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Abstract – The ability to understand and eventually predict the emergence of information and
activation cascades in social networks is core to complex socio-technical systems research. How-
ever, the complexity of social interactions makes this a challenging enterprise. Previous works on
cascade models assume that the emergence of this collective phenomenon is related to the activ-
ity observed in the local neighborhood of individuals, but do not consider what determines the
willingness to spread information in a time-varying process. Here we present a mechanistic model
that accounts for the temporal evolution of the individual state in a simplified setup. We model
the activity of the individuals as a complex network of interacting integrate-and-fire oscillators.
The model reproduces the statistical characteristics of the cascades in real systems, and provides
a framework to study the time evolution of cascades in a state-dependent activity scenario.

Copyright c© EPLA, 2013

The proliferation of social networking tools —and
the massive amounts of data associated to them— has
evidenced that modeling social phenomena demands a
complex, dynamic perspective. Physical approaches to so-
cial modeling are contributing to this transition from the
traditional paradigm (scarce data and/or purely analyt-
ical models) towards a data-driven new discipline [1–4].
This shift is also changing the way in which we can
analyze social contagion and its most interesting conse-
quence: the emergence of information cascades in the
Information and Communication Technologies (ICT) en-
vironment. Theoretical approaches, like epidemic and
rumor dynamics [5–7], reduce these events to physically
plausible mechanisms. These idealizations deliver analyt-
ically tractable models, but they attain only a qualitative
resemblance to empirical results [8], for instance regarding
cascade size distributions.

The vast majority of models to this end —including
the threshold model, overviewed in the next section—
are based on a dynamical process that determines indi-
viduals’ activity (transmission of information), and this
activity is propagated according to certain rules usually

based on the idea of social reinforcement, i.e. the more
active neighbors an individual has, the larger his proba-
bility to become also active, and thus to contribute to the
transmission of information. Yet, the challenge of having
mechanistic models that include more essential factors,
like the self-induced (intrinsic, spontaneous) propensity
of individuals to transmit information, still remain open
—though some contributions emerge in this fast-growing
field [9,10].

Furthermore, the availability of massive amounts of mi-
croblogging data logs, like Twitter, places scholars in the
position to scrutinize the patterns of real activity and
model them. These patterns indicate that avalanche phe-
nomena are not isolated events. Instead, users engaged in
a certain topic repeatedly participate, affecting each other
and giving rise to an heterogeneous collection of cascades
emerging over time, which cannot be modeled indepen-
dently of each other.

Accordingly, we propose a new framework that extends
the classical threshold model to accommodate the tempo-
ral evolution of interdependent cascading events. Our pro-
posal conceals also, in an idealized manner, other desirable
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ingredients, such as genuine complex contagion or self-
induced motivation, to participate.

Time-constrained activity cascades. – Before ad-
dressing the model itself, we need to understand what is
meant to be modeled. There is a general consensus around
the concept of cascade, which —in the ICT environment—
can be outlined in the following way: the basic criterion
to include a node i in the cascade where j belongs to is
to guarantee that i) i and j became neighbors at t1 (the
notion of “friend” must be understood broadly here); ii) i
received a piece of information from j, who had previously
sent it out, at time t2; and finally iii) the node i sends out
a piece of information at time t3. Typically, no strict time
restriction exists besides the fact that t1 < t2 < t3: the
emphasis is generally placed on whether the same content
is flowing [8]. This content-based view is useful when con-
sidering very specific pieces of information (e-mail chain
letters [11] or URL forwarding [12,13], for instance), but
renders a scenario in which the only possible transition
for a node (user) is from inactive (susceptible) to active
(infected).
Such vision oversees the fact that online platforms allow

users to share contents, but also (more often than not) to
spread behavior. Indeed, discussion over a topic typically
happens not by mere information retransmission, but by
iterated activity (variable units of information expressed
in online text, evolving over time) [14] which influences
(motivates) other users to join. A richer, time-constrained
representation can then be obtained if conditions i) to iii)
above are accepted, except that for i to be included in
an avalanche started at j, the piece of information being
transmitted may or may not be the same, and t3−t2 ≤ Δτ ,
where τ is an arbitrary (typically small) time lapse. In
other words, the condition for i and j to be included in the
same cascade is to exhibit temporally correlated, quasi-
synchronized activity [8,15,16]. With this slight modifica-
tion, not one but multiple cascading events can be mea-
sured from an activity data set (for instance, a collection
of time-stamped tweets), and a single user may participate
many times in the same cascade, in different times.
Empirical (real) cascades hereafter refer to such time-

constrained representation.

The threshold model. – Along the lines of content-
based cascades, the reputed threshold model [17] (and its
networked version [18]) mimics social dynamics, where the
pressure to engage a behavior increases as more friends
adopt that same behavior. Briefly, the networked thresh-
old model assigns a fixed threshold τ , drawn from a dis-
tribution 0 ≤ g(τ) ≤ 1, to each node (individual) in a
complex network of size N and an arbitrary degree distri-
bution pk. Each node is marked as inactive except an ini-
tial seeding fraction of active nodes, typically Φ0 = 1/N .
Denoting ai the number of active neighbors, a node i with
degree ki updates its state becoming active whenever the
fraction of active neighbors ai/ki > τi. The simulation of
this mechanistic process evolves following this rule until an

equilibrium is reached, i.e., no more updates occur. Given
this setup, the cascade condition in degree-uncorrelated
networks can be derived from the growth of the initial
fraction of active nodes, who on their turn might induce
the one-step-to-activation (vulnerable) nodes. Therefore,
large cascades can only occur if the average cluster size of
vulnerable nodes diverges. This condition is met at [18,19]

F =
∑

k

k(k − 1)ρkpk = 〈k〉, (1)

where ρk is the density of nodes with degree k close to
their activation threshold, pk is the fraction of nodes of
degree k and 〈k〉 is the average degree [18].
For F < 〈k〉 all the clusters of vulnerable nodes are

small, and the initial seed can not spread beyond isolated
groups of early adopters; on the contrary, if F > 〈k〉 then
small fraction of disseminators may unleash —with finite
probability— large cascades. More recently, the cascade
condition has been analytically determined for different
initial conditions [19] as well as for modular and corre-
lated networks [20,21], while placing the threshold model
in the more general context of critical phenomena and per-
colation theory [22].
As mentioned, the model has a limited scope since it can

account only for one-shot events, for instance the diffusion
of a single rumor or the adoption of an innovation. Also,
this framework leaves no room for spontaneous initiative:
even low-threshold nodes —those with higher propensity
to participate in a cascade— will not be recruited unless
their neighbors act upon them. Empirical evidence sug-
gests, instead, that once an agent becomes active that
behavior will be sustained, and reinforced, over time [23].
This creates a form of enduring activation that will be
affected and affect other agents over time in a recursive
way. Indeed, events evolve in time —and so do the cas-
cades elicited therein [16], as a consequence of dynamical
changes in the states of agents as dynamics progress. Cas-
cades are then events that brew over time in a system
that holds some memory of past interactions. Moreover,
the propensity to be active in the propagation of informa-
tion sometimes depends on other factors than raw social
influence, e.g., mood, personal implication, opinion, etc.

Integrate-and-fire model: analytical approach. –
In this paper, we present a model with self-sustained ac-
tivity, where system-wide events emerge as microscopical
conditions become increasingly correlated. We capitalize
on the classical integrate-and-fire oscillator (IFO) model
by Mirollo and Strogatz [24]. In this model, each node in
a network of size N is characterized by a voltage-like state
m ∈ [0, 1] of an oscillator, which monotonically increases
with phase φ until it reaches m = 1, and then it fires or
activates (emits information to its coupled neighbors), and
immediately deactivates (resets its state to m = 0). The
pulsatile dynamics, makes that each time a node becomes
active, the state of its k neighbors is increased by ε. More
precisely, m is uniformly distributed at t = 0 and evolves
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such that

m = f(φ) =
1

w
ln(1 + [ew − 1]φ) (2)

parametrized by w > 0 to guarantee that f is concave
down. Whenever mi = 1 then instantaneously mj =
min(1,mj + ε), if the edge (i, j) exists. Thus, a node
may reach activation either by itself (spontaneously, as its
phase comes to an end) or because of its neighbors’ action
(which may pull it up to action).
Integrate-and-fire models have been extremely useful to

assess the bursty behavior and the emergence of cascades
in neuronal systems represented in lattices [25] and com-
plex networks [26,27]. We propose to model social sys-
tems as a complex network of IFOs representing the time
evolving activation of individuals. Within this framework,
spontaneous propensity —activation regardless exogenous
factors— is guaranteed; while contagion is genuinely com-
plex, i.e. the number of necessary external influences (if
any) to show activity varies in time. Remarkably, activ-
ity is purely periodical only if the oscillators are either
isolated (disconnected), dynamically uncoupled (ε = 0)
or the dynamics have reached full (irreversible) synchro-
nization. These three scenarios are irrelevant in terms of
social modeling. On the other hand, some traces of peri-
odicity in users’ activity in socio-technical platforms —like
Twitter— have been widely studied at the aggregate level
(see, for instance, [28]), and they exist also at the individ-
ual level.
The model comprises two free parameters, w and ε,

which are closely related. Dissipation w may be inter-
preted as the willingness or intrinsic propensity of agents
to participate in a certain diffusion event: the larger w,
the shorter it takes for a node to enter the tip-over inter-
val 1− ε < m < 1. Conversely, ε quantifies the amount of
influence an agent exerts onto its neighbors when it shows
some activity. Larger ε’s will be more consequential for
agents, forcing them more rapidly into the tip-over re-
gion. Both quantities affect the level of motivation m of a
given agent. Note that ε in the current framework evokes
τ in the classical threshold model, in the sense that both
determine the width of the tip-over region. Finally, the
phase is translated into time steps, and then prescribed as
φ(t) = t.
To gain some analytical insight, we use eq. (1) to derive

the cascade condition in this new framework. Note that
now the distribution of activity is governed by ρ(t) = 1−∫ 1−ε

0 g(m, t) dm where g(m, t) corresponds to the states’
probability distribution at a certain time t. For an initial
uniform distribution of motivation m and a fixed ε, the
condition for the emergence of cascades reads at time t = 0

ε
∑

k

k(k − 1)pk = 〈k〉 (3)

(see inset (a) in fig. 1). And in general for any time

ρ(t)
∑

k

k(k − 1)pk = 〈k〉, (4)
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Fig. 1: (Color online) Insets (a)–(d): motivation m proba-
bility distributions of four different representative times along
the synchronization window. Each snapshot depicts the m-
state histogram of the N oscillators. The dynamics begins
with a random uniform distribution of m-states (inset (a))
and it progressively narrows during the transition to synchrony
(inset (d)). Main: largest fraction of synchronized nodes across
time. The path to synchronization evolves steadily at a low
level, and eventually suffers an abrupt transition.

which implies that the cascade condition depends on time
in our proposed framework. Clearly, in this scenario ρ(t)
is not a function of the node degree k, as opposed to ρk in
Watts’ proposal.
As the dynamics evolve in time, the states of the nodes

progressively correlate and, consequently, the distribution
of states changes dramatically. The evolution of the states
distribution is depicted in fig. 1. The initially uniform
distribution g(m, 0) (inset (a)) evolves towards a Dirac δ
function (inset (d)) as the network approaches global syn-
chronization, i.e. global cascade. We have not been able to
find a closed analytical expression for the consecutive com-
position of the function g(m, t) after an arbitrary number
of time steps to reveal the evolution of ρ(t), nonetheless it
can be solved numerically. Equation (4) reduces to

ρ(t)(〈k2〉 − 〈k〉) = 〈k〉. (5)

The cascade condition is thus

ρ(t)

1 + ρ(t)
=

〈k〉
〈k2〉 , (6)

that exactly corresponds to the bond percolation critical
point on uncorrelated networks [29–31]. For the case of
random Poisson networks 〈k2〉 ∼ 〈k〉2, then

ρ(t)

1 + ρ(t)
=

1

〈k〉 . (7)

It is worth highlighting that eqs. (6) and (7) represent an
advance in our understanding of non-linear, pulse-coupled
dynamics, regardless of our (social) interpretation.
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Integrate-and-fire model: numerical results. –
We can now explore the cascade condition in the (ε, 〈k〉)
phase diagram in fig. 2, and compare the analytical pre-
dictions with results from extensive numerical simulations.
Since the time to full synchronization (global cascade) is
different for each (ε, 〈k〉), we introduce cycles. One cy-
cle is complete whenever every node in the network has
fired at least once. In this way we bring different time
scales to a common, coarse-grained temporal ground, al-
lowing for comparison. The regions where cascades size
Sc above a prescribed threshold ξ (0.25N , in fig. 2) are
possible are color-coded for each cycle 0, 25, 75, 100, . . . ,
and black is used in regions where cascades do not reach
ξ (labeled as N.C., “no cascades”, in fig. 2). Note that if
cascades are possible for a cycle c, they will be possible
also for any c′ ≥ c. This figure renders an interesting sce-
nario: on the one hand, it suggests the existence of critical
εc values below which the cascade condition is systemati-
cally frustrated (black area in the phase diagram). On the
other, it establishes how many cycles it takes for a particu-
lar (ε, 〈k〉) pair to attain macroscopical cascades (full syn-
chronization) —which becomes an attractor thereafter, for
undirected connected networks. Given the cumulative dy-
namics of the current framework, in contrast with Watts’
model, the region in which global cascades are possible
grows with 〈k〉.
Turning to the social sphere, these results open the door

to predicting how long it takes for a given topology, and a
certain level of inter-personal influence, to achieve system-
wide events. Furthermore, the existence of a limiting εc
determines whether such events can happen at all.
Additionally, the predictions resulting from eq. (6) are

represented as dashed lines in fig. 2. For the sake of clar-
ity, we only include predictions for c = 0 (dashed black),
c = 25 (dashed gray) and c = 150 (dashed white). Pro-
jections from this equation run close to numerical results
in both homogeneous (fig. 2(a)) and inhomogeneous net-
works (fig. 2(b)) with degree distribution p(k) = k−γ , al-
though some deviations exist. Noteworthy, eq. (6) clearly
overestimates the existence of macroscopic cascades in the
case of scale-free networks at c = 0. Indeed, ρ(0) = ε does
not yet incorporate the inherent dynamical heterogeneity
of a scale-free topology, thus eq. (6) is a better predictor as
the dynamics loose memory of the hardwired initial con-
ditions. In the general case c > 0, deviations are due to
the fact that the analytical approach in the current work
is not developed beyond first order. Second order correc-
tions to this dynamics (including dynamical correlations)
should be incorporated to the analysis in a similar way to
that in [21], however it is beyond the scope of the current
presentation.
According to Mirollo and Strogatz [24], synchronicity

emerges more rapidly when w or ε is large; then the time
taken to synchronize, i.e. to observe global cascades, is in-
versely proportional to the product wε. In our simulations
in the next Section, we use this cooperative effect between
coupling and willingness to fix ε, which is set to a set of
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Fig. 2: (Color online) (ε, 〈k〉) cascade diagram for different cy-
cles (coded by color), with fixed w = 3. Vertical axis and
each dashed line define a confined region in which global cas-
cades might occur according to eq. (6) and for a specific cycle
(here we show only the expected zones for c = 0 —dashed
white— and c = 150 —dashed gray). Results are obtained for
synthetic Erdös-Rényi (a) and scale-free with γ = 3 (b) un-
correlated networks of size N = 104. A cascade is considered
“macroscopical” if the synchronized cluster Sc ≥ 0.25N . Color
codes indicate the existence of at least one cascade S > Sc in
numerical simulations; analytical predictions are averaged over
200 networks with random initial conditions. Note that the
cascade condition in (a) often underestimates the actual cas-
cade regions because it does not take into account second-order
interactions; the same applies in the lower panel (b), except for
c = 0 where the analytical prediction overestimates the results
because the inclusion of the hub into the cascade is improbable
starting from a uniform distribution.

values (slightly above or below) ε � εc, and empirically
estimate w to attain a good matching between observed
cascade distributions and our synthetic results.

Application to real data. – To illustrate the ex-
planatory power of the dynamical threshold model, we
use data from www.twitter.com. They comprise a set
of ∼ 0.5 million Spanish messages publicly exchanged
through this platform from the 25th of April to the 25th of
May, 2011 [32]. In this period a sequence of civil protests
and demonstrations took place, including camping events

48004-p4



Modeling self-sustained activity cascades in socio-technical networks
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Fig. 3: (Color online) Average inter-event times Ψ of the whole
collection of data. To measure them, an overlapping sliding
window scheme has been used (windows span 1 day, the offset
between windows is 12 hours). To estimate w for 2 different
periods of the protests, we take their corresponding time slices
and compute inter-event times grand averages 〈Ψ〉. Thus, in
fig. 4 a w ∼ 10−1 will be used for the first period and w ∼ 20
for the last one. The scaling w ∼ 1/Ψ is merely an heuristic
estimation, and some fine-tune is necessary to achieve a satis-
factory matching.

in the main squares of several cities beginning on the 15th
of May and growing in the following days. Notably, a
pulse-based model suits well with the affordances of this
social network, in which any emitted message is instantly
broadcasted to the author’s immediate neighborhood—its
set of followers. For the whole sample, we queried for the
list of followers for each of the emitting users, discarding
those who did not show outgoing activity during the pe-
riod under consideration. The set of users N = 87569 plus
their following relations constitute the topological support
(directed network) for the dynamical process running on
top of it. The average number of followers of this net-
work is 〈k〉 = 69 and its degree distribution scales like
p(k) ∼ k−1.5. Note that, unlike other substrates, friend-
ship networks exhibit a high level of reciprocity. In partic-
ular, r = 0.45 (as defined in [33]) for this particular case,
which implies that many links can effectively be regarded
as undirected. This is why the theory —developed for
undirected networks— is a reasonable approach for this
particular case.

On top of the described network, we measure the em-
pirical time-constrained activity cascade (or simply “cas-
cade”) size distribution for different periods, as explained
previously. To test the proposed model, we run the dy-
namics on the same topology for some given parameters
(w, ε). Since (as mentioned) ε is fixed to the network’s
particular εc ≈ 10−3, we only need to determine which
values of w can adequately represent the evolving nature
of events. Figure 3 represents the average inter-event times
Ψ in the data for each 32 days of activity around the
15M movement. Grand averages 〈Ψ〉 are computed for
8-day windows, roughly corresponding to the periods for
which we offer model fittings (see below). As expected, Ψ
drops abruptly in the first days —when the movement
is brewing— and smoothly decreases afterwards, until
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Fig. 4: (Color online) Cascade size cumulative distributions
P (S) of real data (blue squares) and the model counterpart
(red circles). We have considered two time windows which
significantly differ: first eight days (top) for which we have set
w = 0.1; last eight days (bottom) for which we have w = 30.0.
Note that εc ≈ 10−3. The model performs well in both periods,
the relative error of the slope in the linear region is < 1%
(see slope values on the figure). Real-data distributions are
measured as described in the main text, see also [15,16].

Ψ ≈ 0. Intuitively, the willingness of an individual to
participate in the protest is proportional to real-world ex-
citation level, i.e. it scales like the inverse of Ψ, and thus
we envisage that w ∼ 1/Ψ.

In fig. 4 we compare empirical vs. synthetic cascade
size distributions for different periods of the protests: the
“slow-growth” phase (25th April to 3rd May; blue squares
in the upper panel) for the first days, when the protest is
limited to some online activists; and the “explosive” phase
(19th to 25th May; blue squares in the lower panel), which
comprehends the most active interval —the reaction to the
Spanish government ban on demonstrations around local
elections on the 22nd May. The proposed dynamics is run
on the same topology for different w values, with remark-
able success (red circles), though the bottom panel does
not show so good of an agreement as the top one. In par-
ticular, a small range around w ∼ 1/〈Ψ〉 values was tested
in the simulations, seeking a minimization of the relative
error of the slope in the linear region of P (S), i.e. the
cascade size distribution.

Moreover, as seen in fig. 4, our model is able to cap-
ture different regimes. Admittedly, the gap observed in
the data (fig. 4, bottom panel) is reminiscent of a super-
critical regime, in which one either has small-size events
or system-wide cascades. The change between regimes,
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namely, from the subcritical one represented in fig. 4, top
panel, and the super-critical phase needs the activity of
the system to be long-lived, as this is a transition that
takes place at different time windows. Note that this is a
quite relevant feature of the model here introduced, since
existing threshold models do not allow that individuals
engage in more than one cascade (recall that once one in-
dividual is active remains so forever) and therefore cannot
lead to the same kind of temporal transition observed in
the real data.

Conclusions. – Summarizing, we have proposed a
time-dependent continuous self-sustained model of social
activity. The model can be analyzed in the context of pre-
vious cascade models, and encompasses novel phenomenol-
ogy as the time dependence of the critical value of the
emergence of cascades. We interpret it under a social per-
spective, where collective behavior is seen as an evolving
phenomenon resulting from inter-personal influence, con-
tagion and memory —while, collaterally, it sheds new light
to the behavior of pulse-coupled oscillator dynamics. In
a general perspective, our modeling framework offers an
alternative approach to the analysis of interdependent de-
cision making and social influence. It complements thresh-
old models and complex contagion taking into account
time dynamics and recursive activation, and also splits
motivation into two components: intrinsic propensity and
strength of social influence. We also anticipate that the
exploration of the whole parametric space would lead to
new insights about the effects of social influence and in-
terdependence in social collective phenomena.
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Cauhé E., Ferrer A., Ferrer D., Francos D.,
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