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ABSTRACT INTRODUCTION

A neural network based on fuzzy ARTMAP that is capable of
learning the basic non-linear dynamics of a turbulent velocity field
is presented. The neural system is capable of generating a detailed
multi-point time record with the same structural characteristics and
basic statistics as those of the otiginal instantaneous veloeity field
used for training. The good performance of the proposed
architecture is demonstrated by the generation of synthetic two-
dimensional velocity data at eight different positions along the
homogeneous {spanwise) direction in the far region of a turbulent
wake flow generated behind a cylinder at {Re=1,200) and
(x/D=420). The analysis of the synthetic velocity field, carried out
with spectral techniques, POD and pattern recognition, reveals
that the proposed neural system is capable of capturing the highly
non-linear dynamics of free turbulence and of reproducing the
sequence of individual classes of relevant events present in
turbulent wake flows. The trained neural system also yields
patterns of the coherent structures embedded in the flow when
presented with input data containing partial information of the
instantaneous veloeity maps of these events. This feature could
be used to help in the interpretation of turbulent data measured in
complex fluid flow experiments or obtainad by direct aumerical
simulation.
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Turbulence is a fluid flow phenomenon of significant
fundamenta! interest as well as of commiercial importance for its
impact in the operational performance and costs of many industrial
processes and of transportation systems. It is characterized by an
fields which is the resnlt of vortical three-dimensional motions that
occur at high Reynolds numbers, when the ratio of inertial to
viscous forces is high {Townsend, 1976; McComb, 1990). The
study of turbulent flows relies heavi ly on experimental data and on
the numerical solution of the Navier-Stokes equations of {Tuid
motion because turbulence is an unsolved classical problem
(Nelkin, 1992), The interpretation and control of the very large
range of excited space and time scales present in these flows, and
of the associated mixing that they cause (Kadanoff, 1996), requires
the application of analytical, experimental and computational
techniques (Sreenivasan, 1990),

Flow visualizations carried out by Brown and Roshko (1974) and
Falco (1977) showed that there are large-scale, recurrént, coherent
eddies among the vortical motions present in turbulent flows, A
large number of quantitative techniques, such as spatial
cotrelation functions and POD (Grant, 1958; Lumley, 1965; Adrian
and Moin, 1988), pattern recognition and conditional averaging

Jdrregular space and time dependence of the velocity and scaiar
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(Townsend, 1979; Antonia, 1981; Ferre and Giralt, 1989; Ferre-Gine
et al., 1996; Kopp et al., 1997}, etc., have been developed to
determine the structure of turbulent fields, These techniques use
features of the coherent motions to identify and educe them from
measured or numerical data sets, in a closed, non-interactive mode.
It is interesting to note that the fuzzy-neural network pattern
recogrition technigue developed by Ferre-Gine et al. (1996) could
operate as an aufomatic, free from operator bias, classification
technique capable of categorizing all types of coherent and
disordered motions present in the data. This capability could be
exploited to generate turbulent signals if the method could be
reversed, i.e., could predict a sequence of classes of patterns from
an initial velocity condition, Could, thus, such a neural network be
used not only to classify events but also to capture and reproduce
the dynamics of their occurrence? Could this system be applied
openly and interactively to identify the structure present in any
turbulent flow as an expert system?

Here we report a cognitive neural network architecture based on
fuzzy ARTMAP (Carpenter et al., 1992) that is capable of learning
the basic non-linear dynamics of 5 turbulent velocity field and to
generate, afterwards, a detailed multi-point time record a5 detailed
as can be measwred in a laboratory experiment. The problem dealt
with in the present study at the simnlation stage is not that of
exactly forecasting the measured field but that of generating
turbulence after learning the basic statistics and structutal
characteristics from historic examples of the original { Denker et al.,
1987; Seung et al,, 1992). At the Interpretation or expert system
stage, the trained nenral system is used to determine the existence
and topology of coherent structures that could be present in the
flow field'rinvestigated, by genecrating sequences of data from
inputs containing partial information of the veloeity field of the
investigated structure. The flow analyzed is a fully developed
turbulent wake generated behind a circular cylinder.

THE NEURAL SYSTEM

Background and network requirements, An artificial
neural network is a modeling and computational technique, based
on the observed behavior of biclogical meurons, which is used to
mimic the performance or simmlate the dynamics of a system from
examples. In some cases these networks are used in combination
with the theory of fuzzy logic systems so that in addition to learn
from experience, to carty out tasks faster, with iess computer space
requirements, they accept both numerical data and fuzzy
commands as inputs. Fuzzy and neural systems or a-combination
of the corresponding logic and network architectures have been
applied to identify, classify, contrel, forecast, predict, diagnose,
medel, design and analyze events in several fluid-base systems of
interest to medicine, vehicle and transportation systems,
aerospace, manufacturing, meteorelogy, mining, ete. (Tzes and
Borowiec, 1996). Examples of flyid-base applications in
engineering include the reduction of drag, the minimization of
energy consumption or losses, the prediction of transport rates in
industrial equipment, the reduction of noise, and phenomena
related to pressure dynamics.

A significant portion of the above mentioned applications are
related to flow turbulence and arise from the need to control some

aspects of this highly non-linear phenomenon. Thus, the
performance of a neural system in these applications could be
evaluated by its ability to learn the dynamics of turbulence in
some pre-selected regions of the flow field, Feedforward, feedback
and other standard architectures are capable of capturing some
aspects of the dynamics of turbulent flows. For example, Lee et al.
(1997) have established the correlation between some near-wall
turbulence parameters and the wall actudtion needed to reduce
drag. However, it remains to be determined whether these or other
architectures are capable of first learning and then simulating in a
global sense flow turbulence.

One indispensable requirement for attempting the simulation of
a synthetic turbulent velocity field, i.e., of simultaneons mutti-
point turbulent velocity time-records, with a neural network is that
the architecture should be capable to learn and to generate the
irregular time-sequences of velocity patterns associdted with
turbulence, This requires that the artificial neural system should be
able to select, in an automated way, @& path in this complex
sequence of real events or patterns on the basis of past experience
and, therefore, should have the following characteristics:

() Powerful in difficult classification problents,

(ii) Capable of generalizing the information with an
efficient mechanism for resetting patterns and creating new
categories, avoiding the stability-plasticity dilemma {Curpenter and
Grossberg, 1987: Carpenter et al., 19914, 1991b, 1992), j.e., the
dilemma of either hindering stability by activating endles sly new
categories in competitive Jearning or losing the plasticity or ability
of the network to react to any new data because the leaming rate
is gradually reduced to zero, This characteristic of the Adaptive
Resonance Theory (ART) is itnportant in the real time learning of
systems that are continuously adapting in a non-stationary
sitnation. The more popular feedforward and feedback
architectures present the difficulty of establishing the sufficient

imension of the system or number of neurons that is required for
the network to exhibit long memory span capabilities. A pertinent
discussion on the long memory span requirements ta resolve
ambiguities in forecasting problems can be found in Kiihs st al,
(1989),

(i} Associative memory or memory organization
accessed by its content, with a sufficiently long memory span to
resolve the ambiguities in the succession states that characterize
the dynamics of highly non-linear systems. The architecture
should remember by retrieving previously stored information in
response to associated data.

{iv) Fuzzy rules in the learning algorithm since they are
especially adequate for the treatment of real data (Kosko, 1992),

One convenient an automated way {0 select a path in this
complex sequence of real svents or patterns on the basis of past
experience is the implementation of o cognitive neura! system with
fuzzy rules in the learning algorithm. One reasonable choice is the
Fuzzy ARTMAP neural system.
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Architecture. The Fuzzy ARTMAP neural network is formed
by a pair of fuzzy ART medules, Art_a and Art_b, linked by an
associative memory and an internal controlier (Carpenter et al.,
1992), as shown in Fig. | but with the output disconnected. The
Fuzzy ART architecture was designed by Carperter et al. (100 ib)
as a classifier for multidimensional data clustering based on a set
of features. The elements of the set of n-dimensional data vectors
(El., €}, where p is the number of vectors to be classified, must
be interpreted as a pattern of values showing the extend to which
each feature is present.

Every pattern must be normalized to satisfy the following
conditions:

&elolf

SE =k Vi=l,.p ®
=

The classification procedure of fuzzy ART is based on Fuzzy Set
Theory(Zadeh, 1965). The similarity between two vectors can be
established by the grade of the membership function, which for
two generic vectors (/, m) can be easily calculated as

grade (2! c&“‘):-’%ﬁj 2)

In this equation (2) the fuzzy AND aperator A is defined by,
Al [O,I]“ ><[0,I]EI - [o1P

and the components of the image vector that results from this
application are

g =minfler) Vi=Ln @

The norm {# in equation (2} is the sum of the componetts of the
vector defined by equation (3).

The classification algorithm clusters the data that have a value
of (2) greater than thevigilance parameter p into groups or classes.
The value of p controls the granularity of the classes and allows
the implementation of a desired accuracy criteria in the
classification procedure. Each class H is represented by a vector
@ named weight vector. The procedure starts by creating the first
class from the first pattern presented to the network,

o =g @

The rest of input paiterns g (i=2,...,p) are presented to the
network and if the similarity of & with any established class p is
greater than p then & is classified into this class, and the
representative of this class is
updated according to

c‘#{ew = ml;m A Ei (3)

Otherwise a new class represented by E is created, Equation (5)
is the learning rule of the net, The mechanisms to speed up the
process and to conduct the classification properly can be found
elsewhere {Carpenter et al., 1991b).

The dynamics of Fuzzy ARTMAP is essentially the same as two
separate Fuzzy ART networks, each one working with a part of the
training vector; the first part could be interpreted as the input
pattern and the second one as the desired classification output
(supervisor). The associative memory records the link between the
classes corresponding to the input pattern and the desired
classification. The internal comtroller is the responsibie of
supervising if a new lnk is in contradiction with any other
previously recorded. If no contradiction is found, the link is
recorded, but in the case of a contradiction, the pattern is re-
classified with a larger vigilance parameter. Once the network has
been trained it can be used to classify input vectors without any
additional information.

The Fuzzy ARTMAP architecture, which has been successfully
applied to educe the different classes of large scale events present
in free turbulence (Ferre-Gine et al., 1996), was designed to classify
data and, thus, cannot generate an output pattern after the trainin g
stage. To implement this new mode of operation the categories
educed by the system from the learned information are linked to
the desired outputs, as depicted in Fi g. 1. This is mathematically
equivalent to defining an application from the space of categories
to that of output patterns, the image of the application being
defined by examples of patterns provided to the neurai system in
a supervised manner. The accuracy of the procedure increases
asymptotically towards a constant value with the number of
examples used for training, i.e., when the space of outputs is
accurately mapped. In the predictive mode, only the category layer
of Art_b in Fig. 1 is active and linked to Art _a to provide an
ouiput for each input vector presented to this module.

Experimental Data and Training Sets. The performance
of the proposed neural systemn has been evatuated by simulating
the two-dimensional velocity field measured at eight different
positions (k = 1, 2..,, 8) along the homogeneous Gpanwise)
direction of a turbulent wake flow generated behind a cylinder at
Re=1200 and x/D=420. The freestream velocity of this flow was
Uy=6.7 m/s and the cylinder diameter D=2.67 mm. The structural
characteristics of these fulty developed turbulent wake data,
provided by R.A. Antonia (University of Newcastle), have been
previously examined by Kopp et al, (1997) using pattern
recognition and proper orthogonal decemposition (POD). Fig. 2
illustrates the experimental flow configuration for the case where
the (u, w) velocity data used to train the net were measured with
eight X-wire anemometric probes located along the homogeneceus
spanwise direction at the half width of the wake (/=123 mm), i.c.,
at the vertical position where the mean velocity defect is half the
maximum value. The eight sensors spanned approximately 2.87 Ipin
the z-direction. The voltage signals were sampled at 2717 Hz for 30
s. A sample of the experimental data {u, w) is included in Fig. 3 to
visualize the irregularity of the individnal time-records and the
instantaneous velocity map of the projected velocity field in the
horizontal plane. The validity of Taylor hypothesis in the far wake
region, where turbulence is neatly frozen, allows the conversion of
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time into the streamwise coordinate, x = U t, and the analysis of
data in the time-sequence in terms of the streamwise x-direction,

The neural system proposed was formed by eight Fuzzy
ARTMAP networks like the ohe shown in Fig. 1. These networks
were working in paraliel and synchronously, one for each
experitental device measuring simuitaneousiy the two-component
velocity signals u and w at a given k-Tocation in the wake flow.
Each individual network was first trained with the output in Fig, 1
disconnected. The training data for each individual network
consisted of vectors with 12 elements - four temporal or historical
and two spatially adjacent values for each velocity component u
and w - for the Art_a module, and of vectors with two elements -
the following value of each velocity component in the time
sequence - for the Art_b module, Thus, simultanecus space-time
information was provided to the neural system in terms of the
input to each Art_a module, with the corresponding future
information for (u, w) given to each Art_b module, with no ether
association between individual networks. At the two extreme
locations (k = I and &) the spatial information was provided from
the one-sided contiguous locations (k+l, k+2) and (k-1, k-2),
respectively,

The dimension of the input vectors to the eight neural networks
and the type of simultaneous space-time information that they
contained was decided after examination of the space-time
correlation of the experimental data, so that felevant strnctural
characteristics of the flow were provided fo the system during
training. The choice of considering four temporal data for each
velocity component in the training input vectors is consistent with
the Takens theorem {Fakens, 1981), which ststes that good
accuracy can be achieved in a point-to-peint forecasting in a
system with attractors of dimension d when a function that
depends at most on (2d+1) past measurements is used. For the
wake flow this implies using between four and five historical data
in the training sets.

The system was trained using the first 2000 instants of the
experimental velocity field {u, w). This was sufficient to match the
logal fractal dimension of 1,75+ 0.02 and 1.786.02 of the simulated
u and w signals, respectively, with the valyes 1.7640.02 and
1.7840.02 of the experimental data. The local fractal dimension was
calenlated by the box-counting dimension procedure described by
Scotti et al. (1995). Additional training tests with up to 40,000
samples yielded comparable statistics but improved structural
characterization, as is discussed in the next Section. A non-
optimized version of the code required less than 1 hour of total
CPU time for training in a Sun Ultra 2250 workstation,

After training, instants { 20012 004) of measured u and w at each
Tocation were used together with the two spatiai data of the instant
2004 as the initial input vector to the Art_a module of each net.
The output (u, w) for the instant 2005 was generated by each
Art_b module with only the categories layer and the output
activated. The output calculated by each network was added to
the corresponding data sequence and a new input pattern was
formed with historicals (2002-2005) and with the two spatial data
predicted simultaneously by the two nei ghboring networks also at
instant 2005. Such operation of the neural system produced a two-
component velocity field of eight velocity data pairs (u, w) every
0.14 seconds of CPU with the two processors of the workstation
working in parallel.

SIMULATION OF FREE TURBULENCE

To evaluate the performance of the proposed network
architecture 81,600 time instants or 29 45 of (u,w) velocity signals
were generated at time intervals of At=0.368ms. No repetitions in
the predicted velocity field were observed over this time-period.
The (u,w) resuits obtained in the homogeneous x-z plane of the
wake are evaluated in detail in this section using basic statistics,
spectral and correlation analysis, POD and pattern recognition.
The preliminary evaluation of the performance of the proposed
neural system for non-homogeneous turbulence {x-y plane) is also
reported. All space variables are normalized with respect to J; as

b g L b

The flow in all vector maps is from left 1o right. The statistics of
the two-dimensional instantaneous turbulent velocity field (u, w)
measured and simulated by the present architecture with training
sets of 2,000 and 24,000 samples, respectively identified as ANN-
2006 and ANN-24000, are given in Table 1. The comparison of the
statistics of the two predicted time records shows that training
with 2,000 instants of data is safficient to capture the irregularity
of the time sequence, as is also the case for the local fractal
dimension. Thus, the results analyzed in this section correspond
mostly to ANN-2080. The mean of the predigted velocity field
teported in Table 1 deviates a maximum of 0.2%, in terms of the
free stream velocity, from the zero mean experimental fluctuating
field. The rms values of the fluctaating fieid generated for u and w
are 2lso in agreement with experimental data, with a maximum
deviation 0f 9.2%. The Reynolds shear stress field is equal to zero,
within the limits of the experimental error of the data, as should be
the case in the homogeneous spanwise direction of the wake.

The anto-correlation of simulated data is in good accordance
with experiments for both velocity component at all spanwise
locations. This is illustrated by the energy spectrum of u and w
shown in Fig. 4 for one of the eight spanwise locations studied.,
These spectral results indicate that the neyral system captures the
energy distribution of both signals up to frequencies of 1kHz, i.¢.,
in the frequeney range where aliasing errors are negligible. The
spatial correlation for the experimental and simulated o velocity
component is depicted in Fig. 5. Comparison between the
correlation contours in both cases shows that the neural system
tesolves the flow field well up to 2 spanwise location z'=-0.2, i.e.,
up to an ¢xtend of five probes, approximately. The auto-correlation
functiens for the experimental and simulated data, observed along
the x’-direction at the top of Figs. 5a and 5b for the extreme probe
at location z"=1,2, are also in good agreement. Similar accordance,
not shown here for brevity, is found between the spatial
correlation of the experimental and simulated w veloeity fields.

An estimate of the overall flow structure for the experimental and
simutated velocity flow fields is given in Figs. 6 and 7, in terms of
the first and second eigenvectors obtained from POD. The neural
system adequately describes the flow structure of the turbulent
wake flow as indicated by the good agreement observed in these
plots between the structures educed from the measured and the
predicted velocity fields. The first eigenvactor obtained from the
simulated two-dimensional velocity field (Fig. 6b) projects to the
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one of the real data (Fig. 6a) with a correlation coefficient of 0.97.
The neural system identifies the negative fluctuating velocity
motions that dominate the wake flow (Ferre-Gine et al, 1996; K.opp
et al, 1997), as illustrated by the first eigenvector, This
satisfactory description of structure is also observed in the
second eigenvector (Figs. 7a and 7b). In this case the neural
system also captures the presence of saddle points in the wake
flow. In both figures 6 and 7 there is a progressive randomization
of the structure for negative z", consistent with the randomization
of the correlation contours presented in Fig. 5.

A pattern recognition analysis carried ouf to determine the large-
scale structural characteristics of the simulated flow shows that
765 windows of 44 instantaneous velocity data with double roflers
and 714 windows with saddle points are contained in a simulated
time-record of 81600 instants, compared to the 922 and 895
windows of the respective structures present in the experimental
data. This 11% reduction in the number of structures present in
the simulated data may be due to the inability of the neural system
to Iearn continuity or the three-dimensional characteristics of the
structure from two-dimensional information only. it should be
mentioned that the proposed neural architecture learned mass
conservation when it was applied to a two-dimensional isotropic
turbulent velocity field.

The corresponding prototypical patterns or ensemble-averages
of the double rollers and saddle peints identified by patiern
recognition are depicted in Fig. 8 and 9 for both the simulated and
experimental velocity fields. The agreement in topology between
both vector maps is reasonable, with the saddle point appearing
in both cases upstream of the double roller. The correlations
between the patterns in Figs. 8a and 8b, and between those in
Figs. 92 and Ob are 0.80 and 0.86, respectively, The search for
combined double rollers and saddie points yielded similar
correlations, which are lower in value than expected from the
above POD results but remarkable from the point of view of
performance when it is considered that the 2,000 instants of
velocity information used for training contains about 22 structures
only. These correlations increase o 0.94 when 40,000 instants are
used for training, i.e., when the ANN-40000 is used to generate the
time-record of 81,600 instants.

A similar performance of the neural system was obtained for data
measured along the non-homogeneous vertical plane of the wake
(X-y"). The rake of probes was centered at the wake centerplane
¥'=0 and spanned verticaily the whole wake. In this case, the
number of classes contsined in the signals measured at the aight
different vertical positions depends on the different number of
turbulent events sensed by the hot-wires located near the
centerplane or near the outer edges of the wake. As a
consequence of this dependency on intermittence at least 6,000
instants of the real velocity field (u, v) were needed to train the
eight networks, and to capture enough information from the
different velocity records so that the generated non-hemogeneous
turbulent field reproduces the experimental one. it should be noted
that the information contained in the vertical plare data is more
difficult to learn by the neural system because the coherent
structures and associated velocity patterns ogcurring at the outer
edge are different from those at the center region of the wake. In
the horizontal plane experiments homogeneity impligs that the

same type of information is ultimately presented to each individual
network,

The architecture proposed is, thus, well fitted to interpret
turbulence, as illustrated in the next section, and for real time
applications involving turbulent flows. It can alse be used to
complete time sequences of imporiant data that are Hmited in size
due to difficulties in their acquisition or prediction. For example,
the accurate direct numerical simulstion of a turbulent flow
requires intensive use of CPU time (Kim et al., 1987), which for
some flow situations or Reynolds numbers of interest may not be
sufficiently available at present. Therefore, the synthetic
generation of turbulent velocity or scalar signals or fields with a
neural system may be a useful and complementary tool for
Computational Fluid Dynamics (CFD).

INTERPRETATION OF TURBULENGCE

To assess the capability of the trained neural system to interpret
the large-scale structure of a turbulent velocity field as an expert
system it is necessary to study first whether or not the system is
capable of generating instantaneous velocity patterns with
statistically significant structural features of the flow analyzed, ie.,
with features that contribute to the ensemble-average
representation of the large-scale structure considered, Fig. 10
depicts the ensemble-average of the instantaneous 960 windows,
containing 19 time-sequences of simaltaneous velocity data each,
that are predicted by the neural system when feeded with 900
input vectors of experimental data extracted from the
instantaneous events that contribute to the double roller of Fig. 8b
at positions ( 0.4 <x” < 1.0). These input data were not included in
the training sets of ANN-2000. Clearly, the structure in Fig. 10
corresponds to the class of large-scale motions represented by the
double roller in Fig. 8b. This result indicates that with the same
input information as that occurring instantaneousty in a laboratory
experiment, the neural system generates a group of instantaneous
events that yield an ensemble aversge or prototypical pattern (Fig.
10) that also belongs to the class considered as input (Fig. 8b).

The next step in the evaluation of the neural system as an
interactive expert systemn to help interpreting the structural
characteristics of turbulence would be to comsider the
identification and eduction of coherent structares that could be
present in a turbulent flow not previously studied. To simplify this
problem it will be assumed here that the unknown turbulent flow
is the turbulent wake flow analyzed in the previons section, Thus,
the challenge considered is to determine whether the presence of
the double roHer structure postulated more than fifty years ago
from correlation data (Grant, 1958: Payne and Lumley, 1967) oxists
instantaneously in the flow learned by the neural system. Two
interpretation experiments are considered:

(i) Eduction of a double roller with point-to-paint
forecasting from an sketch of an idealized or assamed template of

this structure.,

(ii) Testing for double rollers from a single input vector
containing the initial portion of the nbove idealized template.
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Figure 11 shows the point to point forecasting from a template of
the double roller depicted in Fig. 8b, properly scaled to match the
s values of the fluctuating field considered. This is necessary
because the neural system has learned from real examples
containing both large-scale and small-scale motions, i.e., from
signals of a given amplitude. The predicted velocity map given in
Fig. 11 corresponds to a double roller structure centered at x*=0
and with an upstream saddle point at approximately ¥=1.0, To
support the significance of this finding, several tests of point-to-
point forecasting were carried out with input templatés of
unrealistic or highly improbable vector maps. The results showed
that the neural system was unable to converge towards any
plausible coherent topology or yield vector maps consistent with
the space-time correlation of the data. Note that the velogity
vector map of the double roller in Fig. 8b which has been used to
generate Fig. 11 does not belong to the training set.

The final test for double rollers is the prediction of an
instantaneous vecior map of 16 veloeity vectors from a properly
scaled input vector corntaining the four instants of information
located at 0.8 £ x" < 1.4 in Fig. 8b. In this case the neural system
predicts the double roller vector map of Fig. 12. There is agreement
between the experimental and predicted structures, with the
predicted one being slightly smaller in the streamwise direction of
the flow. This is probably caused by the difficulty of learning and
predicting a three-dimensional phenomena related with the
oceurrence of ring-shaped vortices (Vernet ot al.,, 1998) from only
two-dimensional information. Nevertheless, the remarkable
agreement between the double roller structure present in the
laboratery data and in the vector map produced by the eight
neural networks from infermation not presented to the networks at
the training stage, indicates the potential of the proposed
cognitive system to capture the dynamics of turbulent flows. Note
that the differences in modulus of the vector plots in both figures
are solely caused by the scaling of the input signal,

CONCLUDING REMARKS

Present results indicate that the proposed neural system is capable
of capturing the highly non-linear dynamics of free turbulence. It
can also be applied as an interactive expert system in the structural
interpretation of turbulence by identifying or recoguizing the
individual classes of events present in complex shear flows. The
present newral architecture based on fuzzy ARTMAP could
establish a new trend in the development of systems to control
real-time flaid flow phenomena and in the integration of
computational and experimental methodologies. It may also
become a useful tool in real time optimization procedures for
advanced fluid dynamics applications and to complete data banks
with sequences of information on complex systems that are limited
in extension due to difficnlties in the measurement or simuiztion
processes.
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