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The analysis of contagion-diffusion processes in metapopulations is a powerful theoretical tool to study how mobility
influences the spread of communicable diseases. Nevertheless, many metapopulation approaches use indistinguishable
agents to alleviate analytical difficulties. Here, we address the impact that recurrent mobility patterns, and the spatial
distribution of distinguishable agents, have on the unfolding of epidemics in large urban areas. We incorporate the
distinguishable nature of agents regarding both, their residence, and their usual destination. The proposed model allows
both a fast computation of the spatio-temporal pattern of the epidemic trajectory and. the analytical calculation of the
epidemic threshold. This threshold is found as the spectral radius of a mixing matrix encapsulating the residential distri-
bution, and the specific commuting patterns of agents. We prove that the simplification of indistinguishable individuals
overestimates the value of the epidemic threshold.

Unraveling the influence that different aspects of hu-
man behavior have on how communicable diseases spread
through populations is one of the most intriguing chal-
lenges in computational and theoretical epidemiology. Al-
though it is now possible to include multiple types of hu-
man behavioral data for agent-based simulations, incor-
porating this entire arsenal of information into mathe-
matical models to derive new analytical tools is a major
challenge in epidemiology. In this article, we aim to go
one step further on the road of increasing the realism of
metapopulation-based epidemic models. In particular, we
propose a theoretical framework that allows the inclusion
of data on both the spatial distribution of populations and
the distinction of agents according to their origin and des-
tination. With this information at hand, we can derive the
value of the epidemic threshold and its roots on the so-
cial mixing patterns that characterize the population un-
der study providing, as a byproduct, a powerful tool to as-
sess control strategies aimed at increasing its value under
scenarios of epidemiological risk.

I. INTRODUCTION

About 100 years ago, two physicians, Ronald Ross and
Anderson G. McKendrick, and a chemist, William O. Ker-
mack laid the foundations of epidemic modeling. Mckendrik
and Kermack formulated the celebrated SIR (Suseptible-
Infectious-Recognized) compartmental model in 19271,2, a
framework that remains nowadays as the cornerstone of most
theoretical works in epidemiology. Around the same time, in
1922, Lewis Fry Richardson3 proposed a set of differential
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equations in an attempt to mathematically describe the evolu-
tion of the atmosphere and to go beyond qualitative weather
forecasting to use quantitative and objective forms of predic-
tion.

Meteorological models quickly confirmed their practical
usefulness as soon as they could be implemented in the first
computing machines, seeing how their reliability improved as
they were refined and both the quantity and quality of mete-
orological data increased. In contrast, despite theoretical ad-
vances in their refinement4,5, the usefulness of epidemiologi-
cal models remained limited for many decades, finding their
fundamental utility in the qualitative understanding of the phe-
nomena observed in different epidemic waves. In this sense,
the collection of epidemiological data for the validation and
improvement of compartmental models was much more elu-
sive than in the case of meteorology. In particular, apart from
the biological features of the spreading pathogen, the main
bottleneck for the development of reliable epidemic models
was to accurately describe the human behavior underlying the
observed infection patterns.

This barrier to the development of epidemiological models
with predictive capacity was broken down with the advent of
the 21st century, the internet era and the digitization of our
daily lives. The new digital era represents a paradigm shift
for the study of human behavior on a large scale, allowing us,
among other things, to access, and describe the skeleton of
interactions through which infectious diseases are transmit-
ted. Thus, in the last two decades, a great deal of effort has
been invested in incorporating into epidemic models aspects
such as the complexity of contact networks, patterns of human
mobility at different geographic scales, and the time scales
associated with human interactions6. Equipped with this in-
formation, theoretical, and computational tools can be used
to analyze epidemiological problems, and develop forecast-
ing frameworks that integrate both advanced epidemiological
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models and massive amounts of real demographic, mobility,
and socioeconomic data at multiple scales7–9.

Most of these approaches rely on agent-based models that
allow recreating synthetic populations mimicking the relevant
social attributes that shape the unfolding of epidemic out-
breaks. Although it is our most powerful tool in forecast-
ing real epidemics and the evaluation of non-pharmaceutical
interventions, agent-based simulations do not offer the pos-
sibility of obtaining transparent and analytical information
about the importance of human behavior in the transmis-
sion of infectious diseases. To fill the gap between agent-
based mechanistic simulations and theoretical frameworks,
epidemic modeling relies on reaction-diffusion dynamics in
metapopulations10,11. This framework incorporates coarse-
grained information of several features intervening in disease
spreading such as the mobility patterns between different ar-
eas, the demographic distribution of a population and infor-
mation about social mixing.

In the last decade, the study of metapopulation dynamics
has faced the challenge of approaching the realism of mech-
anistic simulations12 by incorporating more and more aspects
of human behavior and mobility13. From the first works, in-
cluding the complexity of human mobility networks14–17 the
focus has been put on the recurrent nature of human mo-
bility, being it of special importance in urban and regional
scales18–21. Recently22, we introduced a Markovian frame-
work, the Mobility-Interaction-Return (MIR) model, that al-
lowed the study of real populations incorporating the demo-
graphic distribution and the network of commutes. This ap-
proach revealed that these two aspects are essential to assess
the advisability of contention measures based on the restric-
tion of mobility. This approach has been further general-
ized to include networks with multiple types of mobility23,24,
the study of vector-borne diseases25,26, different permanence
times on the destination27, the heterogeneous of different con-
tact patterns28. Importantly, this Markovian framework has
been used, after accounting for the particularities of SARS-
CoV-2 transmission, to evaluate the evolution, and health sys-
tems impact, of COVID-19 in different countries29–31. Like-
wise, the MIR model has been used to optimize resource allo-
cation to control epidemics32 or to evaluate the role that indi-
vidual awareness plays in hampering the spread of diseases33.

In this work, we go one step further in the formulation of the
MIR epidemic model to better capture the recurrent mobility
patterns of most human movements. To this aim, we get rid of
one of the main hypotheses behind the former approach: in-
distinguishable agents, residents of a patch, according to their
possible destinations. Including distinguishable agents allows
us to analyze particular human commuting flows between dif-
ferent locations, and to identify those that are critical for the
dissemination of infectious pathogens. This paves the path to
inform about surgical interventions on the mobility patterns
of a population to increase its resilience against the spread of
a pathogen, in contrast to crude lockdowns spatially isolating
one area.

II. RESULTS

A. Basic metapopulation framework

Let us first introduce the basic MIR metapopulation frame-
work that allows capturing the specific individual commuting
patterns in generic populations in which agents display re-
current mobility patterns. In the following we will focus on
the simple but paradigmatic Susceptible-Infected-Susceptible
(SIS) compartmental model as the process underlying micro-
scopic contagions. However, the formalism can be straight-
forward generalized to more sophisticated models, as is the
case for the MIR metapopulation model with indistinguish-
able agents23,25,27,29.

The SIS model describes a process in which a person who
is in a susceptible state, upon contact with an infected person,
becomes infected with probability λ . At the same time, an in-
fected person recovers with probability µ and, at variance with
the SIR model, becomes susceptible again. When writing the
equations for a single population of n interacting agents, one
typically considers the fraction of infected individuals in the
population ρ(t). The evolution of this variable can be written
considering a mean-field approximation, i.e. assuming that all
individuals are equivalent and have a homogeneous probabil-
ity of interacting with each other. This way, assuming that
each agent makes ⟨k⟩ contacts at time t and the existence of a
fraction ρ(t) of infected individuals at time t, the probability
that a susceptible agent gets infected at this time reads:

P(t) = 1− (1−λ ·ρ(t))⟨k⟩ . (1)

The expression of this probability allows us to write the mean-
field evolution for a single population of n agents. Consider-
ing a time-discrete version, the fraction of infected individuals
at time t +1 is given by:

ρ(t +1) = (1−µ)ρ(t)+P(t) · (1−ρ(t)) . (2)

Although simple, the SIS model captures the most relevant
feature of an epidemic process: the epidemic threshold λc.
The epidemic threshold is the minimum value of λ yielding an
epidemic scenario in which the epidemic is not extinguished
but keeps circulating from one individual to another. For the
case of the mean-field SIS model the epidemic threshold can
be easily derived, λc =

µ

⟨k⟩ , and implies that when λ > λc the
system reaches a steady-state in which the stationary value of
ρ(t) is constant and non-zero since new-infections are bal-
anced by the recovery of infected agents.

In epidemiological terms, the epidemic threshold λc is
closely related to the so-called basic reproduction number R0,
defined as the number of secondary infections a single infec-
tious individual would make in a population of fully suscep-
tible agents. The basic reproduction number in the mean-
field SIS model is R0 = λ ⟨k⟩/µ . Thus, when the infectiv-
ity per contact λ = λc =

µ

⟨k⟩ the system has a reproduction
number R0 = 1, meaning that, on average, an infected agent
makes 1 new infection during its infectious period µ−1. Ob-
viously when λ > λc the corresponding reproduction number
is R0 > 1 and corresponds to an epidemic regime.
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The mean-field SIS model contains many simplifications
and can be improved in many ways to become a more realistic
framework. One of its main assumptions is that the population
under study is completely isolated. However, as many recent
real epidemics reveal, the main aspect behind the explosion
of localized outbreaks into epidemic (or even pandemic) sce-
narios is the high mobility of individuals between different
populations. To incorporate this important feature of real epi-
demics into any compartmental model as the SIS one draws
on the metapopulation formalism.

A basic metapopulation model describes the contacts be-
tween individuals at two different scales by dividing the to-
tal population into subpopulations of different sizes. In each
subpopulation, individuals interact and have contact with each
other, facilitating the contagion of the pathogen. In turn,
agents are allowed to move and visit different subpopulations,
thus favoring the transmission of the pathogen to disease-
free regions. When defining the metapopulation framework
one has to set the microscopic contagion dynamics happen-
ing within the patches (here the SIS model) and the type of
diffusion that better describes the mobility of agents. To cap-
ture the typical mobility patterns at urban or regional scales,
one has to take into account the recurrent nature of human
mobility at these scales13. As motivated above, in22 we in-
troduced the MIR model in which each individual has an as-
sociated subpopulation (the residence) and comprises a three-
stage process in every time step. The first stage comprises the
diffusion step in which each individual decides, with proba-
bility pd , to travel to a destination or to stay (with probability
1− pd) in its residential patch. Second, the reaction process
in which contacts occur between individuals being in the same
subpopulation at time t. Finally, the return to the original sub-
populations of those agents that decided move in the first stage
of the MIR sequence. In this final stage, we also take into
account, as introduced by Granell and Mucha34, that agents
make the second round of interactions at the household level.
This way interactions can be split into those made during the
day (D) and those made at night (N) with their corresponding
housemates.

The recurrent mobility of agents is typically provided by
Origin-Destination (OD) matrices. Thus for a population di-
vided into N subpopulations one has an N × N OD matrix
whose (i, j)-entry contains the number ni j of agents with res-
idence in i that typically perform daily commutes to patch j.
This matrix can be viewed as a directed (as commuting pat-
terns between two patches are not symmetric) and weighted
network connecting the collection of N patches.

Once equipped with the OD matrix characterizing the mo-
bility flows of a metapopulation and the knowledge about the
census of each subpopulation ({ni}), one can tackle the for-
mulation of the dynamical equations that rule the evolution of
a metapopulation. To this aim, in22 the authors assign to each
node i a probability that an individual is infected ρi(t), which
means that we can define the state of the metapopulation via
the vector ρ⃗T = (ρ1(t), ...,ρN(t)) that can be used to compute
the local prevalences at each patch i as ni ·ρi(t). The time evo-
lution of the variables ρi(t) defining the epidemic state of each
patch can be written as the following time-discrete Markovian

chain:

ρi(t +1) = (1−µ)ρi(t)+(1−ρi(t))Πi(t) , (3)

where Πi(t) is the probability that an individual with residence
in patch i becomes infected at time t:

Πi(t) = (1− pd)
(
PD

i (t)+(1−PD
i (t))PN

i (t)
)
+

pd

(
N

∑
j=1

Ri j
(
PD

j (t)+(1−PD
j (t))P

N
i (t)

))
. (4)

The former expression contains in its r.h.s. two terms account-
ing for either the infection at its residence i and the infection
at a patch j that, in general, is different from i. These two
terms are weighted by (1− pd) and pd respectively since, as
introduced above, pd is the probability that agents move in
the metapopulation, i.e. a control parameter that allows us to
tune the level of spatial confinement in the population. Be-
sides, the second infection probability in Eq. (4) makes use of
matrix R in which each entry Ri j is defined as the probabil-
ity that a moving agent with residence in i chooses patch j as
the destination. The matrix R is constructed directly from the
OD matrix, Ri j = ni j/∑l nil , and satisfies the normalization
condition of a row stochastic matrix: ∑

N
j=1 Ri j = 1 ∀ i.

Finally, both terms in the r.h.s of Eq. (4) contain two sets of
probabilities, {PD

i (t)} and {PN
i (t)}, that account for the prob-

abilities of getting infected being placed at a patch i during
the day (D) and of contracting the disease at the household
(N) placed in patch i respectively. In both cases, these proba-
bilities adopt a similar form to Eq. (1). Namely:

PD
i (t) = 1−

(
1−λ

Ie f f
i (t)

ne f f
i

)zD fi

, (5)

PN
i (t) = 1− (1−λρi(t))

zN σi . (6)

Eq. (5) incorporates the overall population ne f f
i and the effec-

tive number of infected individuals Ie f f
i located at patch i af-

ter the Movement stage. Under the assumptions of the model,
both quantities read:

ne f f
i =

N

∑
j=1

((1− pd)δi j + pdR ji)n j , (7)

Ie f f
i =

N

∑
j=1

((1− pd)δi j + pdR ji)n jρ j(t) . (8)

In contrast, Eq. (6) only considers the fraction of infected in-
dividuals residing in patch i, as it governs the probability of
contagion with the members from the household. Note that,
in both expressions, we have denoted the number of contacts
made in patch i during the D and N cycles by zD fi and zNσi
respectively. On one hand, the number of contacts during D is
proportional to the patch population density:

fi =
ne f f

i
ai

, (9)



4

while zD is a scaling factor that ensures that the average num-
ber of contacts during D across the entire metapopulation re-
mains equal to ⟨kD⟩:

zD =
∑

N
i=1 ne f f

i ⟨kD⟩
∑

N
i=1 ne f f

i fi
. (10)

On the other hand, for the N cycle, the average number of
contacts is proportional to the average housemates at given
patch i, σi and zN ensures that the average number of contacts
across the entire metapopulation is ⟨kN⟩:

zN =
∑

N
i=1 ni⟨kN⟩
∑

N
i=1 niσi

. (11)

As shown in22, the former formulation nicely agrees with
the results obtained in mechanistic simulations of general
metapopulations, such as cities or regions, for which the local
census and the daily commuting trips between neighborhoods
or municipalities are known. In addition, the mathematical
formulation allows deriving an analytical expression for the
epidemic threshold:

λc =
µ

Λmax(M)
, (12)

where Λmax(M) is the maximum eigenvalue of the mixing
matrix M defined as:

Mi j =

[(
(1− pd)

2 zD fi

ne f f
i

+
zNσi

ni

)
δi j+

pd(1− pd)

(
R ji

zD fi

ne f f
i

+Ri j
zD f j

ne f f
j

)
+

p2
d

N

∑
l=1

RilR jl
zD fl

ne f f
l

]
n j . (13)

Each term, Mi j, of M contains the three elementary processes
by which agents from patches i and j can interact. The main
novelty of this formalism shows up when analyzing the depen-
dence of the epidemic threshold with the degree of mobility pd
since, counter intuitively, it is shown that mobility can help to
decrease the epidemic prevalence and hence increase the epi-
demic threshold. This result is the product of incorporating
both the heterogeneous demographic distribution of real cities
or regions and the commuting nature of human mobility.

B. Incorporating the distinguishable nature of individuals

The original MIR model and its subsequent refinements as-
sume that all individuals belonging to the same subpopulation
i are equivalent, i.e. they explore all the possible destinations
that are connected to this patch i according to the data con-
tained in the OD matrix and captured in the right stochastic
matrix R. However, this assumption neglects that each agent
has its patterns of movement.

To overcome this limitation, here we consider that the
agents with residence in a patch i are distinguishable accord-
ing to their preferred destination. As a result, we cannot as-
sume that there will be the same proportion ρi(t) of infected
people living in i among the subsets of individuals traveling
to different destinations. Thus, we have to further divide the
set of individuals having residence in i and consider a new set
of variables {ρi j(t)} that account for the probability that an
individual with residence in patch i whose usual destination
is node j is infected at time t. This way, the number of vari-
ables raises from N (indistinguishable case) to L ≤ N2 (indis-
tinguishable case), being L the total number of non-zero en-
tries in the OD matrix. In the most general scenario, the con-
nectivity through commuting patterns between the N patches
is characterized by an N2 ×N2 matrix N, whose (i, j)-entry,
ni j, accounts for the number of commuters with residence in
i whose usual destination is patch j. Let us note that for each
patch i there is a subset of individuals whose usual commuting
destination is node i, i.e. in general nii ̸= 0. Naturally, these

variables must satisfy that
N
∑
j=1

ni j = ni ∀i. This distinguishable

framework is illustrated in Fig. 1, where we show a schematic
simple metapopulation of 4 patches in which the agents are
distinguished (colored) according to their usual commuting
destination.

To formulate the Markovian equations we consider again
that at each time step susceptible agents can be infected dur-
ing the two stages of the MIR sequence. First, during the
day at stage I, when agents interact either at their destination
with probability pd or at their residential patch with probabil-
ity (1− pd), and second, at the household level at stage R. The
infection probability in the first case, when an agent is placed
at patch i:

PD
i = 1−

(
1−λ

Ie f f
i (t)

ne f f
i

)zD fi

, (14)

where ne f f
i is, as in Eq. (7), the effective number of individuals

that are placed in a patch i that, for the distinguishable case,
reads:

ne f f
i = pd

N

∑
j=1

n ji +(1− pd)
N

∑
j=1

ni j . (15)

The r.h.s. of the former expression contains the number of
people that decide to travel to i at the M stage from any patch
j while the second contains accounts for all the commuters
departing from patch i that decide not to travel. Following the
same rationale is easy to write the effective number of infected
individuals that visit a patch i once the movement stage has
taken place:

Ie f f
i (t) = pd

N

∑
j=1

n jiρ ji(t)+(1− pd)
N

∑
j=1

ni jρi j(t) . (16)

With the former two expressions, Ie f f
i and ne f f

i , the probabil-
ity that an agent at patch i is infectious, Ie f f

i /ne f f
i can be con-

structed and used in Eq. (14). In close analogy with Eq. (5)
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Figure 1. Schematic representation of a toy metapopulation network with distinguishable agents. The population is divided into 4 intercon-
nected subpopulations denoted as i, j, k and l. In each subpopulation the agents are divided (colored) according to their destinations. This
way the number of agents that travel from i to j correspond to a subset of size ni j. Note that each patch also contains a subset of agents whose
destination is the same as the residence and thus are colored according to the color of the corresponding patch.

for the indistinguishable case we consider that the number of
contacts at patch i is proportional to the effective population
density:

fi =
ne f f

i
ai

, (17)

scaled by:

zD =
∑

N
i=1 ne f f

i ⟨kD⟩
∑

N
i=1 ne f f

i fi
, (18)

to ensure that the average number of contacts in the entire
metapopulation at the I stage (D period) is equal to ⟨kD⟩.

For the probability of infection at the R stage (N period) we
have:

PN
i = 1−

1−λ

N

∑
j=1

ni jρi j(t)

N

∑
j=1

ni j


zN σi

, (19)

where the fraction in the r.h.s has as numerator the expected
number of infected individuals with residence at patch i while
the denominator is the population of patch i. Thus, this frac-
tion encodes the probability that a resident at patch i is infec-
tious. As in Eq. (6) we consider that in the R stage (period N)
interactions are restricted to the household level so that they
are given by zNσi, where σi is the average housemate number
of households at patch i and zN reads:

zN =
∑

N
i=1 ni⟨kN⟩
∑

N
i=1 niσi

, (20)

so that the average household contacts across the whole
metapopulation during period N is ⟨kN⟩.

Equipped with the infection probabilities during periods D
and N, i.e. Eqs. (14) and (19), we can construct the infection
probability for a resident of patch i having patch j as her usual
commuting destination:

Πi j = (1− pd)
(
PD

i +(1−PD
i )PN

i
)
+ pd

(
PD

j +(1−PD
j )P

N
i
)
.

(21)
The former probability allows us to write the dynamical evo-
lution for the fraction of infected agents with residence in i
and destination j:

ρi j(t +1) = (1−µ)ρi j(t)+(1−ρi j(t))Πi j , (22)

where the first term accounts for the fraction of infectious
commuters between i and j at time t that do not recover
whereas the second term adds the new infections of suscep-
tible (i, j)-commuters that take place at time t both at the res-
idence i and the destination j. The former expression takes
part of a set of L equations that can be solved by iterating a
given initial condition {ρi j(0)}.

C. Model Validation

To validate the set of Markovian equations given by
Eq. (22) we now construct real metapopulations incorporating
the demographic distribution and the commuting flows of the
population of two different core-based statistical areas (cbsa)
in the United States (see Table I for details); namely New
York-Newark-Jersey City and Boston-Cambridge-Newton.
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Figure 2. Validation of the Markovian equations for the cities of (a)
New York and (b) Boston. On the vertical axis we represent the frac-
tion of infected ρ∗ in the stationary state for the whole population,
and on the horizontal axis the parameter λ normalized to the epi-
demic threshold for pd = 0: λ0 = λc(pd = 0). Each panel shows dif-
ferent epidemic curves ρ∗(λ/λ0) for different values of pd obtained
by iterating the Markovian equations. In its turn, points represent
the average of ρ∗ obtained after 100 realizations of the mechanis-
tic (Monte Carlo) simulations for each value of λ and pd (note that
error bars are smaller than points). In all the cases the recovery prob-
ability is set to µ = 0.2, the average contacts during the D cycle are
⟨kD⟩= 8, and those that take place at the N one are set to ⟨kD⟩= 3.

For brevity, we will refer to them in what follows as New
York and Boston respectively. For each cbsa, the patches
represent the different zip codes, whereas the corresponding

Name Population Patches Links Density (sq.miles−1)
New York 12 423 494 498 148 001 5 084
Boston 4 146 213 232 42 064 1 704
Austin 1 775 659 98 7 281 306
Miami 5 590 269 186 31 790 1 912
Detroit 4 475 286 232 40 220 964
Seattle 3 502 087 176 22 375 565

Table I. Main characteristics of the 6 US cbsa studied as metapop-
ulations. Namely, the total population, the number of patches and
links that compose each metapopulation, and the average population
density of the patches.

OD matrices have been obtained from surveys capturing the
population moving daily from one area to another. Data about
the commuting flows35, the distribution of the population
across patches36 and the area of each patch37 are publicly
available. A summary of the main attributes for every
metapopulation studied throughout the paper is available in
Table I.

Once the census and mobility data have been translated into
a metapopulation we first perform mechanistic simulations
by considering the n agents of each cbsa and simulating the
microscopic dynamics corresponding to both individual dis-
placements and also the pairwise interactions of susceptible
and infectious agents that give rise to contagions of the for-
mer. We carry these simulations by considering different val-
ues of the infectivity λ and the mobility parameter pd while
keeping the recovery probability µ = 0.2. For each simula-
tion, we let the system evolve for a reasonable time of T days
(here the natural time unit imposed by the commuting data)
and compute the stationary value for the fraction of infected
individuals, ρ∗. Since mechanistic simulations are stochastic,
for each value of λ and pd , we consider the average value of
ρ∗ obtained from 100 realizations of the mechanistic simula-
tion with different initial conditions for the infectious seeds.

The results obtained through mechanistic simulations are
confronted with those obtained by iterating the Markovian
equations by comparing the stationary value for the fraction
infectious individuals. In the case of the Markovian equations,
the steady fraction of infectious agents, i.e. the average preva-
lence of the diseases, is calculated as:

ρ
∗ =

1
n

N

∑
i, j=1

ni jρ
∗
i j (23)

where the values ρ∗
i j are the stationary values of the entries of

vector ρ and n is the total population in the system. Note that,
since Markovian dynamics is deterministic and there are nei-
ther sources or sinks in the compartmental model, no realiza-
tions are needed, thus allowing a fast calculation of epidemic
curves ρ∗(λ ).

The results obtained by both methods are shown in Figure
2. In both panels, the fraction of infected individuals is rep-
resented as a function of the contagion probability ρ(λ ) for
different values of pd . The infectivity value is re-scaled by a
value λ0, which is the epidemic threshold λc when pd = 0, i.e.
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λ0 = λc(pd = 0). The value λ0 is that of the SIS model in the
most vulnerable patch, i.e. λ0 = µ/max(zNσi + zD fi). From
the plots it is clear that the agreement between the Marko-
vian solution (curves) and the results from mechanistic simu-
lations (points) is excellent, thus confirming the validity of the
Markovian equations (22).

Remarkably, the epidemic curves for the two cities show
the so-called epidemic detriment driven by mobility, i.e. the
increase of the epidemic threshold λc for values pd > 0 com-
pared to the case pd = 0. Thus, the distinguishable MIR
framework preserves the main result derived by the indistin-
guishable one22, as it is rooted on the heterogeneous distri-
bution of the population and the flows across patches. This
counter-intuitive phenomenon can be easily explained consid-
ering the case pd = 0 and λ ≳ λ0. In this case, infectious
agents are concentrated in the most vulnerable areas while
the rest of the patches are disease-free subpopulations. By
increasing pd we spread the carriers of the disease to other
areas with lower infection risk where, for the same value of
λ ≳ λ0, will not spread the pathogen. Besides, those individ-
uals moving from the least to the most exposed areas are gen-
erally healthy. Thus, for pd ≳ 0 and λ ≳ λ0, the infected in-
dividuals will recover without making secondary infections in
small size patches, while the localized outbreak in the largest
population patch dies out.

D. Epidemic threshold

Once the model has been formulated and validated, ob-
taining as a byproduct the confirmation that the epidemic
detriment driven by mobility remains in the distinguishable
MIR formulation, we now tackle the analysis of the epidemic
threshold λc. To this aim we focus on finding the stationary
state of the SIS dynamics and thus assume that all the vari-
ables are time-independent: ρi j(t +1) = ρi j(t) ≡ ρ∗

i j ∀i, j. In
this stationary regime Eq. (22) transforms into:

µρ
∗
i j = (1−ρ

∗
i j)Πi j(ρ⃗∗) . (24)

Solving this equation by numerical means allows us to find the
stationary value ρ∗ used in Fig. (2). However, since our focus
is those solutions close enough to λc, we are interested in a
very particular situation that consists of arbitrarily small local
prevalences: ρ∗

i j ≡ εi j ≪ 1 ∀i, j. This way we can linearize
Eq. (24).

Since the function Πi j(ρ⃗∗) in Eq. (24) is highly nonlinear
we start by considering the two sets of contagion probabilities
{PD

i (⃗ρ∗)} and {PN
i (ρ⃗∗)} and linearize each of them as:

PD
i ≃ pdλ

zD fi

ne f f
i

N

∑
j=1

n jiε ji +λ (1− pd)
zD fi

ne f f
i

N

∑
j=1

ni jεi j , (25)

PN
i ≃ pdλ

zNσi

ni

N

∑
j=1

ni jεi j . (26)

Next we insert the former expressions into Eq. (21) to obtain

the linearized version of Πi j(ρ⃗∗) as:

Πi j (⃗ε) = λ

N

∑
k,l=1

[
(1− pd)pd

zD fk

ne f f
k

nlkδik

+(1− pd)
2 zD fl

ne f f
l

nlkδil

+p2
d

zD fk

ne f f
k

nlkδ jk

+pd(1− pd)
zD fl

ne f f
l

nlkδ jl

+
zNσl

nl
nlkδil

]
λεlk (27)

Finally, inserting this formula into Eq. (24) and neglecting
nonlinear terms in εi, we obtain the following set of linear
equations for the stationary prevalence ε⃗:

µεi j ≃ Πi j (⃗ε
∗) = λ

N

∑
k,l=1

Mil
jkεlk (28)

where, for convenience, we have written the expression in
Eq. (27) as the product of the prevalence vector ε⃗ by a ma-
trix M whose terms are defined as:

Mil
jk = (1− pd)pd

zD fk

ne f f
k

nlkδik +(1− pd)
2 zD fl

ne f f
l

nlkδil

+ p2
d

zD fk

ne f f
k

nlkδ jk + pd(1− pd)
zD fl

ne f f
l

nlkδ jl

+
zNσl

nl
nlkδil . (29)

The former matrix is the new mixing matrix for the dis-
tinguishable MIR model and, as its indistinguishable coun-
terpart, Eq. (13), captures the different ways that residents in
patch i traveling to j mix with agents from l traveling to k.
Specifically, we can represent matrix M as follows:

M =



M11
11 · · · M11

1N | · · · |M1N
11 · · · M1N

1N
· · · · · · · · · · · · · · · · · · · · ·

M11
N1 · · · M11

NN | · · · |M1N
N1 · · · M1N

NN
___ ___ ___ ___ ___ ___ ___
· · · · · · · · · · · · · · · · · · · · ·
___ ___ ___ ___ ___ ___ ___
MN1

11 · · · MN1
1N | · · · |MNN

11 · · · MNN
1N

· · · · · · · · · · · · · · · · · · · · ·
MN1

N1 · · · MN1
NN | · · · |MNN

N1 · · · MNN
NN


. (30)

Note that with the former formulation each sub-matrix Mil

of M contains the elements that relate those individuals with
residence in patch i with those living in l.

Taking advantage of the definition of the mixing matrix M
Eq. (28) can be written in a compact form as:

µ

λ
ε⃗ = M⃗ε , (31)
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Figure 3. Epidemic diagrams ρ∗(pd ,λ/λ0) for the cities of (a) New York, (b) Boston, (c) Austin, (d) Miami, (e) Detroit and ( f ) Seattle.
The continuous white line shows the epidemic threshold obtained by solving Eq. (32), whereas the dashed grey line accounts for the epidemic
threshold of the indistinguishable case, i.e. obtained by solving Eq. (12).

i.e an eigenvalue problem. From all the possible solutions
(eigenvectors) of Eq. (28) we are interested in the one corre-
sponding to the minimum value of λ (as it defines the epi-
demic threshold of the metapopulation), that corresponds to
the maximum eigenvalue of M. Thus, the epidemic threshold
reads:

λc =
µ

Λmax(M)
. (32)

Finally, we verify that Eq. (32) and the derivation of the
mixing matrix (29) are correct by computing the epidemic di-
agram ρ(pd ,λ ) and comparing with the theoretical prediction
for λc(pd). We have performed this analysis for 6 US cbsa
(see Table I for details): New York, Boston, Austin, Miami,
Detroit and Seattle. These results are shown in Fig. 3 where
λ has been normalized to λ0 so that at pd = 0 the normal-
ized epidemic threshold is 1. In each panel we overlay to each
contour plot ρ(pd ,λ/λ0) the curve λc(pd)/λ0 as derived by
calculating the spectral radius of the mixing matrix M of each
city and applying Eq. (32). The agreement of the analytical
formula is excellent and highlights the importance of consid-
ering the specific commuting patterns and the spatial distribu-
tion of the populations (the two key elements of the matrix M)
to assess the robustness of populations subjected to the spread

of communicable diseases. In addition to the accuracy of the
analytical prediction, the 6 plots illustrate the non-monotonic
trend of the epidemic threshold λc as a function of mobility
pd pinpointing that the epidemic detriment phenomenon re-
mains as a generic feature for distinguishable agents as it was
observed in the indistinguishable case.

E. Distinguishable vs. Indistinguishable behaviors

Although in terms of the epidemic detriment the results for
indistinguishable and distinguishable agents are qualitatively
similar, there are important quantitative differences between
the two cases that we now analyze. First, we focus on the
dependence of the epidemic threshold with mobility. In the
panels of Fig. 3 we have included the function λc(pd)/λ0
(dashed grey lines) for the case of indistinguishable agents
calculated as in Eq. (12), i.e through the computation of the
spectral radius of the mixing matrix for the indistinguishable
case, whose elements are given by Eq (13). Let us note that the
normalization factor in both curves, λ0, remains the same for
the indistinguishable and distinguishable cases since it corre-
sponds to the epidemic threshold when no mobility is at work,
λc(pd = 0), which is identical for both scenarios.
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(a)

(b)

(c)

(d)

(e)

Figure 4. Spatio-temporal unfolding of an epidemic in the Boston area under the indistinguishable and distinguishable frameworks. In (a) we
show the time evolution of the global prevalence ρ∗. Panels (b) and (c) show the time evolution of the local prevalence of each patch. Finally,
panels (d) and (e) show the map of the Boston metropolitan area in which each subpopulation is colored according to the time of arrival of the
first infections. This time is calculated as the time required for the instantaneous prevalence to reach 5% of the local population.

From the panels in Fig. 3 it becomes clear that the epidemic
threshold is always smaller in the distinguishable case than
in the indistinguishable one. This difference is related to the
underlying flow heterogeneity of the mobility networks. In
the distinguishable case, individuals who visit the main focus
of infection, and thus import contagions to their residences,
maintain this infectious flow between these two specific areas
over time. However, in the indistinguishable case, an indi-
vidual who has visited the focus may end up in a different
location in the following time steps, diluting the effect of con-
tagions between different subpopulations and thus avoiding
outbreaks of secondary contagions in these subpopulations.

These differences become more pronounced as the value
of pd increases. However, when mobility is extremely low,
pd ≳ 0, the two formalisms coincide exactly and the curves
λc(pd)/λ0 have the same slope. It is reasonable to think that,
since the detriment is because the residents of the infectious
focus begin to leave that node, at first order when travel is
scarce the indistinguishable formalism behaves the same as
the distinguishable one. In particular, for the indistinguishable
case, if the interval between two consecutive trips is much
longer than the duration of the infectious window of an in-

fected individual, it will rarely visit different patches during
its contagious cycle and will behave, for contagion purposes,
as a distinguishable individual.

Having analyzed the differences in the epidemic threshold
between the distinguishable and indistinguishable formalisms,
we focus now on studying their behavior in the supercriti-
cal regime. In particular, in this regime we are interested
in monitoring the transient from the initial state in which a
small infectious seed is placed in a single patch to the en-
demic regime after the subsequent infections spread through
the entire metapopulation. In Fig. 4 we use as a test frame-
work the city of Boston, and placing the same infectious seed
for the two formalisms we analyze its expansion for λ = 2λ0
and pd = 1.

In Fig. 4.a we show the time evolution for the global frac-
tion of infected individuals. It is clear that in the distinguish-
able case the pathogen spreads initially faster than in the indis-
tinguishable framework. Moreover, the distinguishable preva-
lence reaches its stationary value when the indistinguishable
prevalence is still negligible. However, once the epidemic un-
folds in the indistinguishable scenario, it reaches a stationary
prevalence much larger than in the distinguishable.
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Apart from the different time scales involved in the tran-
sient process to the endemic equilibrium we can monitor the
different spatio-temporal evolution from the initial outbreak to
the stationary regime. The two epidemic trajectories are com-
pared in Figs. 4.b-c. From these two plots it is clear that the
epidemic unfolding under the two frameworks follows differ-
ent paths although, given the different times scales involved,
it is difficult to pinpoint the localization of these differences.
To shed more light on the different spatio-temporal patterns
of each propagation process, in Figs. 4.d-e we have drawn the
map of the Boston area by assigning each patch a time value.
This value accounts for the exact time at which the infected
fraction of the patch reaches 5% of its population. It is clear
from the two colored maps that the non-distinguishable case
follows a more explosive behavior, so that once the contagions
spread out of the central Boston area, where the infectious
seeds are located, the disease reaches the entire metropolitan
population in a few time-steps. In contrast, for the distinguish-
able frame the process is highly sequential and takes more
than 40 time steps to reach the entire population following,
moreover, a radial pattern from the center to the periphery.

III. CONCLUSIONS

In this paper we have developed a Markovian framework
based on the MIR model to analyze the spread of commu-
nicable diseases in networked metapopulations. Unlike its
original formulation in which agents are labeled according to
their residence, the new framework incorporates the distin-
guishable nature of agents according to both their residence
and recurrent destinations. This new framework incorporates
a further partition of subpopulations that can be easily gath-
ered from commuting data and is certainly valuable for study-
ing the spread of diseases in metropolitan areas since recurrent
paths apply to most of the mobility flows.

After validating the Markovian equations by comparing
with results obtained with mechanistic agent-based simula-
tions, we have derived a new mixing matrix that captures the
basic interaction mechanisms between the subpopulations of
agents at different patches. By calculating the spectral radius
of this mixing matrix we can estimate the epidemic threshold
of the metapopulation, allowing us to estimate its robustness
to the spread of pathogens.

Finally, we have compared the results obtained consider-
ing indistinguishable and distinguishable agents, taking ad-
vantage of the fact that, in the limit of null mobility, both
frames are identical. Firstly, we have shown that indistin-
guishability overestimates the value of the epidemic thresh-
old, demonstrating how distinguishability does not allow con-
tagions produced in areas of high prevalence to be diluted be-
tween different patches, making it easier for them to cause
secondary infections. This overestimation of the epidemic
threshold, however, does not eliminate the phenomenon of
the epidemic detriment that is still observed in the case of
distinguishable agents. Likewise, we have observed that the
spatio-temporal diffusion for the distinguishable case occurs
more progressively than in the indistinguishable case, spread-

ing spatially much more explosively.
Our manuscript fuels the discussion on the relevance of the

nature of the mobility schemes introduced in the theoretical
framework to provide a fair assessment of the evolution of dis-
eases. In random-walker dynamics, Castioni et al.38 demon-
strate that the outcome of control policies shaping mobility is
strongly shaped by the ratio between the time scales involved
in both movements and contagions. This control parameter
is also crucial when one accounts for recurrent mobility pat-
terns and its variation changes the critical properties of the
metapopulation, leading to a vanishing of the epidemic detri-
ment here reported in some scenarios27. On more general
grounds, different theoretical works have shown that the in-
formation loss when translating higher-order flows in origin-
destination matrices39, the introduction of biases in the collec-
tion of mobility data40,41 or the misuse of raw mobility data as
OD matrices42 leads to substantial differences in the evolution
of epidemics.

Despite its simplicity, the new distinguishable framework
of the MIR model opens the door to the implementation of
more accurate descriptions of real urban environments, a con-
text where recurrent mobility flows predominate and precise
identification of possible contagion pathways is much needed.
Nevertheless, it is worth stressing that the model here pro-
posed does not capture entirely the weekly mobility rhythms
of the population, as assuming a fixed destination over the
weekends misrepresents the heterogeneous and variable na-
ture of our usual mobility patterns in leisure time43,44. The
formulation of a framework taking into account the time-
varying nature of our mobility patterns remains as future
work. In epidemiological terms, we have focused here on a
simplified version in which an epidemic SIS model is at work,
but this formalism can be generalized to any other compart-
mental dynamics along with other refinements such as con-
sidering the age partitioning of the population or the inclusion
of more complex interactions and mobility patterns.
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