Structural and functional networks in complex systems with delay
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Functional networks of complex systems are obtained from the analysis of the temporal activity
of their components, and are often used to infer their unknown underlying connectivity. We obtain
the equations relating topology and function in a system of diffusively delay-coupled elements in
complex networks. We solve exactly the resulting equations in motifs (directed structures of three
nodes), and in directed networks. The mean-field solution for directed uncorrelated networks shows
that the clusterization of the activity is dominated by the in-degree of the nodes, and that the
locking frequency decreases with increasing average degree. We find that the exponent of a power
law degree distribution of the structural topology, =, is related to the exponent of the associated

functional network as o = (2 — )™, for v < 2.
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I. INTRODUCTION

Collective phenomena in populations of interacting el-
ements is a subject of intense study in physical, biolog-
ical, chemical, and social systems [1-3]. In many cases,
the emergence of patches of coherent behavior is the main
observable we have of the underlying dynamics and inter-
action of their constituents. This is the case, for example,
in gene expression, measured as DNA levels in microar-
rays [4, 5], or electrophysiological activity in the brain [6],
measured through multi-unit extracellular electrode. In
many occasions, the coordination is not global but local,
and the observation reveals clusters of elements dynam-
ically correlated or, generally speaking, synchronized [7—
10]. The resulting networks of coordinated activity are
usually called functional networks of the system [11, 12].
The analysis of these networks, from the physicists per-
spective, commonly focuses on network synchrony in the
absence of time delays. However, delays are common
in neural networks [13], and many other biological [14—
16] and social systems where the interaction between ele-
ments involves the propagation through a communication
channel. The consideration of these delays is of utmost
importance [17]. Recently, it has been analytically, and
experimentally shown that zero time-lag synchronization
is feasible over two distant (delayed) interacting oscilla-
tors when a third oscillator is placed in between of them
[18, 19]. A recent study sheds light along these lines by
studying the synchronization of networks of chaotic units
with time-delayed couplings using the formalism of the
master stability function [20].

There has been a big effort from the scientific commu-
nity to infer the complex network of interactions between
elements from the functional network [21-28]. Here we
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investigate on this inference from a fundamental physical
perspective. We analyze the functional network resulting
from the simplest dynamical system with delay present-
ing a synchronous dynamics, on a given topology, and
relate topology and functionality. Given the simplicity
of the model, we obtain the exact solution, develop a
statistical mean-field theory approximation and find the
relation between the degree distribution of the topologi-
cal network and the associated functional network.

II. THE MODEL

First, we develop the analytical aspects of the prob-
lem. Let’s start considering a set of N elements coupled
diffusively with delay

bi(t) :w¢+€za¢j(¢j(t*ﬁj) —¢i(t)) » (1)

where a;; are the components of the adjacency matrix A,
that is, a;; = 1 if element j influences ¢ with a delay 7;;,
and € is the coupling strength. Without loss of general-
ity we can rescale the coupling strength to e = 1. Equa-
tion (1) represents a system of N elements in a network,
which move at constant speed and that adjust their local
position to match that of their neighbors; the communi-
cation between pair of nodes is not instantaneous but it is
characterized by some delay. An alternative interpreta-
tion of Eq. (1) corresponds to the linearization of many
non-linear interaction models, including the Kuramoto
model [29], as long as the phase differences remain small
enough. As we will demonstrate later, if the network can
be reached from at least one node, Eq. (1) presents a
unique phase locked solution of the form

oi(t)=Q+0,; , (2)

where € is the locking frequency and 6; the initial phase
of element 7. Substituting in Eq. (1), we obtain a set of



N linear equations that can be written in matrix form as
w—-Q(1+T)=L0o, (3)

where L is the Laplacian matrix defined as L;; =
kiin0ij — Gij, kiin = Ej a;; is the in-degree of node 1,
0i; is the Kronecker delta, 1 is a vector of 1’'s and T is a
vector of components T; = Zj ai;T;; the total delay af-
fecting each node, w and 6 are the frequency vector and
the phase vector with components w; and 6; respectively.
In general, the Laplacian matrix L is asymmetric, how-
ever, as the sum of its rows is zero, it admits a left-
eigenvector ¢ = (¢, ca, ..., ) with eigenvalue 0, that is,
cL = 0. The left eigenvector c is unique as long as all
the nodes of the network can be reached by at least one
node [30]. Left-multiplying Eq. (3) by ¢ we obtain the
locking frequency
(w)
0= (4)
where (x) = ), ¢;x; and c is normalized, ), ¢; = 1. The
phases are now given by

wi — (w) + (wi(T) —
1+ (T)

For undirected networks, the left-eigenvector ¢ =
(1/N,1/N,...,1/N) is unique if it contains a single com-
ponent and the brackets in Eq. (4) are unweighted aver-
ages.

Thus, if all the nodes of the network can be reached by
at least one node, then Eq. (1) has a unique phase locked
solution given by Eqgs. (4) and (5). These equations point
out the relationship between the topology of the network,
the distribution of delays, the locking frequency, and the
state of the elements.
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A. Perfect synchronization

The topology, delays and frequency can be combined
to achieve the same state for each node. The condition
for fully clustered solutions (0; = 6;, Vi, ) implies

Wi

T ©)
From Eq. (6) we see that in absence of delays (T; = 0) all
the elements must have the same natural frequency, and
reversely, if all nodes have the same natural frequency
(w; = w), the total delay affecting each node must be
the same. It is straightforward to prove that Eq. (6)
is satisfied for degree regular networks of identical ele-
ments with equal delays, i.e., w; = w and 7, = 7. In
this case, the frequency of the phase synchronized state
is Q = 1-&-% In general, it is always possible to choose
the frequencies, the topology and the delays such that
perfect coordinated activity is reached. In this case, the
functional network, that is, the network formed connect-
ing those nodes displaying correlated activity, will be a
fully connected network despite the sparse connectivity
of the underlying interaction network.

B. Motifs

Beyond the above perfectly synchronized solutions, we
will extend our analysis to directed networks paying at-
tention to the clusterization of the activity with different
values of the phases. The simplest possible case corre-
sponds to graphs of three nodes, motifs [14, 31, 32]. The
interest in motifs comes from previous studies showing
the impact of motifs synchronization in absence of delays
as building blocks of larger synchronized structures [33].
Using Eq. (3), we find the locked solution for each of the
twelve different motifs of three elements with directed
couplings. For the sake of clarity, we assume each ele-
ment has the same frequency w; = w, and delay 7;; = 7,
Vi, j. Solving Eq. (3) we obtain for every motif config-
uration the normalized oscillation frequency r~1 = Q/w
and the phase differences (6; — 6;) = Q7A,;;. The twelve
different motifs are classified in five different functional
networks (see Fig. 1). For the analyzed dynamics and
based on the phase locked solution, this result points out
the impossibility of deriving the motif topology solely
from the information of the functional networks due to
the degeneracy shown [34].

IIT. HETEROGENEOUS MEAN FIELD
APPROACH

Beyond the formal exact solution presented in Eqs. (4)-
(5), we want to gain insight on the class of uncor-
related directed networks. First we start considering
heterogeneous directed networks, specified by their de-
gree distribution P(k), where k = (kin, kout), and by
the conditional probability P(k’|k) that a node of de-
gree k is connected to a node of degree k/. Normal-
ization conditions ), P(k) = 1 and > ,, P(k'|k) =1
must be fulfilled. The degree detailed balance condition
Eout P(K) Pout (K'|k) = K, P(k") Py (k|K') (where Py, (k'|k)
[Pout (k' |k)] measures the probability to reach a vertex
of degree k' leaving from a vertex of degree k using an
incoming [outgoing] edge of the source vertex) ensures
that the network is closed and that (ki,) = (kout). We
resort on the heterogeneous mean-field approach, coarse-
graining the dynamics to classes of nodes of the same
degree k. Thus, we define the phase density ®y of nodes
of degree k as

1

where Ny = P(k)N is the expected number of nodes
with degree k. Here we have made use of K to denote
the set of nodes with degree k. Similarly we define the
frequency density

Wk:Nikai. (8)
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FIG. 1: (Color online) Functional network (green, top row) for twelve structural motifs (blue, rows 2-4) of three elements.
In the functional solution the black solid line represents a zero phase difference between the oscillators while the gray dashed
lines stand for a non-zero phase difference. For the structural, solid black lines stand for interaction links and directionality is
indicated by an arrow. Parameters: A;; = (6; — 0;)/Qr, and r = w/Q.

This notation allows to group the sums by the degrees of
the nodes. For instance, if the degree of node 7 is k; = k
then

D aijdy = kin Y Pk k)i . (9)
J k’
For identical elements w; = w and 7;; = 7, the time

evolution of the phase density of the class of nodes of
degree k, ®k(t), can be rewritten from Eq. (1) as

Bic(t) = Wi+ kin 3 Pra(K k) (@i (t—7) — Dic(1)) . (10)

k/
For uncorrelated networks P, (k'|k) = % and
with the ansatz of locked solutions &, = Qt + Oy, we

obtain

© = Wic— b+ 78 3 Kt P (O =04 (1)
kl

Summing over all degrees we find

Qk)T 1

Ox = — ta, (12)
()

Q= d (13)

(k) ’
U+ /oy T
being a an arbitrary constant. For undirected networks
kin = kout, thus we recover Eq. (4) for the locking fre-
quency where (k)7 = (T), and

(14)

This indicates that whether two nodes show a similar
phase depends on their degree difference in an uncorre-
lated network. It also shows that low-degree nodes are
ahead of high-degree nodes. At least in this limit, the
precise shape of the degree distribution is not playing an
important role, as only the average degree (k) enters into
the equation. Obviously, this dependence of the degree
is reminiscent of our hypothesis of a mean-field coarse-
grained by degree, however it is not trivial that this ap-
proximation will hold for the actual dynamics (Eq. (1)).

Furthermore the distribution of the phases in corre-
lated networks as for example in the C. elegans neu-
ral network also shows a good agreement with Eq. (14).
The neuronal network connectivity of the C. elegans can
be represented as a weighted adjacency matrix of 275
nonpharyngeal neurons, out of a total of 302 neurons
(http://www.wormatlas.org/). We assume that the ner-
vous system of the C. elegans can be modeled as a net-
work, where nodes represent the center of the cell bod-
ies, and the links represent synapses. The heterogeneous
mean field formalism describes the relationship between
dynamics and topology in uncorrelated networks. Such
relationship can be illustrated in a real (correlated) net-
work analyzing the dynamics of Eq. (1) using the con-
nectivity of the neural system of the C. elegans (Fig. 2).
When comparing the exact solution in the directed neu-
ral network with the analytical solution we observe that
it captures the dependence on the in-degree and gives an
excellent solution for the rewired directed network. Thus
the in-degree of a neuron gives a good first approximation
to the real state of the neuron although the precise wiring
details are very important to know its exact value. Sim-
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FIG. 2: (Color online) (Top row) Phase clusterization in the
directed C. elegans neural network. We plot the phases vs.
the in-degree kin for neurons in the C. elegans (open circles)
and rewired networks (filled blue symbols) (averaged over
100 realizations of the rewiring algorithm) keeping the same
(Kin, kout) for each neuron. In the rewired networks the phase
is well approximated by the relation O(k) = b/k + a (contin-
uous red line). The phases are obtained after integration of
Eq. (1) with w; = 1 and 7;; = 0.1. (Bottom row) Adjacency
matrix of the neuronal connections (a), and of the functional
network (b). In both cases the neurons are ordered according
to the ranking of their phases obtained from the dynamical
system given by Eq. (1) with w; =1 and 75; = 0.1.

ple models aiming at the reconstruction of the anatomical
network based on the observed neurons’ states will link,
for this dynamics, neurons with similar in-degree with no
connection in the real network (see Fig. 2).

The heterogeneous mean field solution allows us to re-
late the degree distributions of the structural and func-
tional topologies. In the remainder we will assume undi-
rected structural networks. In the functional network a
node with degree k is connected with a node with de-
gree k' if their phase difference is smaller than a given
threshold: |®, — ®x/| < A. Then, using Eq. (14), the
functional degree of a node of structural degree k is given
by a(k) ~ [\1 k1 /prj<s P(k')dK’ where & is an arbitrary
threshold dw(k)T = A(1+ (k)7)). If the degree distribu-
tion of the structural network is a power law P(k) ~ k=7
then, q(k) ~ kP where 3 = 2 —~ for v < 2 and the degree
distribution of the functional network is also power law
P(q) ~ ¢~ where a = (2—+)~!. The numerical simula-
tions of the system given by Eq. (1) shows an excellent
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FIG. 3: (Color online) Functional degree distribution P(q)
for a network of 10° nodes with structural degree distribution
P(k) ~ k™7 and v = 1.5. Dashed line corresponds to ¢ 2.
Inset: Dependence of 371 (circles) and a (squares) on the
structural degree distribution exponent «. Solid black line
represents the theoretical prediction. The functional networks
are obtained after integration of Eq. (1) with w; = 1 and

7,5 = 0.1, and A = 107%.

agreement with the analytical prediction for classes of
nodes with degree k in uncorrelated networks. In Fig. 3
we compare the values of the exponent o and 3 obtained
after integration of the dynamical system given by Eq. (1)
in scale-free networks.

IV. CONCLUSIONS

Summarizing, we have got insight in the relationship
between the topological network of connections and the
functional network obtained from a simple dynamical
process with delays. We have found the conditions for
the emergence of locked dynamical states in any net-
work of diffusively delay-coupled oscillators. We iden-
tify these states as the main components of the emergent
functional network generated by this simplified dynam-
ics. Using these analytical guides we have explored the
functional network obtained for the class of uncorrelated
heterogenous networks, under the mean-field hypothesis,
and have checked its prediction in scale-free networks.
The results allow us to grasp the dependence of the func-
tional network on the topological parameters, highlight-
ing the role played by the delays and heterogeneity [35].
Indeed, although functional and structural topologies dif-
fer at the local level, we have shown that the degree dis-
tributions are related in the presence of delays as distant
nodes sharing the same degree will be functionally corre-
lated.
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