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Artificial neural networks (ANN) with a backpropagation learning algithm
are used to d etermine the relationship between the molscular structures of
organic compounds and their boiling points using molecular descriptors, Two
sets of descriptors, formedby up to four molecular connectivity and four
valence comnectivity indices, are considered to predict the boiling points of an
heterogeneous s et of 1116 organic c ompounds. The optimal number of
descriptors or dimension of the input layer needed to attain the best predictions
has been determined. In addition, different architectures have been considered
either by directly expanding the number of units in the hidden layer of the
standard backpropagation architecture or by the use of cascade ¢ orrelation.
The minimum dimension of the most representative training set is determined
with a specific algorithm reported in the literature for image classification
problems. For the two best backpropagation architectures 6-12-1 and 8-12-1, a
number of 509 and 536 compounds were respectively required to capture the
significant relationships between the structure and the boiling p oint of the
complete set. The corresponding mean absolute etrors in testing are 11.6 X
and 19.7 K. For a subset of 242 alkanes and alcohol's, with 200 used for
training and 42 for testing, the e rror decrease to4 .3 K for the 6-12-1
architecture. This error is lower than the 5.5 K obtained b y multilineal
regression analysis of the same data.
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1. INTRODUCTION

The design and optimisation of industrial process require the knowledge
of thermophysical properties. Available data banks canp rovide this
information. However in specific cases, such as those related to drug activity
or enviromental impact assessment, data are scarce and difficult or expensive
to o btain experimentally. To overcome this lack of ready information,
several thermodynamic models and correlations have been developed for a
wide range of conditions. Among these models, the methods based on
quantitative structure property relationships (QSPR) are promising. The
basic concept of QSPR is to relate the structure of a compound with the
property of interest. The compound’s structure is expressed in terms of
molecular descriptors that characterise a given molecular feature. Molecular
descriptors, such as the connectivity indices and the corresponding v alence
connectivity indices, that encode features such ass ize, branching,
unsaturation, heteroatom content and cyclicity [1,2] are useful. For example,
the first order connectivity index was used in 1982 to correlated the
solubility of hydrocarbons in water [3]. The connectivity indices are based
on local molecular properties and are bond-additive quantities so that in
bonds of different kinds make different contribution to the overall molecular
descriptors. The key step is to build the structure property relationship. This
involves two major activities: 1 The representation of compounds using
molecular descriptors and multivariate statistical methods or artificial neural
networks [4,5]. And 2 the mapping of the descriptors to built a relationship
with the properties of interest. Among the physical properties correlated by
QSPR are boiling points, [1,6,7], melting points, [7], solubilities, [3],
partition coefficients, {8]. The success of regression analysis in QSPR model
building depends upon the degree of linearity between the physical property
of interest and the descriptors s elected. As the number of descriptors
increases thec apability of regression analysis decreases due to the
redundancy of information incorporated by the different descriptors. Some
techniques, such as principal component analysis and p artial 1 east square
regression, have beenused to minimise this problem. Nevertheless, these
techniques require the a priori assumption of the form of the model. To solve
this issue, multilineal regression analyses (MLR) is commonly used as an
alternative, Recently, artificial neural networks have become an option to
build QSPR models. The purpose of the current study is to apply QSPR and
neural networks to better correlate the boiling points of organic compounds.
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2. BOILING POINT

The boiling point of organic compound is useful for identifying
substances and for estimating other physical properties [9]. There are
different methods to predict boiling points. For example, group contribution
methods are widely used for this purpose [10]. These contribution methods
are limited to thec lass of compounds for which the groups have been
established. The QSPR approach employs descriptors derived solely from
molecular structure [4,11]. One of the pioneering works to predict the
boiling points of paraffins was carried out by Wiener [2]. Other topological
indices, such as the connectivity indices [1,4] and the Randic indices [2],
have been successfully applied to correlate the boiling points of alkanes and
alcohols.

In the present study, 1116 organic compounds were considered. The
boiling points were taken from the Design for Physical Property Data
(DIPPR) database. Two subsets that contained the same data as those used
by Kier and Hall [1] and Hall and Story [12] were chosen to v alidate the
results. The complete setis structurally heterogenecous, includes s aturated
and unsaturated hydrocarbons, aromatic, and halogenated compounds, with
groups cyano, amino, ester, ether, carbonyl, hydroxyl, and carboxyl. The
structures and connectivity indices of these compounds were obtained using
the Molecular Modelling Pro software. Four molecular connectivity indices
and four valence molecular connectivity indices for each compound were
considered.

3. ARTIFICIAL NEURAL NETWORKS

The next step is to establish the relationship between molecular
descriptors and the beiling peints by u sing artificial neural networks. A
standard neural architecture consists of many simple intercomnected
processors (units). The weight of each comnectionor synapse stores the
information learned from examples [13]. The successful application of
neural networks depends on three factors. First the design is critical because
the network will overfit data if too few hidden units are used. Second, the
size of the training set must be correct to avoid over or under training.
Finally, it is important to select an appropriate training set, because it has to
represent the entire dataset.

Two supervised n eural algorithms, where input patterns are associated
with known output patterns, were used. The first one was backpropagation
architectire [14,15]. Its implementation involves a forward pass through the
layers of units (nodes) to estimate the error, followed by a backward p ass
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that modifies the weights (synapses or connections) to decrease the e rror.
Networks with one input and one output layer, and with one or two hidden
layers with different nodes in each layer, were examined. Six or eight nodes
in the input l ayer were considered so that input vectors with six or eight
connectivity indices could be presented to the network. The output node was
the boiling point. To train the network, the weights of the synapses between
the nodes of cach layer and those of the next layer were optimised with a
steepest descent method by propagating the error back throughout the layers.

One problem with backpropagation is to find the appropriate topology.
To overcome this constrain an auto constructive algerithm was also
implemented. The cascade correlation method was selected because it is one
of the most relevant constructive algorithms [16,17]. The hidden units are
added to this network one at a time without changing the connection weights
after they have been added. It supports a variety of learning algorithms, but a
backpropagation scheme was used for consistency. An initial, minimal
network with only input and output units was trained. Training continued
until a given criteria, such as the maximum number of epochs or a patience
indicator, were met. If the network did not fulfilled the error criteria during
the initial phase, 2 new hidden unit was added to maximise the correlation.
This hidden unit should account for missing features.

4. RESULTS AND DISCUSSION

Three sets of compounds were used to evaluate the present model and to
compare its performance with previous proposals reported in the Titerature,
The first set of compounds include 242 alcohols, with up to ten carbon
atoms, and all the alkane isomers with five to ten carbon atoms. The range of
boiling points is 282.65K-504.15K, A number of 42 compounds were
selected for the testing phase. The results obtained with several
backpropagation architectures indicated that expansiono f the input space
yielded better results than a contraction in all cases. This shows that extra
dimensionality can represent better additional features of the training set, and
that these extra features make a favourable contribution to the performance
of the network. The best configuration for this set of alkane isomers and
alcohols is a 8-12-1, i.e, the combination of eight connectivity indices as
input (four molecular connectivity indices plus four valence connectivity
indices), one hidden layer with twelve units, and the boiling point as output.
The absolute mean error between the predicted and experimental boiling
points was 4.3K. Only two compounds (heptane and nonanol) yielded
residnals greater than 10K The standard d eviation of the predictions was
3.3K and the average relative error 2.9%. For the same set of connectivity
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indices, a multilineal regression analysis yielded p redictions with a mean
absolute error of 10.3K, a standard deviation of 5.5K and a relative mean
error of 7.7%. Itis not possible to make a direct comparison with the
previous work of Hall and Kier {1] for a similar set of compounds, because
they used different molecular descriptors. Stil! it should be noted that those
authors reported a mean absolute error of 5.9K. This corresponds to a 4.1%
relative ¢ rror which is higher than for the model presented h ere. The
predicted and measured boiling points are plotted in Fig. 1. The data in Fig.1
were correlated with a coefficient r °=0.983, whichv alidates the model
established by the network. These results show thatt he non linear
relationship between molecular structure and boiling point is well extracted
by the neural network, increasing the extrapolation capabilities of this model
to other different but similar sets of compounds.
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Figure 1. Boiling points for the 42 alcohols and alkanes used for testing with an 8-12-1
backpropagation architecture (bp). Comparison with Hall and Kier, [1], and with MLR with
connectivity indices.

The second set is formed by 220 heterogeneous organic compounds with
three ton ineteen carbon atoms, including saturated andu nsaturated
hydrocarbons, and the groups ester, ether, carbonyl, hydroxyl, and carboxyl.
Their boiling point range was 225.51K-608K. Training was carried out with
30 randomly selected compounds. In this case the e xpansion o f the input
space also yielded better results than contraction. The best configuration was
8-12-1. The standard d eviation between predictions and measurements was
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11.3K, with an absolute mean error of 21.8K and an average relative error of
5.38%. Hall and Story [12] reported a mean absolute error of 4.57K, for a
19-5-1 architecture (nineteen clectrotopological i ndices as input) for the
same group of compounds, which correspond to a 1.12% relative error. This
better performance is due to the type of indices used by these authors, which
allows the complete characterisation of all functional groups involved. Fig. 2
depicts the boiling points predicted versus the experimental data, for the set
of heterogeneous organic compounds,
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Figure 2. Boiling points for the 30 organic compounds used for testing with an 8-12-1 and 6-
12-1 backpropagation architectures (bp). Comparison with the neural architecture 19-5-1 of
Hall and Story, [12] (elecirotopological indices)

The data in Fig. 2 were correlated with a coefficient 12=0.8. This low
correlation coefficient indicates that increasing the diversity of compounds
without increasing the information about the functional groups involved
decreases the c apability of neural of networks based on processing units, It
should be noted that a neural network requires a minimum number of data
for training and that the training set has to represent the majority of
characteristics of the whole set of compounds considered. Also, connectivity
indices alone do not provide enough information to characterise a
heterogeneous set. To solve the first issue, the two previous sets were unified
and incremented to 1116 heterogeneous organic compounds, with boiling
points spanning the range 111.7K-711.5K. About 60% of the compounds
were used for training and the rest were used to evaluate the model. The best
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configuration was again 8-12-1. The mean absolute error was 28 K and the
relative mean error 7%. In all trials carried out to select the best architecture
the compounds that could be consider as outliers (compounds with high
residuals) were the polyfluorine compounds, substituted aromatics, and
pyridines. The results are summarised in Fig. 3.
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Figure 3. Boiling points for the 416 organic compounds used for testing with an §-12-1
backpropagation architecture {bp).

'The performance of the architectures tested did not improve by randomty
selecting different compounds for training the network, within 60% of the
total. To overcome this deficiency, the size and the content of training set
was optimised using a specific algorithm reported in the literature for image
classification problems [18]. This means the minimum number of patterns
with the maximum of information was finally determined. The best
configurations for this set were 8-12-1 and 6-12-1, eight or six inputs
respectively, twelve units in the hidden layer and the boiling p oint of the
output layer. The standard deviations of the predicting set were respectively
12.8K and 11.3K, absolute mean errors were 19.7K and 11.6K and the
average relative e rrors were 4.62% and 4.33%. The predictions obtained
with the 8-12-1 and 6-12-1 architectures and the best training set are shown
in Figs. 4 and 5. The comparison of these results with Figure 2 show the
importance of the definition of the training set to build a good model.
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Figure 4. Boiling points for the 509 organic compounds used for testing with an 6-12-1
backpropagation architecture (bp} and the minimum traming set.

To overcome the second issue raised above about the insufficient
molecular informationo f topologicali ndices, Espinosac t al, [21]
considered the dipole moment and the kappa index as additional descriptors
to model de boiling points of a homogencous set of aliphatic hydrocarbons.
The inclusion of these two indices in the input vector does not improve the
correlation o f the boiling points of the current heterogencous scts with
backpropagation algorithm. Thus, the use of cognitive systems such as
FuzzyARTMAP, [22] should be considered, together with additional three-
dimensional molecular information. Finally, it is worth noting that contrary
to previous reports, cascade correlations does not improve the performance
of backpropagation, [16,17]. For the compounds in Fig 6, thec ascade
correlation algorithm yields a mean absolute error of 33K, compared to the
12.8K and 11.3K obtained with the 6-12-1 (Fig. 4) and 8-12-1 (Fig. 5)
backpropagation architectures, respectively.



Prediction of boiling points of organic compounds
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Figure 5. Boiling points for the 536 organic compounds used for testing with an 8-12-1
backpropagation architecture (bp) and the minimum training set.
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Figure 6. Boiling points for the 416 organic compounds used for testing with an 8-33-1
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5. CONCLUSION

The present model, which combines newral networks with QSPR,
performs better than previous correlations for similar input information. The
best backpropagation configurations to p redict the boiling points of 1116
organic compounds were 8-12-1 and 6-12-1. This implies using eight or six
connectivity indices as input nodes, twelve middle nodes, and a gingle node
for boiling point. The cascade correlation constructive algorithm didn't yield
better r esults than backpropagation. The determination o f the minirmuem
training sct reduces the absolute mean error and improves predictions.
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Slow transition from star configuration to
homogenous configuration

December 4, 2002

Within the formalism introduced for representing the network as a set of
discrete points in N-dimensional space, where the position of a network is defined
by its betweenness vector b;, we can measure a euclidean distance between any
two points. In order to see which regions of the space we are visiting in the
optimisation process, we want to measure the shoriest distance d between a real
network and the its closest point on the bisector.

N
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Figure 1: (a) Shortest distance from the bisector to the network in N dimensional
space for different values of p. The network has 32 nodes and 128 links. Most
importantly, the distance does not fall as rapidly as expected. There exist
optimal configurations which are neither stars, nor homogeneous networks (for
example rho = 0.105 and p = 0.110 which correspond to the networks shown
in figure 2 (d) and (e}).(b) Polarisation of the network with 32 nodes and 128
links. The transition from starlike configurations to homogeneous ones is very
sharp in this representation.
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