
Nonlinear Dynamics on Interconnected Networks

I. INTRODUCTION

Networks of dynamical interacting units can represent
many complex systems, from the human brain to trans-
portation systems and societies. The study of these com-
plex networks, when accounting for different types of in-
teractions has become a subject of interest in the last few
years, especially because its representational power in the
description of users’ interactions in diverse online social
platforms (Facebook, Twitter, Instagram, etc.) [1], or in
representing different transportation modes in urban net-
works [2, 3]. The general name coined for these networks
is multilayer networks, where each layer accounts for a
type of interaction (see Fig. 1).

In the last years, it has been a boosted interest in the
analysis of the structure and dynamics on multilayer net-
works [4–7], essentially because the well-known theory
of complex networks developed for the study of a single
layer network has to be revisited when analyzing multi-
layer networks. Moreover, the outcome of the analysis
has revealed that new emergent physical phenomena can
appear as a direct consequence of the multilayer struc-
ture. In particular, the analysis of the robustness of the
structure in the presence of perturbations or defects, as
well as the cascade propagation of failures has focussed
the analysis of important contributions in the field [4, 8–
13].

From the physics point of view, the study of simple dif-
fusion processes (or more complex like epidemic spread-
ing, etc) has driven the understanding of the interplay
between dynamical processes and structure in the sub-
ject [11, 14–16]

From the mathematical point of view, the new level of
complexity required the definition of a novel mathemat-
ical framework [17], based on tensorial algebra, for their
representation and their structural reduction to simpler
subsets of networks [18]. The outgrowth of these mathe-
matical approaches is the development of new structural
descriptors, from centrality measures [19–24] to parti-
tions in communities to describe the mesoscale organi-
zation of nodes in multilayer topologies [25–27].

II. OVERVIEW OF PAPERS IN THE SPECIAL
ISSUE

In the following, we will briefly review the studies ac-
companying this Special Issue. In a few cases, for sake of
completeness, we report some mathematical details that
have been casted to a common notation, to avoid confu-
sion to the reader. More specifically, we will use Latin
lower indices to indicate nodes and Greek upper indices
to indicate layers.

Uncovering correlations in networked systems is cru-

cial to understand empirical networks. By exploiting the
tensorial formulation of multilayer networks [17], Ferraz
de Arruda, Cozzo, Moreno and Rodrigues [29] proposed a
generalization of the concept of assortativity that can be
used in directed and weighted networks. Projecting the
multilayer adjacency tensor M iα

jβ – accounting for both
intra- and inter-layer connections among node i in layer
α and node j in layer β – into different subspaces, they
were also able to unveil correlations of each layer sep-
arately and of the underlying network of layers. They
applied this new methodology to the network of Euro-
pean airports, where each layer represents an airline, and
found that aggregated representation of this multilayer
network might exhibit very different correlation patterns
that might lead to an incorrect understanding of the sys-
tem. Their second application concerned the effects of
correlations on epidemics spreading, where they intro-
duced the tensor

Riαjβ(λ, γ) = M iη
jσE

σ
η (αβ)δαβ +

γ

λ
M iη
jσE

σ
η (αβ)(Uαβ − δαβ ),(1)

generalizing the well-known contact matrix [30] to the
case of interactions between node i in layer α and node
j in layer β, where E, U and δ are special tensors, λ
and γ are epidemics parameters encoding the probabil-
ity of spreading through an intra-layer contact and the
spreading probability through an inter-layer contact, re-
spectively. Their microscopic Markov chain model for
the diffusion of the epidemics suggest that correlations
have a larger impact on the spreading dynamics when
the coupled networks have similar levels of heterogene-
ity and that, at variance with disassortative networks,
assortative multilayer systems exhibit a smaller epidemic
threshold, with the disease showing a faster initial growth
rate but a shorter duration.

Another dynamics of interest for applications, the one
of opinions, can be modeled within a multilayer frame-
work where each layer represents a different topic. Bat-
tiston, Cairoli, Nicosia, Baule and Latora [31] proposed
a model where agents can have different opinions on dif-
ferent topics and, additionally, they can be subjected to
media pressure. By imaging the opinion of one agent as
an arrow that can change its orientation, agents can be
coherent or incoherent, depending on the fact that they
have the same orientation on different layers or not, re-
spectively. The i−th agent in layer α is modeled as a
particle with spin sαi tending to spread its own ideas to
agent j in the neighborhood while, simultaneously, it is
affected by mass media, here playing the role of external
fields hα applied to the spin system in each layer. The
functional governing the dynamics of each agent i in layer
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FIG. 1. Illustration of multilayer networks of different types. In both cases, the number of nodes is 180 and the number of
layers is 6, but the topology is dramatically different: (a) a multiplex networks where a node exists in one or more layers
and inter-layer links connect its replicas; (b) an interdependent network, also known as network of networks, where each node
exists only in one layer and inter-layer links connect different nodes on different layers. This visualization has been created
with muxViz [28].

α is given by

Fαi = J

N∑
j=1

aαijs
α
j + γ

χi
J

M∑
β=1

sβi δ
α
β + hα, (2)

where aαij encodes the connections between agents in layer
α, J is a coefficient which models the intrinsic permeabil-
ity of agent i to social pressure and δαβ is the Kronecker

delta function. On the right-hand side of Eq. (2), the
first term models the social pressure exerted on i by its
neighbors, whereas the second term models the tendency
of agent i towards internal coherence. The parameter γ
tunes the relative importance of internal coherence and
social pressure, while χi determines the importance of
internal agent coherence. A rich variety of consensus
patterns can be modeled by using this approach. By
introducing thermal noise, it has been shown that global
consensus can be achieved only below a critical temper-
ature and that mass media can be used to polarize the
consensus of the whole system on a specific opinion.

A random rectangular graph (RRG) is a generaliza-
tion of the random geometric graph (RGG) in which the
nodes are embedded into a rectangle with side lengths
a and b = 1/a, instead of on a unit square [0, 1]2. Two
nodes are then connected if and only if they are sepa-
rated at a Euclidean distance smaller than or equal to
a certain threshold radius r. This particular network

structure is usually intended to represent urban street
networks where the nodes describe the intersection of
streets, represented by the edges of the graph. These
streets and their intersections are embedded in the two-
dimensional space representing the surface occupied by
the corresponding city. Similar situations occur with in-
frastructural and transportation systems ranging from
water supply networks and railroads to the internet and
wireless sensor networks. Estrada has found [32] a lower
bound for the diameter of RRGs. The diameter is an
important parameter per se as well as for its inclusion
in many inequalities for other network’s structural pa-
rameters. Moreover, he uses this bound to find an upper
bound for the algebraic connectivity of RRGs. The alge-
braic connectivity, the second smallest eigenvalue of the
graph Laplacian, is one of the most important parame-
ters relating network structure and dynamical processes
taking place on them, e.g., consensus/diffusion dynam-
ics, synchronization. Finally, the contribution focuses on
the consensus dynamics on RRGs where he finds analyt-
ically that as the rectangle becomes more elongated, the
time for reaching consensus increases polynomially with
the side length of the rectangle.

Why and how cooperative interactions thrive at all lev-
els of organization, from human societies to the simplest
biological systems, has obtained great research attention
across many disciplines. Complex network theory has
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provided important insights into the dynamics of interac-
tions in a structured population, and the updating rules
are the key process for the evolution of strategy behav-
iors in the framework of evolutionary dilemmas. Until
now, the discussion on evolutionary games on networks
has mainly focused on network structure and the nature
of the game. Zhang and Chen [33] scrutinize the role of
strategy updating by proposing a new way to confront the
analysis. The idea is to put the attention to the players’
switching probabilities. In the theoretical contact-based
setup proposed, players need to know their neighbors’
exact payoff information, detouring the requirement for
explicit information of the related payoffs, irrespective
of the strategy types. Employing the players’ switching
probabilities as a key step to establish the evolution of
strategies in the long run they compute the outcome of
the the classical game theoretical dilemmas.

Coupled infrastructures such as power grid, Internet,
water and gas distribution, etc, are widely investigated
because their robustness to overload and their resilience
to targeted or random failures might affect the lives of
millions of people. Scala, De Sanctis Lucentini, Caldarelli
and D’Agostino [34] investigated the abrupt breakdown
behavior of coupled distribution grids under load growth.
They considered the case of several coupled networks and
study the cascading behavior of such a model under in-
creasing stress, possibly driven by other layers. An em-
blematic example is given by the increase in the cost of
gas experienced by Ukraine that increased the stress on
the electrical network, a cheaper energy vector. In their
model, when a system α is subjected to some failures it
decreases its load by increasing the load on all other lay-
ers β 6= α by lαfαTα→β , where fα and lα are the fraction
of failed links and the load per link, respectively, in sys-
tem α. Their mean-field approach resulted in a system
of coupled equations

fα(t+ 1) = Pα(l̃α(t)/(1− fα(t))), (3)

being l̃α(t) the load per link experienced by layer α at
the t−th stage of the cascade and Pα(x) is the cumu-
lative distribution function accounting for the capacity
of system α. They found evidence for first-order tran-
sitions and their findings suggest that two competing
effects emerge while increasing the coupling among the
systems: the safety region where grids can operate with-
out withstanding systemic failures is enlarged, although
when systems fail they tend to fail together.

When trying to predict the long-term behavior in net-
works of interacting units, a recurrent question is to
characterize collective properties, such as synchroniza-
tion and predictability, in terms of the network topology
and interaction strengths. Skardal, Taylor, Sun and Are-
nas [35] investigated the dynamics of network-coupled
phase oscillators in the presence of heterogeneous cou-
pling frustration, where the interactions between differ-
ent pairs of network neighbors are allowed to be de-
scribed by different functions. They predicted, analyti-
cally, the behavior of some well-known networked system,

and showed that at variance with homogeneous coupling,
the presence of heterogeneity amplifies the total erosion
of synchronization while increasing the deviation from
the perfectly synchronized state. Their findings provided
evidence that the synchronized solution remains stable
for smaller ranges of coupling frustrations when hetero-
geneity is allowed.

Fernandez and Blumenthal [36] focused their study
on networks of coupled degrade-and-fire (DF) oscillators,
which are simple dynamical models of assemblies of inter-
acting self-repressing genes. Through a deep mathemat-
ical analysis, they have found that periodic and exhaus-
tive cycle of firings implies asymptotic periodic behavior
of gene expression levels, i.e. trajectory behaviors are
uniquely determined by their firing cycle. The implica-
tions of such finding are sound because, independently on
the topology, the asymptotic periodic behavior entrained
by a firing sequence is the fate of systems of interacting
DF oscillators. The result still has to be proved, but the
conjecture is there.

The study of bipartite networks is of utmost impor-
tance to unravel characteristics of networks formed by
nodes of different two-types. This is very common in
networked systems where the representation of differ-
ent entities is needed, for example users and usage (e.g.
dvd renters and dvd movies, etc). Estrada and Gomez-
Gardeñes have proposed a mathematical framework to
attack the complexity behind their analysis [37]. They
defined a network spectral bipartivity index that proved
to be very useful in the analysis of such relations. The
proposed measure is tested by analyzing the European
air transportation system, represented by 33 passenger
airlines, 25 of which correspond to “traditional” and 8 to
“low-cost” carriers (LCCs). For each airline carrier they
consider a network in which the nodes representing any
of the 450 commercial airports existing in Europe and
two nodes (airports) are connected if the corresponding
airline has a flight between them. By using the spectral
bipartivity index, their results show the organizational
differences of these two types of airlines (traditional and
low-cost) and how the alliances between traditional air-
lines affect the value of bipartivity. Motivated by the
above findings, they observe that traffic efficiency (as re-
vealed from real data about the traffic flow of each airline)
is strongly and negatively correlated with the bipartivity
of its network. Therefore, bipartivity seems to provide
a good descriptor of the efficiency of transportation net-
works and can be used to test the goodness of alliances
and possible mergers of airlines.

Cascading failures in complex networks have been the
subject of intensive research, because of their importance
in practical applications, from power grids overloading
to traffic congestion in road networks. In general, the
dynamics of the cascade is governed by several factors,
among which the interactions between different layers.
Burkholz, Leduc, Garas and Schweitzer [38] presented
a study about cascade failures on a two-layer multiplex
network where the feedback depends on the coupling
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strength between the layers. Their results are relevant
for coupled networks like interbank systems, where banks
are exposed to each other via different types of business
activities. In this framework, the authors developed a
model where failures play the role of bankruptcies: the
first layer encodes firms’ exposure in the core business
whereas the second layer represents exposures between
firms in the subsidiary business. The cascading dynamics
on each layer is according to the threshold failure mecha-
nism proposed by Watts [39], where a node i fails in layer
α if a fraction of its neighbors failed and its fragility is
above a predefined threshold θαi . The fragility of a node
i in layer α is given by

φαi =
nαi
kαi
, (4)

where nαi is the number of its failed neighbors and kαi is
its degree, in layer α. When the coupling strength be-
tween the two layers is small, they have shown that the
systemic risk in the multiplex network is smaller than
in the aggregated one. They observed sharpened phase
transitions in the cascade size that are less pronounced
on the aggregated representation of the system, with sys-
temic risk increasing above a critical coupling strength
because of the mutual amplification of cascades in the
two layers.

In many diffusion processes, such as epidemics spread-
ing in spatial networks, information dissemination in so-
cial networks or traffic in transportation networks, it is
of crucial importance to identify nodes that are more
central than others in the system, with respect to certain
criteria or specific dynamics. Solé-Ribalta, De Domenico,
Gómez and Arenas [40] propose a method to identify such
nodes in multilayer and interconnected systems based on
random walk diffusion through the network. By exploit-
ing the tensorial algebra [17] to represent multilayer net-
works and random walk dynamics on the top of such sys-
tems [11] they first calculate quantities of interests such

as node’s occupation probability and mean first passage
time between any pairs of nodes, providing analytical ex-
pressions. Their calculations make use of the concept of
absorbing states, where the destination node of a walker
is assumed to trap the walker forever. By introducing the
transition tensor T governing random walks over multi-
layer networks and the corresponding absorbing transi-
tion tensor T[d], their calculations are based on the tensor

poσjβ(t) =
(
T t[d]

)oσ
jβ

(5)

indicating the probability of visiting node j in layer β,
after t time steps, considering that the walk originated in
node o in layer σ. This mathematical trick allows them to
calculate efficiently random walk betweenness and close-
ness centralities. Random walk closeness centrality of a
node i in a multilayer network is defined as the inverse
of the average number of steps that a random walker,
starting from any other node in the multilayer network,
requires to reach any replica of node i for the first time.
Random walk betweenness of a node i is defined as the
amount of random walks between any pair of origin and
destination nodes that pass through any replica of node
i in the multilayer network. Their findings, completing
this Special Issue, are useful to identify central nodes in
real systems where entities that travel the network do
not always take the shortest path.
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43007 Tarragona, Spain



6

III. ORDER OF APPEARANCE IN THE
SPECIAL ISSUE

1. On degree-degree correlations in multilayer net-
works

2. Interplay between consensus and coherence in a
model of interacting opinions

3. Consensus Dynamics on Random Rectangular
Graphs

4. Contact-based model for strategy updating and
evolution of cooperation

5. Coupled overload cascades

6. Erosion of synchronization: Coupling heterogeneity
and network structure

7. Asymptotic periodicity in networks of degrade-and-
fire oscillators

8. Network Bipartivity and the Transportation Effi-
ciency of European Passenger Airlines

9. Systemic risk in multiplex networks with asymmet-
ric coupling and threshold feedback

10. Random Walk Centrality in Interconnected Multi-
layer Networks


	Nonlinear Dynamics on Interconnected Networks
	Introduction
	Overview of papers in the Special Issue
	Acknowledgments
	References
	Order of appearance in the Special Issue


