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Categorizing words through semantic memory navigation
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Abstract. Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowl-

edge. Empirical data indicate that semantic memory is organized in a network structure. Everyday expe-

rience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient.

This implies either that semantic memory encodes, besides thousands of words, different kind of links for

different relationships (introducing greater complexity and storage costs), or that the structure evolves

facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological

ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic back-

bone which comprises conceptual structure (extraction of categorical relations between pairs of words),

from the rest of information present in the structure. To this end, we first present and characterize an em-

pirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology.

We schematize this latter process as uncorrelated random walks from node to node, which converge to a

feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and

point at the problem of category formation in close connection to linguistic and non-linguistic experience.

PACS. 89.75.Hc Networks and genealogical trees – 89.75.Fb Structures and organization in complex

systems

1 Introduction

Semantic memory is the cognitive system where concep-

tual knowledge is stored. Empirical evidence from experi-

ments with subjects and other lexical resources (thesauri

[1], corpus [2], etc.) suggest that this system can be suit-

ably represented as a semantic network, where each node

corresponds to a word, and edges stand as pairwise as-

sociations. The network reconstructed from semantic in-

formation is in contrast with hierarchies created by in-

dividuals for computer storage and retrieval -which are
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trees- [3], the network has an intricate topology of cyclic

relationships. Estimations that on average a healthy adult

knows from 20000 to 40000 words [4] raise challenging

questions about storage capacity, organization of the in-

formation and verbal performance. Regarding organiza-

tion, some words are linked by virtue of their semantic

similarity (intra-categorical relations, e.g. car and auto-

mobile). Other types of associations fall under the more

general semantic relatedness, which includes the former

and any kind of functional or frequent association [5], e.g.

car and road. This implies that many types of association

exist undistinguished in the network structure. In partic-

ular, categorical (similarity) relations are embedded in a

much richer structure of superposed relationships.

In this article we propose a computational model to ex-

tract semantic similarity information from the track of a

dynamical process upon word association data. The main

idea is that categorical relations emerge from navigation

on the topology of semantic memory. Although we fo-

cus on cognitive phenomena and data, our efforts can be

more generally interpreted in terms of the extraction of

the backbone of a network, which entails that there exist

“master relations” between elements (long-lasting simi-

larity relations) and “incidental” (experience-dependent)

ones that are entangled with the previous.

We use two empirical data sets to test the model: a

general association semantic network as substrate of a dy-

namic process, and a feature similarity network for com-

parison purposes. Both are characterized in the next sec-

tion. After that, the model itself is detailed. We name

it the Random Inheritance Model (RIM) because it is

based on uncorrelated random walks from node to node

that propagate an inheritance mechanism among words.

The results obtained yield significant success both at the

macro- and the microscopic level when compared to ac-

tual data. Finally, we discuss that the key to such success

is the modular structure of the substrate network, which

retains significant meta-similitude relationships.

2 Topology of semantic networks

Before focusing on the model it is necessary to characterize

the data under consideration. The algorithm that imple-

ments our model runs on general word association data,

which are typically called Free Association. It is widely

accepted that such data offer the most general and real-

istic insight of the structure of semantic memory, because

they are not restricted to a particular kind of association.

On the contrary, feature similarity data reports only the

amount of features two words have in common, thus dis-

playing strictly pairwise similarity information.

2.1 Free-Association Norms

Nelson et al. collected these norms (FA from now on) by

asking over 6000 participants to produce (write down) the

first word (target) that came to their mind when con-

fronted with a cue (word presented to the subject) [6]. The

experiment was performed using more than 5000 distinct

cues. Among other information, a frequency of coinci-

dence between subjects for each pair of words is obtained.
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As an example, words mice and cheese are neighbors in

this database, because a large fraction of the subjects

produced the target mice in response to the cue cheese.

Note, however, that the association of these two words

is due to their similarity but other relationships (in this

case mice eat cheese). The network empirically obtained

is directed (asymmetric) and weighted, weights represent

the frequency of association in the sample. We maintain

the asymmetry property in our approach to preserve the

meaning of the empirical data.

2.2 Feature Production Norms

Feature Production Norms (FP from now on) were col-

lected by McRae et al. [7] by asking subjects to produce

features when confronted with a certain word. This fea-

ture collection is used to build up a vector of character-

istics for each word, where each dimension represents a

feature. The value of each component of the final vector

represents the production frequency of the corresponding

feature across participants. These norms include 541 con-

cepts. Semantic similarity is computed as the cosine (over-

lap) between pairs of vectors of characteristics, obtained

as the dot product between two concept vectors, divided

by the product of their lengths. For example, words like

banjo and accordion are very similar (i.e. they have a pro-

jection close to 1) because they share many features as

musical instruments, their vector representations show a

high overlap. On the contrary, vectors for banjo and spider

are very different, showing an overlap close to 0 (orthog-

onal vectors). In terms of network representation an edge

is laid between a pair of nodes whenever their vectors pro-

jection is different from 0, and its weight is the features

similarity between the two words. The network is thus

undirected (symmetric relationships).

The differences in the nature of edges has drastic ef-

fects on the topology of these semantic networks, this can

be analyzed in terms of statistical descriptors. In table 1

we highlight some of such descriptors. 〈s〉 is the average

strength per node; L is the average path length, defined

as the average of the geodesic paths (minimal distance)

between any pair of nodes; D is the diameter of the net-

work, i.e. the longest geodesic path in the network; Ci

is the clustering coefficient of a single node, its average

across N (network size) is indicative of the cohesion in

data. Strength distribution P (s) is a cumulative distribu-

tion function, which gives the probability that the strength

of a node is greater than or equal to s. It is helpful to gain

a global vision of a network’s connectivity profile, in fig. 3

we see FA’s and FP’s distributions. A complete review of

these descriptors can be found in [8–10].

It is readily understood from table 1 that the struc-

tures differ largely. The high connectivity in FP gives raise

to a dense network, which in turn allows that any node

is reachable in less than 2 steps on average. It also has

the effect of a highly cohesive structure, i.e. clustering is

prominent. In order to avoid size effects (the difference be-

tween FA and FP sizes), the same statistics are computed

for the common subset of words, the differences between

both topologies still hold. Strength distribution, which is
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plotted for FA’s and FP’s common subgraphs, also evi-

dences deep structural disagreement, fig. 3.

Table 1. Main statistical descriptors of the networks FA and

FP, and their respective common words’ subnetworks. N is the

number of nodes; 〈s〉 is the average strength; L is the average

shortest path length; D is the diameter of the network and C

is clustering coefficient.

FA (all) FP (all) FA (subset) FP (subset)

N 5018 541 376 376

〈s〉 0.77 20.20 0.26 13.43

L 3.04 1.68 4.41 1.68

D 5 5 9 3

C 0.1862 0.6344 0.1926 0.6253

We have analyzed quantities that describe macro and

micro levels of networks. Also at the level of groups or

communities (mesoscale) differences arise between FA and

FP. This is expected, both because reviewed topological

features differ largely, and the semantics of links is dif-

ferent from construction. Modularity optimization meth-

ods [11–13] yield partitions in which groups of words are

gathered differently. The statistical significance of mod-

ularity is performed in a sample obtained by randomiz-

ing the original network ad applying the same method of

optimization [14]. FA shows a highly modular structure

Q = 0.6162, compared to its random counter part Q =

0.091 ± 0.001. FP reaches a modularity value Q = 0.4288

also very significant compared to its random counter part

Q = 0.323 ± 0.002. Lower modularity implies that clear

boundaries are harder to define, this fits well with evi-

a FA
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film

preview
screen

popcorn

cinema

critic

airplane

halloween

fun

door

develop
mafia

overview
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writer

art

opinion

b FP
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harmonica
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drum tuba
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violin

trumpet
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elephant
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crow
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bread

beans

belt
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scarf

Fig. 1. A sample of words that conform communities, from

partitions obtained through modularity optimization in (a) FA

and (b) FP. For the sake of simplicity edges leaving the de-

picted subgraph have been removed (color online).

dence of humans’ fuzzy categorical system [15] and with

computational models of verbal fluency [16]. Despite this,

a close look to the words that conform communities, ei-

ther in FA or FP, correctly reflect the distinct underlying

associations, see fig. 1.

3 The Random Inheritance Model (RIM)

Up to now we have some clues about the type of topology

our algorithm will be run on (FA), and what the output of
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the model should resemble (FP). From this knowledge we

move on to develop the logic steps behind our proposal and

describe the mathematical framework behind it. Recent

works have pointed out the ability of a random navigation

to explore the complexity of networks [17–19]. Here we

propose a random navigation process and an inheritance

mechanism to disentangle categorical relationships from a

semantic network. Our intuition about the expected suc-

cess of our approach relies on two facts: the modular struc-

ture of the FA network retains significant meta-similitude

relationships, and random walks are the simplest dynami-

cal processes capable of revealing the local neighborhoods

of nodes when they persistently get trapped into modules.

The inheritance mechanism is a simple reinforcement of

similarities within these groups. We call this algorithm

the Random Inheritance Model (RIM).

The RIM proceeds in three steps, (i) initialization, (ii)

navigation and inheritance, and (iii) output construction.

Step (i) tags every word in the FA network with an initial

features vector. The vectors are orthogonal in the canoni-

cal basis to avoid initial bias. That means that every word

has associated a vector of N -dimensions, being N the size

of the network, with a component at 1 and the rest at

zero. The second step consists of launching random walks

of length S from every word i in the network. The inheri-

tance mechanism changes the vector of i, vi depending on

the navigation behavior. Let s = {s1, s2, ..., sn} the set of

visited nodes. Then the new vector for node i is computed

as:

vi =
∑

si∈s

vsi
(1)

Note that (a) update of the feature vectors is synchro-

nized, final values are computed after completion of the

inheritance for every word; and (b) a random walk is a

time-reversible finite Markov chain, which implies that

node i can be itself in the set of visited nodes, see [20]

for a survey on the topic. A new (synthetic) network FS

is built in step (iii). Nodes in the new structure are those

from the substrate network, weights between them are the

result of projecting all pairs of updated vectors.

Steps (i)-(iii) are iterated (by simulating several runs) up

to convergence of the average of the synthetic feature sim-

ilarity networks generated at each run. The final average

is the synthetic feature similarity network to be compared

to FP.

This algorithm can be algebraically described in terms

of Markov chains. Before we must define the transition

probability of the FA network. The elements of FA (aij)

correspond to frequency of first association reported in

[6]. However, note that the 5018 words that appear on the

data set are not all the words that appeared in the ex-

periment, but only those that were at the same time cues

in the experiment. Therefore data need to be normalized

before having a transition probability matrix. We define

the transition probability matrix P as:

Pij =
aij∑
j aij

(2)

As the original matrix, this one is also asymmetric.

Once the matrix P is constructed, the random walkers

of different lengths are simply represented by powers of

P . In practice, this means that if we perform random
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Fig. 2. In RIM, the visits of a random walker starting at

node i trigger the inheritance mechanism, which modifies the

features vector of a node i. In the figure, a random walk of 4

steps changes the vector of node 1 (color online).

walks of length S, after averaging over many realizations

we will converge to the transition matrix PS , every ele-

ment (PS)ij represents the probability of reaching j, from

i, in S steps. The inheritance process corresponds, in this

scenario, to a change of basis, from the orthogonal basis

of the N -dimensional space, to the new basis in the space

of transitions T :

T = lim
S→∞

S∑

i=1

P i = (I − P )−1 (3)

The convergence of eq. (3) is guaranteed by the Perron-

Frobenius theorem. In practice, the summation in eq. (3)

converges, in terms of the matrix 1-norm, very fast, limit-

ing the dependence on indirect associative strengths [21].

Although computations were done up to S = 10, S = 4

is enough to reach quasi-stationay states in T . Results

for RIM in this work are expressed for S = 4 from now

on. Finally, FS is the matrix that will represent in our

model the feature similarity network (synthetic features

network), where similarity is calculated as the cosine of

the vectors in the new space, given by the scalar product

of the matrix and its transpose, FS = TT †.

RIM fits naturally in the family of path-based similar-

ity measures [22–28]. Jaccard index [22], cosine similarity

[24] and the like have an inherent constraint, they can

only account for short range similarities. This limitation

is overcome in measures that take into consideration also

long-range relationships [26–28]. However, a subtle dis-

tinctive feature of RIM is that similarity between nodes

i and j is not a function of the number of paths from i
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to j, but depends on their navigational characteristics to

the whole network, i.e. two nodes are similar if random

walkers departing from them behave similarly. Cosine of

vectors at the end of the navigation process accounts for

random walkers’ global performance. We think this partic-

ular feature is adequate in a cognitive-inspired dynamical

mechanism, where navigation matters.

4 Model performance

The algorithm sketched above yields a new synthetic net-

work, FS. The capacity of RIM to extract similarity in-

formation must be tested against the empirical FP. We

first check statistical macroscopical resemblance between

FS and FP, by direct comparison of network descriptors

and P (s). We also point out results from Latent Seman-

tic Analysis, LSA [29,30]. LSA uses truncated Singular

Value Decomposition to infer semantic similarity between

pairs of words. We report results for LSA trained on the

TASA corpus and truncation at d = 300, for the subset of

common words in FA and FP. We will refer to this net-

work as LSA-N. This LSA TASA-based representation is

an appropriate benchmark because it largely succeeds at

predicting human synonym test judgments [31].

In fig. 3 we plot the cumulative strength distribution

P (s) of the empirical networks FA, FP, and the synthetic

ones LSA-N and FS. The statistical agreement between

FP and FS is remarkable. Note that all distributions present

an exponential decay instead of a power-law decay, being

the cutoff of the distribution in FA more pronounced due

to its original sparseness. Random homogeneous networks

0.25 0.5 0.75 1
s

0.01

0.1

1

P(
s)

FA

0 20 40 60 80
s

0.01

0.1

1

FP
FS
LSA-N

Fig. 3. Log-linear plots of the cumulative strength distribution

of the networks. Left: Free Association norms FA (substrate of

the dynamic process). Right: Feature Production norms FP

(empirical target) , and the synthetic networks obtained using

Latent Semantic Analysis (LSA-N) and Random Inheritance

Model (FS).

typically show this specific form of the distributions. Main

descriptors of the four networks are presented in table 2.

Again, the agreement between FP and FS is remarkable,

the model reproduces with significant accuracy average

strength, average path length, diameter, and clustering of

the FP target network. The descriptors indicate that LSA-

N is even denser than FP, close to complete connectivity.

Though informative and important, agreement on av-

erage or global descriptors does not determine to state the

validity of RIM to extract actual categorical information

from the original substrate. The reason for this is that

nodes are tagged, conformity must be sought down to the

local level. In practice, we intend to test whether the spe-

cific neighborhood of a word in FP is replicated for the

same word in FS (and LSA-N). We proceed as follows:

given a specific word i, we start sorting its neighbors ac-
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Table 2. Statistical parameters for Free Association norms FA

(substrate of the dynamic process), Feature Production norms

FP (empirical target), and the synthetic networks obtained

using Latent Semantic Analysis LSA and Random Inheritance

Model RIM.

Descriptor FA FP LSA-N FS

N 376 376 376 376

〈s〉 0.26 13.43 39.60 15.62

L 4.41 1.68 0.02 1.77

D 9 3 2 3

C 0.1926 0.6253 0.9611 0.5848

cording to their linking weight. We apply this for each

word in our data sets forming lists. The list of each word

in FP is the empirical reference, and the lists we want to

compare with, are those obtained for each word in the syn-

thetic data sets, FS and LSA-N. We restrict our analysis

up to the first 15 ordered neighbors, assuming that these

are the most significant ones.

We now need a convenient measure to compare pairs

of lists. To this end, we design a restrictive expression

that assigns an error score between a list and its reference.

Error depends on the number of mismatches between both

lists, and also on the number of misplacements in them.

A mismatch (M) corresponds to a word that exist in the

reference list and not in the synthetic list and vice versa. A

misplacement (O) is an error in the order of appearance of

both words in each list. The error score E is then defined

as:

E = EM +
EO

l − EM

(4)

where EM stands for the number of mismatches, EO the

number of displacements and l the length of the list. This

quantity is inspired in Levenshtein edit distance [32] and

its generalization, Damerau-Levenshtein distance [33]. In

them, similarity between two strings depends on the amount

of insertions/deletions and transpositions that one has to

perform on a string in order to completely match an-

other one. Notice that E is strongly increased when a

mismatch appears, movements are less punished. Note

also that E = 0 when lists match perfectly, we prescribe

E = l + 1 for two completely different lists.

Besides a proper measure, we also define a suitable

micro null case. To this end, we check whether categorical

information is available just by listing a word’s closest

neighbors in the original FA. This implies the calculation

of all-to-all shortest paths, weighting links as dij = 1

pij
,

stronger relatedness is equivalent to shorter distance. Note

that a direct neighbor of word i, i.e. a word with an edge

from i, might lie at a longer distance than a second-level

word. Success with this strategy would imply that RIM’s

retrieval capacity is merely due to topological closeness.

Success, i.e. 100(1− E
l+1

), with E as defined in eq. (4),

is plotted in fig. 4 for FS and LSA-N. Error in the null

model is close to 100%, it has been left out in this plot.

On average the success of FS is about 10% higher than

that of LSA-N, the null model evidences that categorical

information demands a stronger model to be disentangled.
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Fig. 4. For each synthetic network (LSA and FS) we have

measured the mean error (for l = 1 to l = 15) against FP,

according to eq. (4). We plot 100(1−E) to obtain a percentage

measure.

5 Summary and Conclusions

We have designed a simple information retrieval algorithm

(RIM). This algorithm yields a measure of similarity be-

tween all pairs of vertices in a network. RIM is naturally

related to a class of path-based similarity measures, but its

aim is not the discovery of structural similarity. Inspired

by cognitive mechanisms of memory search and retrieval,

RIM highlights similar words, i.e. words that belong to

the same category. From this point of view, the focus is

not to spot words with structural similarities, but words

with similar meaning.

Along the article we propose that RIM is related to

open problems in natural language processing and cogni-

tive science, the understanding of conceptual knowledge

organization. For this reason empirical data is related to

cognitive science, and output interpretation is in terms of

semantic knowledge, the capacity of RIM to predict se-

mantic similarity. RIM’s results are compared to those of

LSA, which has a long history of success in many machine

learning linguistic-related tasks.

However we suspect that RIM has a more general inter-

pretation. The meaning of a word (its defining features) is

reduced to a dynamic process of probabilistic walks and in-

heritance, blind to semantic content. Then, semantic sim-

ilarity is just similarity of the behavior of random walkers:

two vertices are highly similar when random walkers de-

parting from them visit, on average, the same nodes. The

close connection of RIM to random walkers allows its re-

duction to an algebraic description in terms of Markov

chains. All these facts yield an algebraic and topological

interpretation of conceptual knowledge.

Indeed, topology is a key factor to understand RIM’s

success. In a highly modular scenario, such as FA, random

walkers tend to get trapped [34,35] reinforcing inheritance

among vertices in the same community. Topological com-

munities then enable meta-similitude relationships. While

immediate neighborhood does not suffice to infer categori-

cal relationships, see fig. 4, mesoscale relationships matter.
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Table 3. Some illustrative examples of LSA and RIM’s pre-

dictive capacity, when compared to our FP (list size l = 10).

TUBA

FP LSA RIM

trombone clarinet trombone

trumpet violin saxophone

drum flute trumpet

cello guitar flute

clarinet trombone clarinet

saxophone fork cello

flute trumpet violin

harp cake harp

banjo drum banjo

piano piano stereo

ERROR 4.83 2.5

ROOSTER

FP LSA RIM

chicken cat chicken

goose gate turkey

pigeon donkey crow

sparrow barn robin

penguin turnip sparrow

pelican owl bluejay

bluejay pig pigeon

dove fence pelican

hawk lion goose

turkey strawberry hawk

ERROR 11 2.87


