The average factor of improvement of our
atgorithm in front of LPFPS is 1,13 times for the avionics
data set, 1,03 times for the INS task set and 2.07 times for
the CCM data set.

If we pay attention to the specific behavior of the
individual benchmarks we observe that the relationship
between periods and WCET's are responsible of the main
differences between both approaches, i.e., for example in
the avionics and INS task sets, there is a sub-set of tasks
that have a very large period compared with the respective
WCET, this fact implies that for a long time there is a
unique task in the system, and then our algorithm behaves
very similar to LPFPS.

On the other hand, we observe also that both algorithms
behave similar when the WCET is exhausted, in three of
the four case studies, that is so because in general, in this
case, there is not any extra time to consume, and then no
more energy could be saved using only a scheduling
strategy. However, in the CCM task set there appears a
particular configuration of tasks that have very large ratio
between the periods and WCET, but still it is possible ta
take advantage of many short times with significant
reduction of speed even when the tasks are using the whole
WCET, while 1.PFPS, in this same situation, has usually a
few large time intervals where the speed can be reduced
{see Figure 4). In the opposite situation, i.e. when the tasks
consume less than a 10% of the WCET, it is difficult to
perceive the differences. Finally, when the utilization of
the WCET is around its half the differences between both
performances are more relevant.

We have also evaluated the performance of both

schemes in front of a simple task set represented by Table
| (see Annex). In this case the average improvement is
1,71 times the emergy efficiency obtained by LPFPS,
Figure 5.
All the experiments represent the results of the normalized
average energy oblained, varying the consumed worst
execution time from 10% to 100%. We run the simulation
over one hyper-period (that is, the minimum common
multiple of the task’s period).

BLPFPS
| & PLMDP

Figure 2: Avionics fask set
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Figure 4: CCM 1ask sel
’
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Flgure 5: Shin et al.[4] task set

5. Conclusions

We have presented a modification of the Dual Priority
Scheduling to improve the Fixed Priority Scheduling
power aware while maintaining the low complexity of the
algorithmic. This approach has been shown to over-
perform the mentioned LPFPS power saving by an average
factor than range from 1,03 up to 2.07 depending on the
application. The algorithmm does not increase the
complexity of the LPFPS and can be implemented in most
of the kernels.




§. Annex

Here we present an example to better appreciate the
functioning of our algorithm (PLMDP) in comparison
with the LPFPS. The benchmark used is the same
presented by Shin et al. [4], Table 1. In the Graphs (a) and
(b) we represent the execution of both algorithms, when
the tasks consume the 100% of its WCET, and in the
Grapbs (c) and (d) we represent the execution of the
algorithms, when all tasks consume the 50 % of its
WCET. In all these Graphs, the vertical up namows
represent the arrival of the task to the system, the vertical
down arrows represent the promotion time of the task, and
finally the horizontal arrow stands for the time we
lengthen the time execution of the task. Each box represent
five time units {although our minimal calculation unit
corresponds to 1 time unit), and each line corresponds to
task T1, T2 and T3 respectively. In Graphs (c) and (d), the
shaded circles represent idle time in the system.

Table 1: Benchmark task set used by Shin et al.[4]
Task | T D | WCET R ¢y DR | P
T1 50 | 50 10 1061 40 11
T2 80 | 80 20 30 ) 50 12
T3 1003 100 40 80 ] 20 {3

In Graph (a) we have represented the behavior of the
LPFPS. The LPFPS algorithm is driven by the Fixed
Priority Scheduling (see Shin et al. [4] for an extended
explanation}. Let focus our attention in the Graph (b), that
represents the behavior of our algorithm, it is as follows:
At =0, ali three tasks arrive to the system and then they
are placed at the LRQ, the first task to promote according
with our scheme will be T3, then it is activated. Its
promotion time arrives at =20, and we can execute this
task until =40 (promotion time instant of T1) without
any problem. Executing T3 as late as possible implies that
the execution time of T3 should start at its promotion
time (t=20) and it would be preempied at =40, that means
that we have 40 time units to execute 20 time units, we
can then reduce the speed and the power supply. The
algorithm has nothing diffarent from this behavior until
time 200. At time =200 we have again all task in the
LRQ, but now the first promotion time corresponds to T2.
After that T3 promotes, but because it has less priority
than T2, it can not take the CPJ, then the execution of T2
continues until the minimum value of T1 promotion time
and the WCET of T2 plus the promotion time of T3. In
this way the algorithm uses the exceeding time to work at
slow processor speed and low voltage.

In the Graphs (¢} and (d} we represent the execution of
both algorithms, in a different situation, when all tasks
consume the 50% of its WCET.

T‘/%@ /%l

T2

200 250 300 350 400

Graph a: Execution time in LPFPS when all tasks
use 100% WCET.

AN /N

Graph b Execution time in PLMDP when all tasks
use 100% WCET

In Graph {c} we have represented the behavior of the
LPFPS (Shin et al. [4]), and in Graph (d) we represent the
behavior of cur algorithm. Although the main behavior of
the algorithm is identical to the behavior described before,
this new situation provokes more idle time of the
processor that should be used in energy saving. At time 0,
all three tasks arrive to the system, but now, task T3
finishes at time 40 because it only executes the 50 % of its
WCET. Task T1 is now the active task in the URQ, it
executes 5 units time at maximum speed because its
WOCET is 10 and its deadline is 50, but this task finishes
at time 45 because it now executes only 5 units. After
that, there is only task T2 in the LRQ that promotes at
time 50 to the URQ. At time 50 it will arive task T1, it
enters the LRQ and promotes to the URQ at time 90.
Then we can reduce the clock speed expecting to finish at
its deadline at time 80, the minimum between the deadline
of the active task (t=80) and the promotion time of a
higher priority task (t=90). As task T2 executes only a half
of its WCET, it finishes at time 63 and the processor
continues with task T1 that now can reduce speed again,
expecting to finish by its deadline that is in this case the




minimum between the promotion time of task T2 and the
deadline task T1. After that, task T1 executes at low speed
and finishes by time 80. At time 80 it arrives task T2 to
the LRQ and it stands alone until time 106 when task T1
and task T3 arrive. The promotion time of task T3 occurs
at time 120 while the promotion time of task T2 occurs at
time 130, so that in the LRQ task T3 will have the
highest priority because the promotion time is earlier. For
that reason task T2 should execute at the lowest possible
speed only unti! task T3 arrives and pre-empt task T2,
Grraph ¢: Execution time in LPEPS when all tasks

200 250 = 300 350 400

use 50% WCET.
Graph d: Execution time in PLMDP whern all tasks

use 50% WCET.,

M

200

Te summarize the comparison, in Graphs (a) and (b),
when tasks consume all its WCET, nor LPFPS nor
PLMDP have idle interval times. In this particular case
there is not big differences between the performance of
both algorithms. The only difference is that the ENergy
saving occurs at different times but globally the total
amount is the same, On the other hand when tasks
consumes its 50 % of WCET, Graphs {(c) and (d), PLMDP
bas only 20 uniis of idle time, while LPFPS has 167 fiee
units time, this effect translates in our algorithm in an
energy saving of around 300 % with respect to LLPFPS.

In general, real time systems behave in a mixed
sifuation with a few tasks consuming 100% of its WCET

and the rest consuming fractions of its WCET, then our
algorithm shows to improve the energy saving obtained
with a fixed priority scheduling algorithm.
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