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By means of a simple computational model, we explore a dynamic perspective of social
cohesion in populations under stress. Dynamics are driven by the co-evolution of struc-
tural and cognitive dimensions. Submitted to sudden variations on its environmental
conflict level, the model is able to reproduce certain characteristics previously observed
in real populations in situations of emergency or crisis. A closer analysis of the results,
observing both structural and cognitive together, uncovers a causal path from the level
of conflict suffered by a population to variations on its social cohesiveness.
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1. Introduction

Populations under stress can present surprising and powerful behaviors. From the
uprising of spontaneous social protest against authoritarian regimes leading to their
fall, to the emergence of unexpected solidarity among victims of terrorist attacks
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(see September 11th 2001 or March 11 2004 Madrid, for instance), we could mention
a long list of situations where conflicting scenarios made social cohesion in human
groups to emerge.

Some scholars studying different empirical cases have stressed the importance of
pre-existing informal social networks in such an emergence. The role of personal net-
works as mobilization contexts in East-German and October’s Serbian revolutions
is the main interest of Opp and Gern in [26], and Araya in [2], respectively. Opp and
Gern present a complete analysis on the incentives of individuals to join Leipzig’s
Monday demonstrations in 1989. They uncover the little influence of opposition
organizations in comparison with that of personal networks of friends. Araya intro-
duces the concept of cooperative cascade to describe the link between ego-centric
networks’ characteristics and macroscopic mobilization phenomena. Kinship struc-
tures have also been considered. In Ref. 25, Murphy studies their relationship with
warfare organization patterns of a Brazilian Indian group, the Mundurucu. The
Munduruci were settled in several apart villages, spread along the upper Tapajds
River. However, the setup of war parties evidenced a strong relationship among
these communities, otherwise unobservable. Murphy concludes that intercommu-
nity cooperation in warfare was facilitated by cross-cutting ties of residential affinity
and affiliation by descent.

Other authors have observed that there exists also an influence in the opposite
direction, that is, of mobilization over informal social networks. In Ref. 13, Gould
analyzes the insurgent activity during the Paris Commune in 1871, which sprung
after a mixture of political, economic and war crises. In this paper, as in later
works [14, 15], he settles that organizational networks and pre-existing informal
networks interacted in the mobilization process. As Gould points out, mobilization
does not just depend on existing social ties; it also creates them. Although members
of a protest organization may have joined because of a pre-existing social tie to an
activist, they eventually also formed new social relations while participating in
collective protest. In other words, opinion affinity manifested by joint mobilization
led to the formation of new ties among individuals.

Summarizing, in order to analyze the emergence of cohesiveness in conflictive
scenarios, we need to observe the dynamic interplay between structural and cog-
nitive components of social cohesion during the period of activity. Notice that
this conclusion illustrates perfectly what Giddens defined as “duality of structure”.
According to him, the social structure is simultaneously the product and the con-
straining environment of social action and, therefore, these two entities cannot be
studied separately [11].

This paper aims at addressing this interplay in a quantitative way by modeling
the co-evolution between individual behaviors (opinions) and social networks [20].
Different quantitative approaches have been developed to study the evolution of the
social structure under the influence of local dynamics (e.g. strategic network for-
mation, network evolution models and exponential random graph models) [18, 31].
However, it is only very recently that we have started to see simulation-based studies
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addressing the co-evolution of structure and dynamics [16, 27]. Specifically, our
model’s dynamics, based on the proposal by Holme and Newman in Ref. 17, make
the system to evolve in a twofold way: individuals become likeminded because they
are connected via the network (change is induced by the structure) and they form
network connections because they are like-minded (structure undergoes change).

The model reveals to be a good framework to reproduce and study the evolution
of social cohesion in a population submitted to sudden changes on its environmental
conflict level. Moreover, a detailed analysis of its dynamics uncovers the counterin-
tuitive effect of noise and the importance of the social structure at the microscopic
and mesoscopic structural level.

Social movement behaves in a regular pattern; from the institutional (macro)
level to the individual (micro) sphere through the intermediate (meso) level of net-
works and vice versa [7]. This interaction at the meso level is complex and it is
constituted both by processes of selection on the part of individual and influence
by groups [30]. In other words, a mobilization begins with a mobilization potential
which depends both on macrostructural factors such as demographic, economic or
ideological variables and individuals predispositions and social networks structures
in which they are embedded, who, in turn, change their connectivity thus affecting
social groups’ structure and the macrostructural framework. In particular, our anal-
ysis reveals that a moderate rate of noise (here seen as an individualistic trait) can
enhance the social cohesion of a population by enabling cross interactions among
the groups forming it.

The remainder of the paper is organized in three sections. The second section
is devoted to the detailed description of the model, making an special insight on
the influence of the social noise. Simulation results are presented and discussed in
Sec. 3, focusing specially on the role of the different topological levels. Finally, the
last section summarizes the work and proposes further extensions.

2. Cohesion Analysis through a Coevolutive Model
2.1. The model

We consider a population of N agents, connected through a variable number of
undirected (bidirectional) links. Each agent i presents a h; value, corresponding to
his location in a continuous lineal social space of size L (proportional to N). Here,
h; could be seen as an opinion or positioning of individual 7 in relation to a certain
topic (related to religion or politics, for instance). Notice that this approach has
been commonly adopted in the well established literature about continuous opinion
modeling [1, 8, 29].

Initially the h values of all agents are assigned randomly, following a uniform dis-
tribution along the lineal social space. Besides, the initial arrangement of the edges
correspond to a topology with the same structural properties than real social net-
works (like large clustering coefficient and positive degree correlations, for instance).
To construct such a scenario, we use a class of models proposed in Ref. 4, which are

1250067-3



S. Lozano, J. Borge-Holthoefer and A. Arenas

able to grow up networks with social-like macroscopical (global) properties from a
microscopical (individual) definition of the linkage probability between two agents.
The key element of that definition, is the social distance between the two indi-
viduals in a social space of a certain dimension dy > 1. By social distance, here
we mean “the degree of closeness or acceptance that an individual or group feels
towards another individual or group” [4]. Since our social space is lineal, here we
use a simplified expression of the linkage probability with dy = 1:
1
T T A o

where |h; — hj| corresponds to the social distance, b a parameter controlling the
length scale of the lineal social space, and « quantifies the homophily, which is every-
one’s preference to establish and maintain relations with people that have any com-
mon characteristic with (cultural background or political feelings, for instance) [23].
Therefore, given a certain social distance between two agents, different combina-
tions of b and « values lead to different link probabilities, in such a way that the
higher the b and the lower the homophily, the larger the probability of connection.

Our model evolves from the initial scenario in a twofold way, by redefining both
the topology of the network and the positioning of the population of agents in
the social space. Based on a co-evolution model proposed by Holme and Newman
in Ref. 17, the two main mechanisms driving this co-evolution process are the
rewiring of links and the imitation of h values among agents. Additionally, we have
incorporated a third mechanism that reproduces slight shifts on each one’s opinion
or social position, induced by individual circumstances and daily life experiences,

’/‘(hi,hj) =

which usually modify individuals’ knowledge in a subtle but continuous way. This
third mechanism is necessarily external, since these particular characteristics are
different for each individual, and do not depend on any other parameter of the
model. Notice that, at the mid-long time range, these slight but continuous shifts
can change significantly the social distance among two individuals, separating two
agents that were once very close in the lineal social space or, on the contrary,
approximating them enough to favor the creation of a new link. Consequently, the
accumulation of these microscopical changes can modify the whole macroscopical
scenario, by disrupting both the distribution of agents’ positions along the social
space and their connectivity. Taking into account this disrupting effect, and in
alignment with previous literature introducing noise in a similar way [22], we have
denoted this third mechanism of the dynamics as individualization noise.

These three mechanisms (rewiring, imitation and individualization noise) are
integrated within the co-evolutive dynamics of the model, consisting on the repeti-
tion of the following two steps:

(i) Select an agent x at random and decide, with equal probability, whether to
apply rewiring or imitation.
e The rewiring consists on a redefinition of all links of node x using the expres-
sion in (1).
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e Imitation is implemented by selecting randomly a neighbor y of node x, and
setting h, equal to h,.
(ii) Introduce the individualization noise by summing up a random quantity to the
h value of each agent in the population. This random quantity is obtained from
a Gaussian distribution (with mean = 0.0 and variance = 1.0) multiplied by a
noise magnitude or strength factor n.

Figure 1 illustrates these dynamics. At each time step, the system evolves fol-
lowing one of the two possible branches of the diagram (imitation plus individual-
ization noise, or rewiring plus individualization noise) with the same probability.
Notice that this probability (or, in other words, the relative proportion at which
imitation and rewiring occur) has been found to play an important role in this
kind of co-evolutionary models. Vazquez and co-authors, for instance, showed that
there is a phase transition towards fragmentation varying this probability [32]. In
order to discard potential effects of such a transition in our particular case, we
have performed additional simulations (not shown). These simulations show that
the rewiring probability used in this paper (p = 0.5) is such that it is well below
the critical value for fragmentation.

After a certain number of time steps, the system reaches a steady-state. In our
context, this means that both the topology and the distribution of individuals’ social
positions along the space remain stable. The concrete topology and distribution of
social positions reached at each possible steady-state depend, as we will show in
the next section, on the strength of the individualization noise.

2.2. Effect of individualization noise

An important issue to deep in at this point, is the influence of the individualization
noise over the evolution of the model. Different kinds of noise have been reported
to influence enormously different opinion and cultural dynamics models.

Fig. 1. An illustration of our co-evolutive dynamics, where colors indicate the h value of each
individual. At each time step, the system evolves following one of the two branches. The upper
branch correspond to a rewiring (of z’s links) plus a shift of all positions, and the lower one to
imitation (y imitates x) plus position shifts.
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One of the most relevant examples in the literature is Ref. 19, where the authors
show that the stable cultural diversity achieved by Axelrod’s model of dissemination
of culture [3], can be easily fused into cultural homogeneity by introducing small
random variations in agents’ cultural features (what they call cultural drift). This
result is explained by the fact that cultural drift can eventually make an agent to
share cultural traits with agents belonging to completely different groups, allowing
crossed social influence among previously isolated agents and, therefore, leading
toward cultural homogeneity. After this observation was made, robustness to noise
has become an important requirement for models trying to reproduce the emergence
of opinion diversity [6, 9, 10].

More recently some authors have started to introduce noise in models to account
for opinion individualization. Pineda and coauthors proposed a new version of Def-
fuant’s bounded-confidence model where noise is used to model individuals’ free
will [28]. Specifically, in that model agents’ were given the opportunity (with a cer-
tain probability) of changing their opinions to a randomly selected position in the
whole opinion space. The authors found that the noise defined in such a way was able
to induce a transition between a disordered state (where opinions were distributed
uniformly) and an ordered one (where opinion clusters emerged). Similarly, Mas
and et al. used a noisy model to show how moderate rates of individualization can
lead to opinion clustering [22]. In this case the noise plays the role of a uniqueness-
seeking effect, which counteracts the general tendency of agents’ opinions toward
consensus around the average opinion in the population. More concretely, the noise
is defined by a normally distributed random variable which standard deviation is
higher the more homogeneous is the social context of the opinion holder (i.e. the
more similar to her are the opinions of the other agents in the population). Finally,
this same noise-based mechanism is used in a subsequent paper to explain the
persistence of social differentiation in groups and organizations [21].

Noise definition in our model is somehow related to the two described above. On
one side, it is independent of the social context of the opinion holder (as in Ref. 28).
On the other hand, in accordance with [22], it is defined by a normal distribution
since small opinion changes are much more likely than large ones. Moreover, also
as in Ref. 22, we keep all agents’ positions within the interval [0,L] by not applying
individualization noises if such boundaries would be crossed otherwise.

Being our individualization noise defined by a Gaussian distribution with a fixed
mean and variance, we center our attention on the unique parameter that can be
tuned: its magnitude. In the context of our study, the magnitude corresponds to
the average range of changes experimented by individuals’ social position due to
the individualization noise. Strong individualization noise implies sudden changes
of individual’s social positions along the social space. On the contrary, weak noises
correspond to quite stable opinions.

Taking this into account, we can easily predict the behavior of the model for
extremal values of the noise magnitude. On one side, too much individualization
notse would result in a noise-dominated scenario, where agents would be almost
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completely isolated due to the difficulty to maintain links among them. On the
other hand, too low noise intensity would exercise no significant effect over the
dynamics, which would be controlled by the other two mechanisms (imitation and
rewiring). Keeping this in mind, some questions arise: what are we to understand as
“too weak” or “too strong” noise? And, how does the noise influence the dynamics
for intermediate strength values between these limits?

In order to address these questions, we have analyzed the influence of different
noise magnitudes over three topological measures, namely the density within clus-
ters (p), the average degree ((k)) and the average Clustering Coefficient (Cc). In
Fig. 2, we present the evolution of these measures for a given set of initial conditions
and different values of the noise strength. For extremal values of the noise magni-
tude, results corroborate predicted behaviors. Unexpectedly, however, we observe
that the case corresponding to an intermediate noise strength leads to steady-states
with the highest average degree.

Such a surprising result can be related, in our particular case, to the capacity of
a moderate individualization noise to introduce heterogeneity within the different
groups. This internal diversity favors the inter-group linkage without breaking them
into isolated agents.
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Fig. 2. Influence of noise magnitude over model dynamics. Evolution of the density within clusters
(p), the average degree ((k)) and the average Clustering Coefficient (Cc), for two different values
of the noise strength (representative of strong and intermediate noise strength). The case without
noise (n = 0.0) is also shown, for comparative purposes. Population size IV, size of the opinion space
L and homophily a were set to 1000, N/5 and 6, respectively. Results were averaged among 25
independent realizations.
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Let us explain this argument more accurately. When the individualization noise
is weak or absent, the combined action of imitation and rewiring leads the model to
a steady-state where individuals tend to coincide in a unique h value (social posi-
tion) and, therefore (because of the rewiring action), to conform a unique connected
component. On the contrary, when the magnitude of the individualization noise
is extremely high, differences between h values of agents (social distances among
them) grow such quickly that cannot be counteracted by the imitation mechanism
and, when those distances are too large to maintain links between neighbors, groups
are progressively dissolved toward a completely disconnected scenario. In an inter-
mediate situation, the noise intensity is high enough to maintain a wide variety of
h values, but the differences introduced among these values are small enough to
keep agents linked and, in some cases, to establish new links with agents belonging
to other groups.

Notice that a moderate individualization noise in our model and Klemm and
coworker’s cultural drift in Ref. 19 act in a parallel way, since both of them facilitate
the interaction between otherwise isolated components. Sort to say, they “liquefy”
an stable scenario composed by separated components (cultural regions for the
cultural drift, opinion groups in our case).

3. Results and Discussion
3.1. Ezxperiment

By using the described model as a framework, we have conducted a sim-
ulation experiment to study social cohesion and its interplay with extremal
changes on the social environment. Such an experiment comprises two cri-
sis cycles (sudden increases of the social temperature followed by longer reac-
tionary periods). Each one of the crisis cycles has consisted on a short period
(about 50,000 time steps) of high social temperature, followed by a fall to
extremely low temperature (reproducing an habitual reactive behavior of popu-
lations after an emergency situation) and, finally, a progressive recovery toward
normality.

In order to run the described experiment, we need to be able to simulate dif-
ferent social temperatures in our model. Such changes on the social temperature,
has been modeled as variations on the value of the b parameter (the one control-
ling the length scale of the social space). This solution can be justified as follows.
When some kind of emergency strikes a population, social distances that separate
individuals do not change, but the necessity to face the new critical scenario makes
them less important than in a quiet situation. This temporal relativization of social
distances is nothing but a change on the length of the scale they are “measured”
against. Consequently, an appropriate way to introduce in our model the effect of
emergencies and posterior relaxations of the conflict level, is to increase the value of
b (making distances relatively smaller) and, after a relatively short number of time
steps, decrease it back. In our case, the b values chosen to represent each period
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are 0.5 for “normal” social temperature, 2.0 for highly conflictive situations and
0.25-0.35 for the reactionary intervals.

Furthermore, we also want to monitor the evolution of social cohesiveness under
these environmental changes. For this purpose, we have used three different macro-
scopical observables, namely: the average degree (k) (average number of neighbors),
the clustering coefficient (a weighted measurement of the number of triangles) and
the number of disconnected components or independent groups G composing the
whole network. While first and second parameters signal intra-group cohesion, the
third one corresponds to inter-group cohesiveness. Note that, taken jointly, these
three are good indicators of the social cohesiveness, since the more cohesive is a
population, the higher are their average degree and clustering coefficients, and fewer
separate groups it presents.

When looking at the behavior of these observables during the experiment, shown
in Fig. 3, we observe two phenomena. First we notice that, for the same value
of b, the social cohesiveness after each emergency situation is higher than before
them. Second, we observe a memory effect on the cohesion of the system in the
period between crises. Although the cohesiveness diminishes as a response to social
temperature cooling, when the situation comes back to normality, the cohesiveness
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Fig. 3. Evolution of social cohesiveness during the experiment. Vertical dashed lines in red indi-
cate regions delimited by their b value, which are indicated also in red. Values of sizes N and L,
as well as homophily «a, were kept as in Fig. 2. The noise magnitude was set to the intermediate
value 0.003. Two important phenomena are observed: An increase on the average cohesion after
each crisis, and a memory effect in the period between crises (represented here by a horizontal
dashed line in black). Results were obtained by averaging 25 independent realizations.
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also recovers its “normal” value (that one corresponding to b = 0.5 just after the
crisis).

The first result agrees with the observation made in the introduction in the sense
that the structure of the system changes during the conflict period. Moreover, it
can be positively contrasted with observations of other real social systems. When
a population has been submitted to a stressing situation, it is quite usual to find
higher levels of cohesion than before the crisis. In some sense, this phenomenon
could be seen as a sort of reminiscence of the high rates of cohesion characterizing
the emergency situation.

3.2. Analyzing mesoscopic and microscopic dynamical aspects
of soctal cohesion

Up to this point, our model has revealed its capacity to reproduce how changes
on the social temperature (which is a macroscopical variable related to the social
environment) induces changes on the cohesiveness of a population of individuals
(here measured in terms of macroscopical observables).

Nevertheless, in the introduction we have pointed out that the analysis of the
concept of social cohesion from a dynamical viewpoint demands a more complete
scope of the problem, also including the behavior of different variables at meso
and micro levels during the conflict period. In order to deep in this issue, we have
studied how our model’s dynamics modifies the distribution of agents’ positions (h;
values) along the lineal social space and, consequently, how the social structure of
the population is transformed.

In general, when plotting the distribution of agents’ opinions in the social space
at a steady-state (see Fig. 4 for two particular examples), we find that agents are
grouped around certain positions of the space, and that there are quite regular sep-
arations among these concentrations. Taking into account the dependence of the
linkage probability on the social distance, we deduce that these concentrations of
opinions in the social space correspond, structurally speaking, to groups of agents
densely connected. Besides, the observed separations tend to a unique value that we
have called critical social distance d.(h;, h;), which is the maximum social distance
at which connectivity between two groups of agents is possible. In other words, is
the distance making the link probability close enough to zero as to have just one
expected link between the two groups. Notice that, in accordance with this defini-
tion, d. (and the corresponding r) depends very much on the particular scenario.
For instance, if we had one single agent on one side and the rest of the population
(N — 1) on the other, » would take the value 1/(N — 1). However, for a scenario
with two groups of equal size N/2, we would need r = 1/(N?/4) = 4/N?2.

We propose the following formalization for the critical social distance:

[ 1 b
do(hi, h;) = lim d(h;, h;) = lim b ¢ 1 . 2
(hs; hy) = lim d(hi, hy) = lim ) T (2)
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Fig. 4. Distribution of agents’ positions along the lineal social space, in a steady-state, without
individualization noise (top) and with a individualization noise of magnitude 0.003. Although
both cases present quite regular separations between groups (see text for an explanation), the
internal distribution of each group differs. In the bottom case, we appreciate the heterogeneity
within groups introduced by the individualization noise.

From this definition, it is straightforward that links are established only among
agents separated by a distance smaller than d.(h;, h;). Moreover, the combined
effect of imitation and rewiring makes that any agent located in a social position
shorter than d.(h;, h;) from any group tend to link to that group, and that two
groups tend to merge if they are near enough from each other. Consequently, in the
steady-state not only the distance among groups, but also their number and size, is
related to the critical social distance. The larger the d.(h;, h;), the fewer separated
groups and the larger the distance among them.

Furthermore, by taking a look to expression (2), we realize that the critical
social distance depends on b. Since this variable controls the social temperature in
our model, we can trace a causal path from variations on the social temperature to
structural and knowledge changes experimented by the population during a crisis
period. With this idea in mind, we can interpret the behavior of the cohesiveness
during the experiment (shown in Fig. 3) in terms of reductions and increases of the
critical distance, induced by changes on b (that is, the social temperature).

At the beginning of the experiment, before the first crisis, the critical distance
is defined by the original b value (0.5). When the b value becomes 2.0, the critical
distance also increases and, consequently, all agents come across other ones that
were previously out of their range. Globally, this means that the population tend
to reorganize into fewer but larger groups, whose opinions are separated each other
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by greater social distances. However, as this process is interrupted abruptly (due to
the briefness of emergency situations), some agents are “surprised” halfway between
various groups. After a short transitory period, a new steady-state is reached. In
this new stable scenario, agents conserve many neighbors of the period before the
crisis and have incorporated new ones due to those agents bridging different groups
after the emergency. Consequently, the resulting groups are larger than before the
crisis and, because of their high internal connectivity, the average degree and the
clustering coefficient also keep higher. This phenomenon is what we have previously
called reminiscence of the crisis over the social cohesiveness.

At this point, agents are “trapped” within their groups (i.e. their opinions are
too much different from those of other groups to establish cross-links). Moreover,
in this second stable period, the individualization noise plays a central role by
opening very little internal discrepancies between members of the same group,
that allow the creation of new groups when the social temperature gets “colder”
(b drops down to 0.25). Later, as the population recovers its “normal” social
temperature (and, therefore, the b value increases again), the critical distance
grows up and little groups tend to merge and recover the stable configuration
reached just after the crisis, presenting the second phenomenon pointed above,
a memory effect. Finally, during the second cycle, the system presents the same
behavior than in the first one: A higher cohesiveness than before and a memory
effect.

5

4. Conclusion

In this work we have developed a simple model as an analytic tool to explore
a dynamic perspective of the concept of social cohesion, integrating the already-
stated structural component [24] with a cognitive, cultural one. Given a certain
initial scenario, the model evolves under the influence of the conflict level of the
environment by redefining, simultaneously, the social structure and the knowledge
or opinions (represented as positions in a social space) of a population of agents. We
argue that, beyond static perspectives, the social cohesion of a population should be
expressed in terms of these changes experimented both at structural and cognitive
dimensions as a response to conflict increases.

By means of only three simple mechanisms, the dynamics of the model repro-
duces the behavior of real social populations under a highly conflictive situation.
We have showed this in a twofold way. First we have studied numerically how
changes on a variable of the system representing the social temperature (degree of
conflict) conditions the evolution of three observables than can be easily related
to social cohesion (average degree, clustering coefficient and number of isolated
components). Second, we have deepened in dynamic aspects of social cohesion by
tracing the causal path among different topological levels. Changes on social tem-
perature happen at an institutional level, influencing relationships among agents
(microscopical level), and these changes at the individual level modify the size and
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composition of groups conforming the social population (mesoscopic or intermediate
level).

Although having demonstrated its utility as a tool to analyze the concept of
social cohesion, there are some aspects of the model that could be explored in order
to make it closer to particular case studies. In the following, we point out two of
these possible extensions of the model.

The initial conditions of our experiment, determined by a topology and a dis-
tribution of agents’ opinions, can be defined in many different ways. In this case,
we have chosen a simplistic initial scenario (synthetic social-like topologies and a
uniform distribution of opinions) in order to show that, even starting with such
simple conditions, our model is able to reproduce certain phenomena related to
social cohesion and its dependence on variations on the social temperature. Nev-
ertheless, each one of the two components of the initial scenario can be modified
separately. For example, we could use an empirically obtained social network as the
initial topology, but we could also start out the experiment with a distribution of
opinions representing a scenario of preexistent coalitions or opinion groups.

Another possible extension of the model is related to the observables used to
quantify the evolution of the social cohesion. Although the three structural observ-
ables used in this work are too simple to represent population’s cohesion separately,
analyzing the evolution of their behaviors jointly has helped us to understand the
dynamical processes taking place in the model. Nevertheless, for the sake of sim-
pleness and clarity, it would be interesting to define a unique (necessarily more
complex) structural observable, based on previous studies like [33] and [24]. Further-
more, in accordance with the aim of this work of enriching the structural approach
to social cohesion with a cultural component, it would also be interesting to define
an observable related to the distribution of opinions in the social space (based on
the largest social distance in the system, for instance).

Finally, current online communication platforms open new sociological research
possibilities. The eruption of social networking sites like Twitter or Facebook and
their undiscussed key role in recent civil mobilizations (wave of protests in the
Arab world, the M15 movement in Spain [5, 12]) and riots (England, summer 2011)
provide an unprecedented chance to empirically test theoretical models relying both
on underlying bond topologies (who holds stable relations with whom) and on
information dynamics (who is actually communicating with whom).
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