
An Efficient Scheme to Allocate Soft-Aperiodic Tasks
in Multiprocessor Hard Real-Time Systems

Josep M. Banús, Alex Arenas, Jesús Labarta §

Departament d’Enginyeria Informàtica i Matemàtiques,
Universitat Rovira i Virgili

§ Departament d'Arquitectura de Computadors,
Universitat Politècnica de Catalunya

{jbanus@etse.urv.es} {aarenas@etse.urv.es}

Abstract

We propose a scheme to allocate individual soft-
aperiodic tasks in a shared memory symmetrical
multiprocessor for hard-real time systems applications.
The aim of this scheme is to minimize the aperiodic mean
response time by running a local uniprocessor scheduler
to serve periodic tasks guaranteeing their deadlines, and
serving aperiodic tasks with a global scheduler that uses
different allocation strategies. We show that performance
achieved depends highly on the allocation decisions made
by the global scheduler when several processors are
available to execute aperiodic tasks. We compare four
classical allocation strategies and the best results are
obtained using a next-fit allocation strategy. The mean
aperiodic response time with this strategy is less than 2
times the computation time required by the aperiodic
tasks, up to total loads of 97%.

1. Introduction

Multiprocessor systems have evolved spectacularly in
the last years. These systems are available from personal
computers to large-scale computational machines. In
particular, the use of these powerful computing resources
in real-time systems has opened several problems
concerning scheduling strategies [1,2]. The problem of
determining when and where a given task must execute
without missing its deadline or compromising other task
deadlines in multiprocessor systems often becomes
intractable. Besides, when the scheduling is possible, the
algorithms that are optimal for uniprocessor systems are
not optimal when the number of processors is increased
[3] (it is well known that optimal scheduling for
multiprocessors systems is NP-Hard [4]). Nevertheless, as
a first approach it is usual to allocate periodic processes to
processors and, after that, to use an optimal uniprocessor
scheme on each processor individually [1].

The common framework to deal with in real-time
systems usually involves periodic, and/or aperiodic, and/or
sporadic tasks. In this situation the schedulability of these

systems has been investigated following two main
approaches: i) to treat every processor as a single
uniprocessor executing all kind of local tasks or ii) to
consider only one kind of tasks to be executed at any
processor i.e. periodic or sporadic. Using the first
approach all well-known techniques for uniprocessors are
used, e.g. [5-9]. This implies a large number of
advantages, in particular avoiding the complexity of
multiprocessor systems scheduling, but the fact of using a
multiprocessor is not exploited: load balancing,
redundancy, fault tolerance, etc. are not considered. The
second approach is suitable to implement only those
systems composed by one kind of tasks. This may be
originated from the initial problem formulation or by a
transformation of different types of tasks into a single
one). Transforming aperiodic tasks or sporadic tasks into
periodic tasks may under-use the capacity of the
processors, because the minimum inter-arrival time is used
as the new task period. Previous works that only deal with
periodic tasks consider the problem of static allocation
(e.g. [10-14]) or dynamic allocation (e.g. [15]). The
performance measure used is the number of processors
needed or the number of task sets found schedulable. On
the other hand, modeling all tasks as aperiodic tasks ([16-
20]) or sporadic tasks ([21,22]) gets rid of important a-
priori knowledge of the tasks, the periodicity of some
tasks, transforming the application in a completely
dynamic system. With these on-line scheduling policies
only instantaneous feasibility is taken into account and
nothing can be ensured for the near future. Consequently,
these approaches are truly useful for real dynamic systems,
not for many critical hard real-time systems.

In the past, joint scheduling real-time periodic, sporadic
and soft-aperiodic (from now on we will use the term
aperiodic task referring to soft-aperiodic tasks) task sets
has been extensively studied for uniprocessor systems, for
example the Deferrable Server [8], the Sporadic Server
[23] and the Slack Stealing Algorithm [6,7] (that offers an
optimal scheduling strategy) solve this problem.
Unfortunately, the applicability of these scheduling
algorithms to the joint multiprocessor system is not
straightforward.

However, it is possible to find a feasible solution: to
execute periodic tasks fixed in every processor using a
well known uniprocessor scheduling algorithm while
allowing aperiodic tasks to migrate to any processor
[24,25]. In this scenario, the periodic task deadlines are
guaranteed and aperiodic tasks achieve good response time
because the migration algorithm is intended to allocate the
task to the most adequate processor. This is so more for
unbalanced loads, but it is also useful for balanced loads:
while a processor must execute periodic tasks in order to
meet their deadlines other processors may be idle or may
have enough laxity to execute the aperiodic tasks. The
differences would arise from the allocation strategy of
these aperiodic tasks.

In this paper we want to exploit the benefits of the
static allocation of periodic tasks (guaranteeing their
deadlines), and the benefits of using the spare capacity or
spare laxity to execute aperiodic tasks in any processor on
a symmetric multiprocessor system. With this goal in
mind, we propose a scheme to allocate aperiodic tasks in
multiprocessor hard-real-time systems. Similar approaches
can be found in the context of distributed systems [25,26],
but allocating groups of aperiodic tasks and using message
passing. These approaches allocate hard aperiodic tasks to
nodes where its deadlines will be meet, but they do not
specify what to do whenever there are several nodes that
can serve the aperiodic tasks. We will focus our study in
shared memory multiprocessor systems, where it is not
necessary to send any message to allocate tasks because a
global scheduler can use the information located in the
shared memory of the current state of the local schedulers.
Furthermore, tasks migration is direct and less expensive,
because tasks codes and data do not move from the shared
memory. Although these multiprocessor characteristics
simplify periodic tasks scheduling at the same time makes
a clear difference with distributed systems, the problem of
finding the best processor to execute aperiodic tasks is not
trivial, because the scheduling decisions on-line can
modify substantially the behavior of future task
executions. Here we study whether aperiodic task
allocations influence their response times.

The paper is structured as follows: in the next section
we present the framework of the system we deal with.
After that, in section 3 we propose the scheme to allocate
the aperiodic tasks to processors and we analyze several
strategies of choosing the processor to execute. In section
4 we show the results of simulation studies to compare
different allocations. Finally, in section 5 we present the
conclusions.

2. Framework and Assumptions

Consider a real-time multiprocessor system with N
symmetrical processors and shared memory. Every

processor p has allocated a set of periodic tasks,
TSp={τp1, ...,τpn}. This allocation is performed in some
way at design time, for example using any of the
techniques described in [11], but this will not be a subject
of discussion in the present paper. These tasks are
independent and can be preempted at any time. Each task
τpi has a worst-case computation requirement Cpi, a period
Tpi, a deadline Dpi, assumed to satisfy Dpi ≤ Tpi . Every
instance k of a task must meet its absolute deadline, i.e. the
k-th instance of the task τpi , say τpi

k, must be completed by
time Dpi

k= (k-1)Tpi + Dpi. We express all time measures
(i.e. periods, deadlines, computations, etc.) as integral
multiples of the processor clock tick.

Every processor p will execute these tasks using a local
Slack Stealing scheduler (LSp) [6,7].

The scheduler needs every periodic task to have a fixed
priority, Ppi, usually determined using Deadline Monotonic
[5]. This scheduler guarantees that every instance of every
task will meet its deadline. Every local scheduler
determines the slack available for aperiodic processing by
computing

)tt1tmin (t)S pipipipini{0pk)(−)(−)+)(((= }≤≤ A

where Spk(t) is the available slack for aperiodic processing
in processor p with priority k at time t, γpi(t) is the number
of instances of τpi completed by time t, Ιpi(t) is the level i
inactivity during [0,t], Αpi(t) is the cumulative aperiodic
processing consumed during [0,t] at level i or higher and
Api(γpi(t)+1) is the largest amount of time available for
aperiodic processing between 0 and the competition of the
next τpi periodic task. The table Api is computed pre-
runtime using the algorithm originally specified in [6] and
redefined in [7].

We assume that there is enough memory to store all
these tables. Also, we assume that the hyperperiod of
every TSp, i.e. the least common multiple of all task
periods in processor p, is short enough to keep Api a
reasonable size.

Each aperiodic task, Jk, has an associated arrival time
αk, a priori unknown, and a processing requirement Cap

k

(note that they do not have deadlines). These tasks are
treated in a FIFO order by a global scheduler (GS) that
allocates them to processors using the state information of
the local schedulers. We use the recommendations from
SSA authors [6], using the highest priority level (k=0) for
aperiodic tasks, i.e. using Sp0(t).

Finally, for the sake of simplicity, we assume all
overheads for context swapping, task scheduling, task pre-
emption and aperiodic tasks migration to be zero.

3. Dynamic Allocation and Scheduling scheme

In this section we propose a global scheme to deal with
the problem of dynamically allocate aperiodic task and

schedule the whole multiprocessor system of periodic and
aperiodic tasks.

We use the Slack Stealing Algorithm (SSA) [7] to
locally schedule the periodic tasks to every processor. This
algorithm has been proven to be optimal in the sense of
minimizing the response time of every aperiodic task
among all scheduling algorithms that use the same priority
assignment. To allocate aperiodic tasks we use a global
aperiodic tasks scheduler and a global ready queue data
structure. This global scheduler has knowledge of the state
of all the local schedulers and distributes aperiodic tasks
among processors accordingly to their available slack. The
SSA can reclaim unused periodic execution time and can
service hard deadline aperiodic tasks but can not cope with
release jitters nor shared resources. These are not
drawbacks in the scope of this study because we want to
show that different aperiodic tasks allocation schemes
have different performances even for the best scheduling
algorithm

In our proposal, when an aperiodic task is requested to
be executed it is queued in the Global Aperiodic Ready
Queue (GARQ). The Global Scheduler (GS) tries to
allocate every aperiodic task Jk among processors, see
Figure 1. As a first approach the GS allocates every
aperiodic task statically among processors, the GS selects
for the allocation the processor p with more slack
available. Then, the GS queues the aperiodic task to the
processor Local Ready Queue (LRQp). If there is no
processor with slack, the aperiodic task remains queued in
GARQ until some slack is available at any processor. This
may happen when a periodic task is completed.

If the GS is allowed to allocate various tasks
simultaneously to the same processor, then it would be
necessary to keep track of the slack already assigned in
each processor in an array, lets say Vp. Hence, the
available slack for processor p would be computed as
follows:

)(−)(−)(−)+)(((= }≤≤ tVtt1tmin (t)S ppipipipini{0pk))A

where Vp(t) is the slack already assigned in processor p by
time t.

Allocating simultaneously various aperiodic tasks to a
processor is inefficient because it can cause the LRQ to be
very long. Suppose that at time t a processor P1 has quite a
lot of slack and a second processor P2 has not, then, during
a period of time all aperiodic task arrivals are queued in
LRQ1 and, after a short time, some slack is available in P2

but no more aperiodic tasks arrive. This slack in P2 can not
be used. Furthermore, processor P1 may run out of slack
for a long period of time, because its periodic tasks are
delayed to the maximum. This would increase the mean
aperiodic response time unnecessarily. Note that this
happens even in the case P2 has some slack, but less than
P1 (S2 (t) << S1(t)). Hence, the GS should be designed to
allocate only one aperiodic task to a processor at a time.

On the other hand, every local scheduler (LSp)
dispatches aperiodic tasks only if there is slack available.
If there is not enough slack to complete the aperiodic task,
a signal must be programmed to queue again the aperiodic
task in the LRQp. Such a task will wait for new slack to
become available in the same processor while probably
another processor may be idle or may have enough slack
to execute it. Furthermore, another processor may be
processing more recent aperiodic tasks. Hence, is seems
reasonable to return aperiodic tasks running out of
assigned slack to the GARQ. To maintain the FIFO order
in the GARQ it is needed to mark the aperiodic tasks with
a time stamp and sort the GARQ with this criterion.

Keeping in mind all these observations, we conclude
that if aperiodic tasks have to be waiting in a queue it is
better to keep them queued in the GARQ to minimize as
much as possible their mean aperiodic response time. Our
Global Scheduler algorithm has the following steps:

1- suspend until
 -1a an aperiodic task new arrival, Jk

 -1b or an aperiodic task executing on a processor
 runs out of assigned slack, Jk

 -1c or new slack is available on a processor that had
none

2- if (1a or 1b) then queue Jk to GARQ
3- pick the first aperiodic task in GARQ, Jk

4- select a processor with available slack, p
5- if it exist such a processor p, queue Jk to LRQp

6- else queue Jk to GARQ

Figure 2: Global Scheduler Algorithm

To implement this algorithm, it is necessary to
determine the selection function (step 4) that returns which
processor, among all with available slack, to select.

Let us suppose Jk is the aperiodic task to allocate with a
processing requirement Cap

k and that there are two
processors, P1 and P2, with slacks S1(t) and S2(t)

LRQ1 LS1 P1

Jk GARQ GS LRQ2 LS2 P2

LRQ3 LS3 P3

Figure 1: Global scheme to allocate aperiodic tasks.
Squares represent processors, circles schedulers
and rectangles queues.

respectively. If S1(t) < Cap
k < S2(t) then necessarily P2 must

be chosen because is the only processor that can execute Jk

completely, on the other hand, if S1(t) < S2(t) < Cap
k, a

priori the best option is still to choose P2 because it can
execute a larger portion of Jk than P1. Otherwise, when
each processor has enough slack to complete Jk it is not a
priori clear which is the best option. The current processor
with more slack is not necessarily the best choice, it could
be sufficient to choose a processor with enough slack
available, and several strategies can be proposed. In the
present work we compare the following allocation
strategies:

First-Fit-Allocation (FFA): To choose the first processor
found with enough slack.
Next-Fit-Allocation (NFA): To choose the next processor
found with enough slack, starting from the next processor
in a predefined order.
Best-Fit-Allocation (BFA): To choose the processor with
less but enough slack found.
Worst-Fit-Allocation (WFA): To choose the processor
with more slack found.

In all these algorithms, when failing to find a processor
with enough slack, the processor with more slack available
is chosen. Note that the first two strategies stop searching
when they find a processor with enough slack while the
last two require to search over all the processors. When the
aperiodic processing requirements are similar or longer
than the usual available slacks, every allocation scheme
behaves similarly because all them have to check every
processor and probably they will choose the same
processor, otherwise, when more slack is available
significant differences can develop.

4. Results and Discussion

In this section we show the simulation results for the
four different allocation functions in the scope of the
global scheme proposed in Figure 1. We study the
efficiency in performance comparing the mean aperiodic
response time using synthetically generated task sets. We
have fixed the number of processors in the multiprocessor
system to 4, after the evaluation of the performance with
up to 8 processors. Four processors have shown to be
enough to evidence performance differences and allow us
to simulate a large number of experiments in a reasonable
time. On the other hand, a larger number of processors is
not common in shared memory real time systems.

Before comparing the differences in efficiency between
the four allocation algorithms we will analyze an example
that demonstrate that considerable performance
differences may occur. In Figure 3 we represent the
available slack evolution for each processor using FFA

and in Figure 4 we represents the same example using a
NFA strategy. In both figures, processor P1 evolution is
represented at the top and processor P4 at the bottom (note
that every processor corresponding graphic has a different
available slack scale depending on the configuration).

Figure 3: slack evolution example using FFA

Figure 4: slack evolution example using NFA

The base width of the peaks, that represents the time
the slack is available, is wider for the NFA for all
processors than for the FFA. This means that the NFA is
distributing in a better way the aperiodic job and hence the
efficiency in front of the FFA is improved. Processor P4

has a lot of available slack and it is periodically renovated,
FFA only uses this capacity from time to time, exhausting
other processors capacities, while NFA takes advantage of
the periodic capacity of P4, enlarging others processors
available slack. Curiously, with NFA, at the beginning P4

has slightly less slack than with FFA but later the slack
time availability is longer. Finally, we observe that with
FFA about the 30% of the time at most one processor has
available slack, while with the NFA this situation only
happens about the 5% of the time. The consequence

should be a shorter mean response time for aperiodic tasks
using the NFA scheme. To corroborate this insight we
have performed a sequence of experiments in a wide
variety of situations. We have generated synthetic task sets
to check the performance of the multiprocessor system.

The periodic task sets have been originally generated
with balanced loads of 70% per processor. This periodic
load is low enough to generate schedulable task sets and
high enough to experiment some difficulties in serving
aperiodic requests. The periodic load has been sequentially
increased in the experiments up to 73% by increasing
proportionally all worst-case execution times of all
periodic tasks. The number of periodic tasks in each
processor has been fixed to 15 and the maximum
utilization factor defined as (Ci/Ti) has been fixed to 20%.
The weight load defined as (Di/Ti) has been fixed to 1. In
all the simulations every periodic task execute its worst-
case computation time, although the SSA is able to use
eventual spare periodic time. All generated task sets have a
breakdown utilization [27] greater than 75% and all the
sets were schedulable. Unless explicitly stated, the
aperiodic load is fixed to 25% thus, the total maximum
load per processor analyzed is 98%. If a Sporadic Server
with a period equal to the smallest period of the periodic
task set is used, the maximum server size would be 30
time units (minimum period * (maximum breakdown
utilization - periodic load) =100*(100%-70%)). Therefore,
we have used computation time requirements for aperiodic
tasks in the range [1:25], achieving high demanding
aperiodic workloads.

We measured the mean response time of the aperiodic
requests as a function of the periodic loads. The arrivals of
the aperiodic requests were assumed to be Poisson
distributed. Every point we represent in the figures is
obtained as the average mean aperiodic response times of
100 different task sets. For every task set we repeated the
simulation until we have reached a 95% confidence that
the measured value was within a 5% interval around the
true value. The only parameter we varied in these
simulations was the initial seed for the aperiodic tasks
arrival distribution generation.

In the experiments, we have used periodic non-
harmonic task sets and harmonic task sets. Harmonic tasks
sets are representative of some real time systems, they
usually give higher processor utilization [5] and they have
been commonly used in the literature benchmarks [28].
We have also compared task sets with different period
ratio (i.e. the ratio between the largest period and the
shortest period) from task sets within 100:1000 period
ratio to 100:3000 period ratio. Finally, a comparison
between task sets with high breakdown utilization [27] and
lower breakdown utilization has been performed.

The first experiment has been designed to locate the
load range where the differences between the allocation

strategies are more relevant. In Figure 5 the aperiodic load
has been fixed to approximately 15%, and the total load
raises up to 98%. As can be seen, the differences between
allocation strategies arise when the system is heavily
loaded, mainly in the last 5 points. We have obtained
similar results with higher aperiodic loads (i.e. 33%). For
this reason, we have designed all the following
experiments to observe these differences when the total
load varies from 95% to 98%.

The results of the second experiment are depicted in
Figure 6. The periods of periodic tasks range from 100 to
1000 and the hyperperiod is 378000. This parameters lead
to non-harmonic periods. In Figure 6 we plot the mean
aperiodic response time versus the periodic load ranging
from 70% to 73% when the aperiodic load is 25 %. The
calculation time of aperiodic tasks has been fixed to 1 time
tick, i.e. we have a lot of small aperiodic tasks. The results
show that the best allocation scheme is in this case the
NFA, closely followed by the WFA while the worst are
BFA and FFA in this order. The difference of performance
between NFA and FFA is approximately 63% in the most
difficult situation when there is a 98% of total load in
every processor. The variance of the reported mean
average response time fluctuates within 20%-25% in the
different points.

The third experiment show the behavior when the
periods have a wider range than in the second experiment,
the new range periods is from 100 to 3000. The results are
represented in Figure 7 and Figure 8. The results are
similar than those in the second experiment but the mean
aperiodic response time increases as the maximum period,
i.e. nearly three times the values of the second experiment.
It is remarkable that the difference between NFA and FFA
represents an improvement of the 80% in the mean
aperiodic response time, even with the closest strategy to
the NFA, the WFA, the difference is approximately of the
40%. Furthermore, if we compare this figure with Figure 6

Aperiodic Load= 14,28%

20

30

40

50

60

70

80

70% 72% 74% 76% 78% 80% 82% 84%

Periodic Load

Figure 5: T=100:1000, Cap=25

M
ea

n
A

pe
ri

od
ic

 R
es

po
ns

e
T

im
e

FFA

NFA

BFA

WFA

we detect that the more robust strategy to the extension on
the period ranges is the NFA.

1

3

5

7

9

11

13

15

17

70% 71% 72% 73%
Periodic Load

Figure 7: T=100:3000, Cap=1

M
ea

n
A

pe
ri

od
ic

 R
es

po
ns

e
T

im
e FFA

BFA

WFA

NFA

Periodic Load= 73%

1

11

21

31

41

51

61

71

1 5 10 25
Cap

Figure 8: T=100:3000

M
ea

n
A

pe
ri

od
ic

 R
es

po
ns

e
T

im
e

FFA

BFA

WFA

NFA

1

2

3

4

5

6

70% 71% 72% 73%

Periodic Load

Figure 6: T=100:1000, Cap=1

M
ea

n
A

pe
ri

od
ic

 R
es

po
ns

e
T

im
e FFA

BFA

WFA

NFA

In Figure 8 we analyze the specific case of maximum
load (73% of periodic load) when the calculation time of
the aperiodic tasks increases from 1 to 25 time ticks, i.e.
the work of the aperiodic tasks is enlarged. In this situation
the differences between the four allocation strategies are
maintained. Although the mean aperiodic response time
increases with the total load, the relative waiting times
decrease to a 10%-20%. In fact, for an aperiodic
requirement greater than or equal to 5 time ticks the
relative waiting times converge in a narrow scale for the
four strategies. This means that the waiting times are
similar for the four strategies as the aperiodic demands
increase.

In the fourth experiment, we want to study the effect of
the multiplicity of periods in the performance of the
system. The hyperperiod is 400000 and the tasks periods,
in the range [128:3125], are more harmonic (multiples of
powers of 2 and 5) than in the third experiment. Although
this difference is important, still we have comparable
period ranges and hyperperiod between experiments third
and fourth. The results obtained are similar to those
achieved in previous experiments, but the mean aperiodic
response times are better than in the third experiment (they
range from 1 to 13 when Cap=1). We have compared the
results obtained in the last two experiments versus the
second experiment, which uses a shorter range of periods.
We have observed that the relative difference between
WFA and NFA is getting larger (WFA is becoming less
efficient) while the relative difference between BFA and
NFA is getting shorter (BFA is becoming more efficient).

Finally, in the fifth experiment we investigate the effect
of the breakdown utilization per processor in the
difference between the four strategies. The parameters of
this experiment are the same than those used in experiment
one, but we have selected only task sets with the same
breakdown utilization per processor. This constraint
reduces the possible number of experiments drastically,
e.g. we have generated 10 task sets for every case in the
experiment. Two cases have been simulated, all processors
having a high breakdown (95%) and all processors having
a lower breakdown (85%).

When the breakdown utilization is 85% per processor,
the mean aperiodic response time is a 30% worst for the
lowest periodic load than in Figure 6 and grows up as the
periodic load increases. When the breakdown utilization is
higher, 95% per processor, the mean aperiodic response
time improves with respect to previous case. This result
matches with the experiences with uniprocessor systems.
In this scenario, the FFA allocation scheme is not capable
of taking advantage of the higher breakdown utilization,
on the contrary the NFA obtain dramatic performance
gains, reacting to aperiodic demands almost immediately
even for a system close to 100% load.

Conclusions

We have presented a general scheme to allocate
aperiodic tasks that uses a global scheduler for the whole
multiprocessor system and local schedulers for every
individual processor interacting via queues in shared
memory. The scheme efficiency is mainly determined by
the allocation strategy adopted. We have studied four
different allocation strategies FFA, NFA, BFA and WFA.

We have shown under a wide range of circumstances
that the Next Fit Allocation scheme is the best option to
minimize the mean aperiodic response time. In general,
this mean response time is lower than twice the aperiodic
processing demand, which can be suitable for a large
number of aperiodic applications. These results contrast
with the common approach in distributed systems where
the allocation strategy mostly used is to choose the
processor with the highest surplus [25].

5. References

[1] Burns A, "Scheduling Hard Real-Time Systems: a Review"
Software Engineering Journal, 6 (3), pp. 116-128, 1991

[2] Stankovic, J.A., Spuri, M., Di Natale, M., Butazzo, G.C.,
"Implications of Classical Scheduling Results for Real-
Time Systems", IEEE Computer, v. 28, n.6, pp.15-25, 1995

[3] Dertouzos, M.L., Mok, A.K., "Multiprocessor On-Line
Scheduling of Hard-Real-Time Tasks", IEEE Transactions
on Software Engineering, v.15, n.12, pp. 1497-1506, 1989

[4] Garey M.R., Johnson D. S.. "Complexity Results for
Multiprocessor Scheduling under Resource Constraints".
SIAM Journal on Computing, 4(4): 397-411, 1975.

[5] Liu, C.L., Layland, J.W., "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment",
Journal of the Association for Computing Machinery, vol.
20(1), pp. 46-61, 1973.

[6] Lehoczky J.P., Ramos-Thuel S., “An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed Priority
Preemptive Systems”. RealTime Systems Symposium 1992

[7] Lehoczky J.P., Ramos-Thuel S., "Chapter 8: Scheduling
Periodic and Aperiodic Tasks using the Slack Stealing
Algorithm", pp. 175-197, Principles of Real-Time Systems,
Prentice Hall, 1994

[8] Strosnider J.K., Lehoczky J.P., Sha L., "The Deferrable
Server Algorithm for Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments", IEEE Transactions on
Computers, v. 44, n. 1, pp 73-91, 1995

[9] Spuri, M., Butazzo, G.C., "Scheduling Aperiodic Tasks in
Dynamic Priority Systems", Real-Time Systems Journal,
vol. 10, pp. 179-210, 1996

[10] Ramamritham, K., "Allocation and scheduling of
precedence-related periodic tasks", IEEE Trans. on Parallel
and Distributed Systems, v. 6, n. 4, pp. 412-420,1995

[11] Burchard A., Liebeherr J., Yingfeng Oh, Sang H. Son,
"New Strategies for Assigning Real-Time Tasks to
Multiprocessor Systems", IEEE Transactions on
Computers, vol. 44, no. 12, December 1995

[12] Khemka A., Shyamasundar R. K., "An Optimal
Multiprocessor Real-Time Scheduling Algorithm", Journal
of Parallel and Distributed Computing 43, 37-45, 1997

[13] Sáez S., Vila J., Crespo A., "Using Exact Feasibility Tests
for Allocating Real-Time Tasks in Multiprocessor Systems.
Euromicro Workshop on Real-Time Systems, 1998

[14] Baruah S., "Scheduling Periodic Tasks on Uniform
Multiprocessors", Information Processing Letters 80, 97-
104, 2001

[15] Davari S., Dhall S.K., "An On Line Algorithm for Real-
Time Tasks Allocation", Real-Time Systems Symposium,
1986, 194-200.

[16] Ramamritham K., Stankovic J. A., Shiah P-F., “Efficient
Scheduling Algorithms for Real-Time Multiprocessor
Systems”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 1, No. 2, pp. 184-194, April 1990.

[17] Wang F., Ramamritham K., Stankovic J. A., “Bounds on
the Performance of Heuristic Algorithms for
Multiprocessor Scheduling of Hard Real-Time Tasks”,
Real-Time Systems Symposium, pp. 136-145, 1992

[18] Koren G., Shasha D., Huang S.C., “MOCA:
Multiprocessor On-Line Competitive Algorithm for Real-
Time System Scheduling”. Real-Time Systems
Symposium, pp. 172-181, 1993

[19] Hamidzadeh B., Atif Y., "Dynamic Scheduling of Real-
Time Aperiodic Tasks on Multiprocessor Architectures",
Proceedings of the 29th Annual Hawai International
Conference on System Sciences, pp. 469-478, 1996

[20] Manimaran G., Siva Ram Murthy C., “An Efficient
Dynamic Scheduling Algorithm for Multiprocessor Real-
Time Systems”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 9, No. 3, pp. 312-319, 1998.

[21] Hongyi Zhou, Schwan K., Akyildiz I.F., “Performance
Effects of Information Sharing in a Distributed
Multiprocessor Real-Time Scheduler”, Real-Time Systems
Symposium, pp. 46-55, 1992

[22] Dominic M., Bijendra N.J., "Conditions for On-Line
Schedulig of Hard Real-Time Tasks on Multiprocessors",
J. of Parallel and Distributed Computing, 55,121-137, 1998

[23] Sprunt B., Sha L, Lehoczky J.P., "Aperiodic Task
Scheduling for Hard Real-Time Systems", Real-Time
Systems Journal, vol. 1, pp. 27-60, 1989

[24] Sáez S., Vila J., Crespo A., "Soft Aperiodic Task
Scheduling on Real-Time Multiprocessor Systems", Sixth
International Conference on Real-Time Computing
Systems and Applications, pp. 424-427, 1999

[25] Ramamritham K., Stankovic J.A., Zhao W., "Distributed
Scheduling of Tasks with Deadlines and Resource
Requirements", IEEE Transactions on Computers, C-38,
(8), pp. 1110-1123, 1989

[26] Fohler G., ”Joint Scheduling of Distributed Complex
Periodic and Hard Aperiodic Tasks in Statically Scheduled
Systems”, Real-Time Systems Symposium, 152-161, 1995

[27] Lehoczky, J.P., Sha, L., Ding, Y., "The Rate-Monotonic
Scheduling Algorithm: Exact Characterisation and Average
Case Behaviour", Proceedings of Real-Time Systems
Symposium, pp. 166-171, 1989

[28] Kamenoff N.I., Weiderman, N.H., "Hartstone Distributed
Benchmark: Requirements and Definitions", Real-Time
Systems Symposium, pp. 199-208, 1991

