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Abstract, - We present an analytical approach that allows to compute the long-time behaviour of
networks with oscillatory behaviour. We show that phase locking is a mechanism to store
information in the system. This technique is an interesting alternative to eonventional methods of
analysis of associative memories,

The analysis of dynamical properties of attractor neural networks (ANN) has been the
focus of important works in the last few years [1,2]. It provides information about the short-
and long-time behaviour of networks characterized by symmetric and asymmetric eouplings
and also allows to understand the nature of some collective phenomena, such as mutual
synchronization in the temporal activity of large assemblies of neurons, which are responsible
for interesting effects related to the processing of information observed in real experi-
ments [3].

To reproduce synchronization between members of a population it is important to
intreduce elements which could take into account the degree of coherence in the temporal
response of active neurons. The conventional models of ANN characterizing the activity of
the neurons through binary values[4] are not suitable for this task and more complex
descriptions are necessary. Abbott [6] and Schuster et al. [6] have shown that some
biologically motivated models capable of accounting for the oscillatory behaviour of neurons
can be written in terms of phase equations after a suitable transformation. This is quite
interesting because the new simplified deseription allows an analytical treatment.
Additionally, these models may present typieal properties of assoeiative memory, not in
terms of fixed points but in terms of phase locking. However, the techniques used to analyse
their long-time behaviour are essentially qualitative. Our goal is to present an approach
which allows to get rigorous results in the stationary state.

(Qur starting peint is one of the best-known models of phase oscillators, the so-called
Kuramoto’s model [7). Several versions of it have appeared in other studies about
synchronization in neural systems[5,6,8]. In this model the phase of each element of the



80 EURCPHYSICS LETTERS

population evolves aceording to the following Langevin equation:
N
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where J;; is the coupling matrix, 6; and w; are the phase and the natural frequency of the ¢-th
oscillator, ; is picked up randomly from a certain distribution g{w), N is the size of the
population and y,(t) are independent white-noise random processes with zero mean and
correlation

{y;()y;(¢)y=2Ds;8t —t"), D=0. {2)

The specific form proposed for the couplings is the bridge that allows to make an analogy
between models of phase oscillators and ANN. We have considered a population of N
neurons, active at high rate during a given period of time and presenting an oscillatory
behaviour. We have also assumed that the synaptic efficacies may contain information about
the phase of each element. As usual in ANN we want to store p sets of random patterns
(phases) {£} and a simply way to do this is to assume that
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where J is the intensity of the coupling. This form preserves the basic idea of Hebb’s rule but
now adapted to the symmetry of our problem. Our goal is to determine the stationary
properties of the model deseribed by eqgs. (1) and (8) through a mean-field formalism widely
used in the analysis of large populations of coupled oseillators [9], but new in the treatment of
ANN. Notice that when the distribution of frequencies vanishes (g(w) = 8(w)) our neurons
are no longer oscillators. In this case our system becomes a @-state cloek model of neural
network in the limit @ — . It has strong analogies with a model studied by Cook [10]. We
will show that with the method discussed in this paper it is possible to reproduce the results
of [10] in a different way, emphasizing the relevant influence of g(w) on the long-time
properties of the system.
To analyse our model, it is eonvenient to infroduce the following order parameters:

qt expligi]= %Zexp [(0; = &§)]; (4)
7

¢% play the role of a mean phase, g% measures the correlation between the state of the
system and the pattern £#, and g% is another correlation not relevant in our study. Notice
that the state of the system, described by an N-dimensional vector whose i-th component is
the phase of the i-th oscillator, is changing continuously in time. This means that except for
o = ( there are not fixed points of the dynamics. However, as we have mentioned previously
this is not a problem since it is possible to store information as a difference of phases between
pairs of oscillators (this fact justifies the choice of the learning rule (3)), a quantity that may
remain eonstant in time. Therefore, if the initial state is correlated (in terms of phase locking)
with one of the embedded patterns, the final state will also have a maecroseopic correlation
with the same pattern provided p is below a critical value. Then, the interesting physical
quantity which can describe synchronization effects is ¢*, since

1
g% = — ZEJ:exp [0; — & — 0; + £,] = (cos (6 — £)) + (sin (0 — £))°. (5)
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Now, the evolution equation for the phase oseillators is

i, _
dt
The main idea is to realize that in the thermodynamic limit N — %, it is possible to

derive a non-linear Fokker-Planck equation for the one-oscillator probability density
o8, B, w, £)111]

B
w; g 2 (g8 sin(§ =6+ ) + g sin(gh ~ 6, ] + 7D (6)
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where &, is the drift velocity term
J P
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Now, the order parameters (4) become
¥4
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where g(w) and f, (£*) are the frequency and pattern distribution, respectively. Since we are
interested in the long-time behaviour of the system, we have solved eq. (7) by imposing
stationary conditions leading to

an
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where
J‘ P
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J r
N(o,n) = exp[-; " 3D, g gh cos (¢ — 0 —n—~E*) + g% cos (¢ —8—n+ E*‘)]} (12)
and
2z : 2
Z = f do M(9) j N, 7)dy. (13)
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Equations (9)-(12) describe the behaviour of the system in the most general case. However,
in this study we have only considered the low loading limit, i.e. when the capacity « = p/N,
defined as the ratio between the number of patterns and the number of units of the system,
goes to zero. In this limit we can assume that when the initial state of the system has a
macroscopic correlation with a pattern y, only the order parameter ¢* = g will be relevant,
which simplifies notably the nature of the problem. The situation with « = 0 will be
considered elsewhere.

To caleulate ¢ we can proceed in two different manners, either by solving directly the
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equation, which is complex because it means to solve an integral equation implying to get
values of ¢ throngh numerical integration, or by identifying Z as a generating functional of
the order parameters. This method is more elegant and gives algebraic expressions easier to
deal with. Let us rewrite Z as

2 2
Z = J do M8, <, P) j NG, n)dn, (14)
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where

M@, o, §) = explocos (@ — 8+ &)], (15)
then it is straightforward to see that

= ((—a—ln Z (16)
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where {...)) is an average over » and & Integrating (13), averaging over £ and evaluating the
partial derivative (16) we obtain a self-consistent equation for the ¢ parameter:
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where I, are the modified Bessel funetions of first kind of order %, # = J/2D and { ), means an
average over the distribution of frequencies. Taking into account the symmetry properties of
the modified Bessel functions for = integer (F,(x)=17_,(x)), we can summarize this
formula in

s (=17
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In practice the numerical computation of this algebraic expression is not difficult becaunse
the maximum contribution to the series comes from the modified Bessel functions of lower
orders. In contrast with eonventional models of ANN for which a positive overlap is always
found below the critical temperature (in the limit « — 0), here phase locking can be destroyed
if the distribution of frequencies is sufficiently broad. From a linear analysis of (16) it is
straightforward to show that, as

T g _

—— dw <87, (19)

_l- (w?/D?)+1 g

no synechronization is allowed.
Finally, it is interesting to compare our results with those given by Cook in[10] in the

limit of @ — . We observe from (18) that when - 0 (absence of frequencies) the order
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parameter g is

g= 1 (Bg)
Li(gg)’

which is exactly the same expression reported by Cook, showing that for o — 0 both models
behave identically, although this is not true for finite «. However, our result has been derived
in a more general context, since we have included the effect of a distribution of frequencies
and additionally it is not difficult to deal with more complex situations (e.g. external
fields),

(20)
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