
  8 - 1  

Power Low Modified Dual Priority in Hard Real Time Systems with Resource 
Requirements 

 
 

M.Angels Moncusí, Alex Arenas 
{amoncusi,aarenas}@etse.urv.es 

Dpt d'Enginyeria Informàtica i Matemàtiques 
Universitat Rovira i Virgili 

Campus Sescelades, Av dels Països Catalans, 26 
E-43007 Tarragona, Spain  

 

Jesus Labarta 
jesus@ac.upc.es 

Dpt d’Arquitectura de Computadors 
Universitat Politècnica de Catalunya 
Jordi Girona, 1-3. D6 Campus Nord 

08034 Barcelona, Spain

 
Abstract 

We present an extension of the Power Low Modified Dual 
Priority scheduling algorithm that allows hard real time 
system to use shared resources without compromising the 
timing constraints of the applications while keeping a low 
energy consumption. We compare the energy saving of our 
algorithm with a modification of the Low Power Fixed 
Priority algorithm that uses shared resources. The results 
in a Computerized Numerical Control case study shown 
that the presented algorithm improves LPFPSR energy 
saving. The total energy saving is closely related to the 
consumption of the Worst Case Execution Time (WCET), 
the saving ranges from the 16% of the energy when the 
100% of the WCET is consumed, to the 98% of the energy 
when the 10% of the WCET is consumed.  

1. Introduction 

Real time systems are often located in environments 
where low energy consumption is crucial from the 
operability and lifelong of the systems point of view. A lot 
of efforts have been made during the last decade to 
minimize the power consumption at different levels of the 
design of real-time systems ranging from semi-conductor 
level (the logic gate level and the chipset architecture) [1,2] 
to the operating system and compilation level [3,4,5 and 
references therein]. 

The most powerful power aware technique nowadays, 
consists in to reduce the clock speed along with the voltage 
supply (Dynamic voltage scaling DVS) or even power 
down the processor whenever the system does not require 
its maximum performance [5-8]. At the operating system 
level, one of the most promising approaches to save energy 
is the use of  scheduling to perform correct DVS, especially 
when the time constraints of hard real time system must be 
considered. Taking advantage of the idle time of the 
processor due to the scheduling of task to reduce the speed 
has been shown to save significant amounts of energy 
[5,6,8,9]. 

Moreover, the scheduling techniques in power saving 
have been studied in the off-line and on-line scenarios. In 
the first the scheduling algorithm generates “a priori” a 
calendar and calculates clock speeds, after that, during run-
time the scheduler follows the marked steps [3]. In the on-

line scheduling, the decision of which task executes and the 
clock speed is run-time determined [8,9]. 

However, in all these studies the framework usually 
ignores the specificity of many real time systems that use 
shared resources. In these systems tasks are not independent 
since they interact with each other by sharing resources 
such as data or devices, and the scheduling becomes more 
complicated. To ensure consistency of these sharing 
resources, mutual exclusion among competitive tasks must 
be guaranteed (the piece of code executed under mutual 
exclusion constraint is called a critical section). When using 
priority-driven policies to schedule this real-time task sets 
with shared resources, we must cope with the priority 
inversion problem [10] that occurs when a high priority task 
is forced to wait for the execution of lower priority task to 
preserve mutual exclusion in a resource. This high priority 
task is blocked until the low priority task releases the 
mentioned resource. Besides, the determination of the worst 
blocked time is not straightforward because other tasks 
could pre-empt the task that holds the resource. So, the 
priority inversion problem leads to unbounded worst case 
response time that adversely affects the predictability of the 
hard real time system. 

A mechanism to coordinate the access to shared 
resources in fixed priority scheduling reducing the priority 
inversion problem consist in to use protocols that change 
the priority of the tasks according with the access to shared 
resources. For example, the Priority Inheritance protocol 
[10] forces the task that holds the resource to inherit the 
priority of the higher priority task that wants to allocate the 
resource. This protocol bounds the worst blocking time, but 
if a high priority task uses several resources, it can be 
unfortunately blocked for every resource, this phenomenon 
is know as chaining blocking. To solve this problem one 
can use the Priority Ceiling protocol [10], this protocol 
avoids deadlocks and chained blocking i.e. each instance of 
each task only can be blocked once during all its execution 
time. This behavior is obtained by increasing the priority of 
the current task to the highest priority of the tasks that want 
to allocate this resource during its lifetime (this priority is 
defined as the “ceiling” of the resource). 

In the present work we embedded the Priority Ceiling 
protocol [10] in two different scheduling algorithms 
designed to save energy. We will present a comparison of 
the results obtained with the Low Power Fixed Priority 



 

  8 - 2  

Scheduling LPFPS proposed by Shin et al [8] with shared 
resources versus the Power Low Modified Dual Priority 
Scheduling [9] with shared resources.  

The power efficiency of these two algorithms relies in to 
run the tasks at the lowest speed that makes possible that 
the active task and the rest of tasks meet their timing 
constraints, and power-down the processor when there is a 
large enough idle interval. This approach is especially 
interesting because the quadratic dependency of the power 
dissipation, in CMOS circuits, on the voltage supply [1]. 
The power dissipation satisfies approximately the formula  

clkddLt fVCpP 2≅  
where pt is the probability of switching in power transition, 
CL is the loading capacitance, Vdd the voltage supply and fclk 
the clock frequency. That means that it is always 
energetically favorable to perform slowly and at low 
voltage than quickly at high voltage. 

The rest of this paper is organized as follows, in the next 
section we describe the framework and the basic ideas of 
the Priority Ceiling protocol. Section 3 is devoted to the 
modification of the algorithm to use shared resources 
reducing the energy consumption. Finally, in section 4 we 
present the experimental results and the comparison with 
Low Power Fixed Priority scheduling with Priority Ceiling 
protocol, and finally in section 5 we draw the conclusions.  

2. Framework and Priority Ceiling protocol 

The general framework of the hard real-time system we 
are going to deal with is made up of periodic tasks1. These 
tasks — numbered 1 ≤ i ≤ n — are specified by their 
periods, worst case execution times and deadlines (Ti, Ci 
and Di respectively). The use of shared resources implies 
that the tasks have critical sections that could be simulated 
by atomic subtasks. Following this line, these periodic tasks 
are divided conceptually pre-run time into subtasks — 
numbered 1 ≤ j ≤ s — with the same period Ti and deadline 
Di that the periodic task, but different worst case execution 
time Cij assuring that ΣCij = Ci. Some of these subtasks can 
use shared resources during all their execution time. Note 
that the proposed partition in subtasks of the real tasks is 
performed only at the logical level of abstraction to deal 
with the present problem theoretically, this partition has no 
implications at the physical level of the implementation. 
Once the problem will be conceptually solved the 
implementation of the algorithms will work perfectly 
without affecting the structure of  the real tasks.  

The decomposition of every task in subtasks has been 
performed as follows: suppose that we have a task T1 with 
a period T=24 units and a deadline D=20 units, a worst case 
execution time of 7 units and a priority P=5 (the lower the 
number, the higher priority). We assume the execution of 
the worst case execution time and, that task T1, needs to 
access a shared resource R1 during 4 time units after 

                                                           
1 The results are not exclusive for periodic tasks. We have considered only 
periodic tasks as a matter of simplicity. 

executing 2 time units and then releases the resource until 
the next instance. See Figure 1. 

Allocate R1

Release R1

T1    P=5
C=7
T=24, D=20T11    P=5

C=2

T12    P=3
C=4

T13    P=5
C=1

R1
P = 3

 

Figure 1: Example of the division of one task into subtasks. 

Task T1 will be conceptually divided into three subtasks 
with the following characterization: same period and 
deadline as task T1. The first subtask T11 will have a 
WCET of 2 that corresponds to the execution time before 
allocating the resource. T12 will have a WCET equal to 4, 
the execution time inside the resource (critical section) and 
finally the third subtask T13 will have a WCET of 1, that 
corresponds to the rest of execution time outside the 
resource. To ensure the causal precedence, as soon as T11 
finishes it sends a message to provoke the initiation of T12. 
Once T12 allocates the resource R1 increases its priority to 
the priority of this resource (we will see later how it is 
determined), it executes, it releases the resource, and it 
sends a message to provoke the initiation of T13 and finish. 
At this moment T13 starts to execute normally. This process 
has been reproduced for every task in the task set. We 
assume that the messages are instantaneous for the sake of 
simplicity. 

The computation times for context switching and for the 
scheduler are assumed to be negligible, this enables us to 
perform the analysis straightforward without danger of 
loosing generality. The extent to which these assumptions 
are realistic is discussed in the analysis of the algorithm 
given in [7], and it turns out to be practical if the switch is 
subsumed to the worst case execution times of the different 
tasks. 

The whole system is organized as concurrent tasks ruled 
by a pre-emptive static priority-based scheduler. This static 
priority can be violated when two tasks want to access a 
shared resource, a lower priority task may block a higher 
priority task if it succeeds to access to the shared resource 
earlier (priority inversion). This problem can be avoided 
applying the Priority Ceiling protocol [10]. The Priority 
Ceiling protocol modifies the calculation of the worst case 
response time (WCRT) accounting for the possible 
blocking caused by low priority tasks to higher priority 
tasks.  

To apply the Priority Ceiling protocol, we proceed 
calculating first the “ceiling” of each resource as the 
priority of the highest priority task that can access this 
resource. The worst case blocking time that a task i can 
experiment due to the Priority Ceiling protocol is 
determined by the longest critical section of the lower 



 

  8 - 3  

priority task accessing to shared resources with ceilings 
equal or higher than the priority of task i [10]. 

The schedulability of the system can be tested off-line 
using the iterative technique proposed by Joseph and 
Pandya [11] and later extended by Audsley et al. in [12] to 
deal with shared resources. It compares the different WCRT 
obtained summing all the possible blocking contributions of 
the tasks that could preempt task i assuming an initial 
WCRT=0. The iteration n+1 is computed as follows, 

j
)i(hpj j

n
i

ii
1n

i C*
T

WCRT
CBWCRT ∑

∈

+












++=  

where Bi is the longest blocking time due to lower priority 
tasks and hp(i) is the set of task that could preempt task i, 
i.e all tasks with higher priority than task i The iterative 
process starts with WCRTi

0=0 and it stops when WCRTi
n+1 

= WCRTi
n or when WCRTi

n+1 > Di , in this latter case the 
system is not schedulable. 

We can apply this formula straightforward to our 
framework because the scheduler assures that the precedent 
subtask finishes before the next subtask starts. The period, 
deadline and priority of the subtasks of one task are the 
same. 

The calculation of the longest blocking time (Bi) for a 
task Ti , based on [10], is shown in Figure 2. 

Figure 2. Determination of the longest blocking time 

3. Power Low Modified Dual Priority with 
Shared Resources 

Here we extend the Power Low Modified Dual Priority 
Scheduling algorithm (based on the Dual Priority 
scheduling [13]) to deal with shared resources in a hard 
real-time system. The original Power Low Dual Priority 
Scheduling algorithm guarantees to meet the temporal 
constraints and significant energy consumption reduction by 
slowing speed and voltage jointly (assuming a linear 
relation between speed and voltage supply decreasing). To 
extend this behavior to real time systems with shared 
resources, we need first to solve the problem of priority 
inversion, because it can cause our algorithm to find false 
schedulability situations. Our new approach determines 
when and how to apply the Priority Ceiling protocol in 
PLMDPR to avoid the priority inversion problem. 

The main idea is to apply the same algorithmic scheme 
presented in PLMDP, but dealing with subtasks directly 
instead of with the whole tasks, in this way it is possible to 
reassign priorities according to the Priority Ceiling protocol 
when necessary.  

Initially, we have fixed priorities assigned to tasks 
according to a fixed priority criterion. At this moment, all 
subtask of the same task have the priority of the task. 

The scheduler modifies the priority of a subtask when it 
accesses to a shared resource, specifically the scheduler 
applies the Priority Ceiling protocol increasing the priority 
of the subtask to the ceiling of the resource this subtask 
accesses. The PLMDPR defines two levels of priorities that 
are organized as follows, the highest level, or upper run 
queue (URQ) is for tasks that can no longer be delayed by 
less priority tasks otherwise they will miss their deadlines. 
The second level, or lower run queue (LRQ) is occupied by 
those periodic tasks whose execution time can still be 
delayed without compromising the meeting of their 
deadlines. The ceiling of the resource in this scheme 
corresponds to the priority in the URQ of the highest 
priority task that could gain access to this resource. 

The scheduling algorithm is driven by the following 
events: 
1. Activation of some periodic task. In this case this task 

is queued to the LRQ sorted by its promotion time 
instant. At this moment this task can pre-empt a lower 
priority task currently in execution. 

2. Promotion time instant of some task (this time is 
explicitly calculated in [9]). In this case, this task is 
promoted from the LRQ to the URQ, and at this 
moment the task can pre-empt a lower priority task 
currently in execution. 

3. Allocation of a shared resource. The executing subtask 
increases its priority to the ceiling of this resource. 
After allocation of the resource pre-emption by a 
higher priority task can occur. 

4. Release of a shared resource. The subtask decreases its 
priority to the priority of the task. At this moment this 
task can be pre-empted by a higher priority task.  

Finally, when a task finishes its execution, the next 
executing task is selected by picking the highest priority 
task from the highest non-empty priority levels (i.e. URQ or 
LRQ, in this order). 

Once the scheduler decides which task to execute, before 
start the execution it needs to fix the ratio of processor 
speed according with the maximum spreading in time we 
are allowed. The speed ratio is calculated following the 
heuristics proposed by Shin et al. [8] that is built on the 
assumption that the delay for the reduction is negligible. 
The safeness of the system under these conditions is proved 
on theorem 1 of the cited work. The speed of the processor 
is determined as follows: 
1. If there is not any task in the system, then we set the 

timer to the next arriving task minus the wake up delay, 
and power down the processor. 

2. If there is more than one task in the URQ then it has to 
be executed at maximum speed. 

3. If there is only one task in the URQ then it can be 
executed at low speed where the speed ratio is: 

 
 

Bi=0 
for all tasks Tj with lower priority than Ti 
 for all subtask Tjk ∈ Tj 
  if Tjk accesses to any resource Rp and 
   the ceiling of Rp ≤ priority of Ti 
  then 
    Bi=max(Bi,wcet of Tjk) 
   end if 
 end for 
end for 



 

  8 - 4  

tc)td,tp(min

))C(remainig,tctpmin(
ratioSpeed

ik

ik

−
−=  

where tpk is the promotion time instant of any task in 
the system excluding the current executing task, Ci is 
the worst execution time of the current executing task, 
tdi is the deadline of the current executing task, and 
finally tc is the current time. 

4. If there are not any task in the URQ but there are some 
tasks in the LRQ then we can execute at low speed 
where the speed ratio is calculate as follows: 

 
At practice only certain discrete values of the frequency 

of the clock, and then speed, are attainable depending on 
the accuracy of the tuning, in this case the frequency 
selected should be a frequency equal or larger than the 
frequency obtained by the calculations to ensure time 
constraints. A comprehensive example of the functioning of 
the algorithm in a toy model is presented in the appendix, in 
this example we can observe the effects of coarse or fine 
graining of the speed of the processor.  

4. Results and discussion 

In this section we present the comparison results of the 
Low Power Fixed Priority scheduling with shared resources 
using Priority Ceiling (LPFPSR) versus the Power Low 
Modified Dual Priority scheduling with shared resources 
(PLMDPR). 

LPFPSR is based on a fixed pre-emptive priority 
scheduling with power awareness. This algorithm consists 
on executing tasks as slow as possible while satisfying time 
constraints. LPFPSR reduces clock speed along with 
voltage supply when there is a unique task ready to execute, 
otherwise the scheduling does not guarantee the time 
constraints of the rest of tasks of system. It also powers 
down the processor when there are not ready tasks. The 
differences between LPFPS and the PLMDP are studied in 
[9]. 

To check the capabilities of both algorithms, we have 
simulated several situations of a Computerized Numerical 
Control (CNC) task set [14], this example represent a 
typical benchmark of multi-tasking system sharing data in 
many interacting and overlapping data paths. We compare 
the total energy consumption results (per hyper-period) 
obtained. In Figure 3 we present the task graph of this 
system just to show the complexity of the real-time 
application. In this figure the oval objects represent tasks 

and the rectangular objects correspond to data items (shared 
resources). The characteristics (Worst Case Execution 
Time, Period, Deadline and the priority) of the task set is 
shown in the Table 1. 

We investigate different configurations related to the 
way in which the different tasks allocate and release 
resources. We have placed the non-critical section of the 
task execution, which in our approach is represented as a 
subtask (ncs), in three different positions along the 
execution process. We assume that the tasks allocate the 
resource (or critical section, cs) at the beginning of the 
execution (cs-ncs), before termination (ncs-cs), or in the 
middle of the execution process (cs-ncs-cs). With these 
three different situations we obtain trends for the most 
general situation were the critical section could appear 
anywhere, and several times, during the execution process. 
 

Task WCET Period Deadline Priority 
T1 35 µs 2400 µs 2400 µs 1 
T2 40 µs 2400 µs 2400 µs 2 
T3 180 µs 4800 µs 4800 µs 3 
T4 720 µs 4800 µs 4800 µs 4 
T5 165µs 2400 µs 2400 µs 5 
T6 165 µs 2400 µs 2400 µs 6 
T7 570 µs 9600 µs 4000 µs 7 
T8 570 µs 7800 µs 4000 µs 8 

Table 1: Parameters of CNC task set. 

Figure 3: Task graph of the CNC control system. 

The time a task is executing the critical section, i.e. it is 
inside the shared resource is represented as a percentage of 
the total execution time of the task. We vary this time from 
0% to 100% of the worst case execution time of the task to 
have a wide evaluation of performance. 

The results of all the experiments are represented in 
terms of the normalized average energy consumption. The 
light gray column represents the results of the LPFPSR and 

if tak < tpi and tpk < tpi then 

 speed minimum --
tcta

1
Speed

k −
=  

else  if tph< tpl+Ci then -- h∈hp(i), l∈lp(i) 
  

tc)td,tp(min

))C(remaining,tptpmin(
Speed

ih

iih

−
−=  

 else 

 

tc)td,Ctp(min

))C(remaining,tpCtpmin(
Speed

iil

iiil

−+
−+=  

 endif 
endif 

T1 

 
 
 
 

T2 

T3 

T4 

T5 T6 

T8 T7 

R1 R2 

R5 R6 
 

R1,R2 
R7,R8 

R9 R11 R10 

R1,R2, 
R3,R4 

R3 R4 

PLANT 



 

  8 - 5  

the dark gray column represents the results of the 
PLMDPR. The simulation covers one hyper-period (that is, 
the minimum common multiple of the tasks periods). 

In Figures 4 to 6, we show the behavior of both 
algorithms when the time the tasks execute inside the shared 
resources varies from 0% to 100%. In figure 4, the tasks 
exhaust the 100% of the WCET, 60% in figure 5 and 20 % 
in figure 6. The average factor of improvement of our 
algorithm in front of LPFPSR is 15 % if all tasks use the 
100% WCET, 48% if all tasks use the 60% of the WCET 
and 75% if all tasks use the 20% of the WCET. 

0

0,2

0,4

0,6

0,8

1

% of shared resources

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

LPFPS
PLMDP

 
Figure 4: Normalized energy consumption varying the time 
inside the resource when the 100% of WCET is exhausted 

0

0,2

0,4

0,6

0,8

1

% of shared resources

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

LPFPS
PLMDP

 
Figure 5: Normalized energy consumption varying the time 
inside the resource when the 60% of WCET is exhausted. 

0

0,2

0,4

0,6

0,8

1

% of shared resources

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

LPFPS
PLMDP

 
Figure 6: Normalized energy consumption varying the time 
inside the resource when the 20% of WCET is exhausted.  

In all these figures, we observe a significant decreasing of 
the energy consumption in both algorithms when the 100% 
of the execution time of all tasks is exhausted inside the 
shared resources. Here we present the analysis of this 
particular situation. See Figures 7 and 8. 

Let us assume that we have three tasks: T1, T2 and T3. 
The priority of the tasks are T1=3, T2=2 and T3=1 (the 
smaller the numbers the higher the priorities). T1 and T2 
both access to the same resource R1, so the ceiling of R1 
will be the priority of T2. The promotion time of T1 is 

smaller than the promotion time of T2 and this is smaller 
than the promotion time of T3, then, in the LRQ, the order 
was T1, T2 and T3. 

Figure 7: Tasks do not consume all its WCET inside shared 
resources. 

Figure 8: Tasks consume all its WCET inside shared 
resources. 

In Figure 7, initially, the task T1 is executing in the 
LRQ, at promotion time TPT1, task T1 promotes to the 
URQ and continues it execution. At promotion time TPT2, 
task T2 promotes to the URQ. As T1 has allocated the 
resource its priority is the ceiling priority of the resource 
(that is the same as T2). T2 could not pre-empt, and it must 
wait until T1 releases the resource and returns to its priority 
base. Now T2 can pre-empt the CPU and it executes. As 
there are two tasks in the URQ the processor speed could 
not be reduced. After T2 finishes there is only one task in 
the URQ and the speed can be reduced, but the remaining 
execution time is small. In Figure 8, as soon as T1 release 
the resource, it finishes, so T2 can execute at low speed 
during all its execution. This latter situation is energetically 
favorable, i.e. the ratio time/speed is larger. 

Finally, in Figure 9, we represent the total energy saving 
in the three possible configurations when the task consumes 
different ranges of its WCET from 10% to 100%. Each 
point in the graph represents the ratio of the accumulated 
energy saving varying the percentage of the WCET 
exhausted in the shared resources from 0% to 100%. We 
observe that in the cs-ncs-cs case, where the Bi caused by 
the resource is the half value of the Bi of the cs-ncs and the 
ncs-cs, and it occurs twice, the PLMDPR algorithm 
improves LPFPSR between a 23% and a 62%. On the case 
cs-ncs the improvement of the PLMDPR varies between 
16% and 98%, and finally in the case ncs-cs the 
improvement varies from 21% to 90%. The reason of the 
difference behavior between cs-ncs-cs and cs-ncs or ncs-cs, 
is that in the former the pre-emption can occur when a task 
has still not finished and another task, that pre-empts the 
executing task, comes to the URQ forcing the scheduler to 
increase the speed of the processor to the maximum value. 

A R 

T2 

URQ T2 1 T1 2 

TP T2 

T2 ,T3 

T1 3 

T1 

T1 1 LRQ 

A  R 
T2 2 T2 3 

TP T3 TP T1 

T3 

TIME 

T1 1 

F F 

A 

T2 

URQ T1 3 T1 2 

TP T2 

T2 ,T3 

T2 3 
T1 

T1 1 LRQ 

R,F,A 

T2 1 T2 2 

TP T3 TP T1 

T3 

TIME 

T1 1 

R,F 



 

  8 - 6  

However, when there is a unique critical section, the 
algorithms perform equivalently in both configurations (cs-
ncs) and (ncs-cs).  

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of WCET exhausted

P
L

M
D

P
R

 / 
L

P
F

P
S

R

cs-ncs-cs

cs-ncs 

ncs-cs

Figure 9: Energy consumption ratio PLMDPR/LPFPSR in 
function of the time inside the resource for three different 

configurations of the access to the shared resources. 

5. Conclusions 

We have presented an extension of the Power Low 
Modified Dual Priority scheduling algorithm that allows 
hard real time system to use shared resources without 
compromising the timing constraints of the applications 
while keeping a low energy consumption. This approach 
has been shown to over-perform the LPFPSR power saving 
by an average factor, in the case of a Computerized 
Numerical Control task set, that range from 16% up to 98% 
depending on the use of sharing resources and the 
consumption of the worst case execution time that does the 
application. The algorithm does not increase the complexity 
of the LPFPSR and can be implemented in most of the 
kernels. 

6. References 

[1] A.P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-
power CMOS digital design”, IEEE Journal of Solid-State 
circuits, vol. 27, pp. 473-484, April 1992. 
[2] J. Rabaey and M Pedram (Editors). "Low Power Design 
Methodologies". Kluwer Academic Publishers, Norwell, May, 
1996. 
[3] S.T. Cheng, S.M. Chen and J.W. Hwang, "Low-Power Design 
for Real-Time Systems", Real-Time Systems,15, pp 131-148, 
1998. 
[4] D. Mosse, H. Aydin, B. Childers and R. Melhem, “Compiler-
assisted power-aware scheduling for real-time applications” 
Workshop on Compilers and Operating systems for Low Power 
COLP 2000, Chateau Lake Louise, Banff, Canada, October 2000. 
[5] P. Pillai and K.G. Shin, “Real-time dynamic voltage scaling 
for low-power embedded operating systems” 18th ACM 
Symposium on Operating Systems Principles, Philadelphia, 
Pennsylvania, October 2001. 
[6] Transmeta Corporation, Crusoe Processor Specification, 
http://www.transmeta.com 

[7] H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, 
“Determining optimal processor speeds for periodic real-time 
tasks with different power characteristics” 13th Euromicro 
Conference on Real-Time Systems, Delft, Netherlands, June 2001. 
[8] Y. Shin and K. Choi, “Power conscious Fixed Priority 
scheduling in hard real-time systems” DAC 99, New Orleans, 
Louisiana, ACM 1-58113-7/99/06, 1999. 
[9] M.A. Moncusí, A. Arenas and J. Labarta, "Improving Energy 
Saving in Hard Real Time Systems via a Modified Dual Priority 
Scheduling", ACM SigArch Computer Architecture Newsletter, 
Vol 29, No.5, pp 19-24, December 01. 
[10] L. Sha, R. Rajkumar and J.P. Lehoczky. "Priority Inheritance 
Protocols: An approach to Real-Time Synchronization", IEEE 
Transactions on Computers, Vol 39, No 9, pp 1175-1185, 
September 90 
[11] M.Joseph and P.Pandya. "Finding response times in a real-
time system”, The Computer Journal, vol 29, no 5 pp 390-395, 
October 86. 
[12] N.Audsley, A. Burns, M.Richardson, K. Tindell and A.J. 
Wellings. "Applying new scheduling theory to static priority pre-
emptive scheduling", Software Engineering Journal, pp 284-292, 
September 93. 
[13] R. Davis and A.J. Wellings, "Dual Priority scheduling", 
Proceeding IEEE Real Time Systems Symposium, pp. 100-109, 
December 1995. 
[14] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi and H. Shin, 
"Visual assessment of a real-time system design: a case study on a 
CNC controller", Proceedings IEEE Real-Time Systems 
symposium, December 1996. 

Appendix 

We present a toy model example to enlighten the 
functioning of the algorithms in the two main aspects i.e. 
the speed reduction and allocation and release of shared 
resources. The proposed task model is presented in Table 2. 
 
Name Period Deadline WCET Share resource 

T1 50 50 10 X 
T2 80 80 20  
T3 100 100 40 X 

Table 2 Parameters of a toy model example. 

T1 T1 T1 T1 T2 T2 T2 T3 T3 

T1 T2 T3 T1 T1 T1 T2 T3 

1 
0.75 
0.50 
0.25 
0 

200                       250                       300                       350                     400 

0                          50                       100                       150                      200 

1 
0.75 
0.50 
0.25 
0 

T1 T2 T3 

T1 T2 T3 

sp
ee

d 
sp

ee
d 

time 
 

time 

X 

X 

The task is inside the resource 

X X X X X X X X X X X 

X X X X X X X X X X X X 

Figure 10: LPFPSR when tasks consume the 100% of the 
WCET 



 

  8 - 7  

Consider Figure 10 that represents the behavior of the 
LPFPSR when the tasks consume the 100% of the WCET. 
The speed reduction can not be performed until t=160, 
when there is only task T2 at the system. We reduce the 
speed until the arrival of T1 and T3 to the system again at 
t=200. Essentially the same occurs at t=260 and t=360. The 
resource allocation works as follows: at t=50 T1 tries to 
allocate the resource but T3 is inside and must wait until it 
releases the resource. At t=240 T2 arrives with a higher 
priority than T3, but using the priority ceiling protocol (the 
ceiling is the priority of T1) T3 inherits the priority of the 
ceiling so T2 can not preempt T3. 

The energy consumption depends on the graining of the 
speed reduction as follows: considering 10 speed fractions 
the energy consumption is 287.5 units, considering 100 
speed fractions the energy consumption is the same 287.5 
units. 

1 
0.75 
0.50 
0.25 
0 

T1 T1 T1 T1 T2 T2 T2 T3 T3 

T1 T2 T3 T1 T1 T1 T2 T3 

1 
0.75 
0.50 
0.25 
0 

200                       250                       300                       350                     400 

0                          50                       100                       150                      200 

T1 T2 T3 

T1 T2 T3 

sp
ee

d 
sp

ee
d 

time 
 

time 

X 

X 

The task is inside the resource 

X X X X X X X X X X X 

X X X X X X X X X X X X 

Figure 11: PLMDPR when tasks consume the 100% of the 
WCET 

In Figure 11 we represent the behavior of the PLMDPR 
when the tasks consume the 100% of the WCET. Let us see 
the speed reductions. This time, T1 and T2 promote to the 
URQ as they arrive to the system. T3  promotes 20 tim e 
units after their arrival. At t=100, we can reduce speed  
because the only task at the URQ is T1 and T3  is at the 
LRQ. After promotion of T3 at t=120 something interesting 
happens. In principle, the speed could be reduced but, due 
to that fact that at t=150 T1 will promote again, the idle time 
is shorter than the time T3 needs to finish its execution and 
then the speed is not reduced. The same scenario occurs at 
t=200 and t=300. 

On the other hand, the resource allocation works 
identically to the LPFPSR case. 

The energy consumption depends on the graining of the 
speed reduction as follows: considering 10 speed fractions 
the energy consumption is 278.72 units, considering 100 
speed fractions the energy consumption is 277.03 units. 

Figure 12 represents the behavior of the LPFPSR when 
the tasks consume the 50% of the WCET. At t=15, T3 is the 
only task in the system, however we can not reduce the 
speed because it needs 40 time units, in the worst case, to 
execute and T1 will arrive at t=50. At practice it executes 

only during 20 time units and the rest 15 units the system is 
free. The rest of reductions are straightforward. 

T1 T1 T1 T1 T2 T2 T2 T3 T3 

T1 T2 T3 T1 T1 T1 T2 T3 

1 
0.75 
0.50 
0.25 
0 

200                       250                       300                       350                     400 

0                          50                       100                       150                      200 

1 
0.75 
0.50 
0.25 
0 

T1 T2 T3 

T1 T2 T3 

sp
ee

d 
sp

ee
d 

time 
 

time 

X 

X 

The task is inside the resource 

X X X X X 

X X X X X X 

X X 

X X 

Figure 12: LPFPSR when tasks consume the 50% of the 
WCET 

The priority ceiling in this example implies that T2 must 
wait due to the priority ceiling protocol at t=320.  

The energy consumption depends on the graining of the 
speed reduction as follows: considering 10 speed fractions 
the energy consumption is 136.35 units, considering 100 
speed fractions the energy consumption is 135.74 units. 

1 
0.75 
0.50 
0.25 
0 

T1 T1 T1 T1 T2 T2 T2 T3 T3 

T1 T2 T3 T1 T1 T1 T2 T3 

1 
0.75 
0.50 
0.25 
0 

200                       250                       300                       350                     400 

0                          50                       100                       150                      200 

T1 T2 T3 

T1 T2 T3 

sp
ee

d 
sp

ee
d 

time 
 

time 

X 

X 

The task is inside the resource 

X X X X X X X 

X X X X X X X X X 

Figure 13: PLMDPR when tasks consume the 50% of the 
WCET 

In Figure 13 we represent the behavior of the PLMDPR 
when the tasks consume the 50% of the WCET. In this case 
the speed reduction take advantage of the idle time  

The speed reduction occurs before the promotion of T3 at 
t=20. At t=50 T1 is the only task at the system and the speed 
can be reduced again. 

At t=100 T1 can reduce the speed until T3 promotes at 
t=120, that can reduce the speed again until t=150. 

The energy consumption depends on the graining of the 
speed reduction as follows: considering 10 speed fractions 
the energy consumption is 104.21 units, considering 100 
speed fractions the energy consumption is 99.57 units.

 


