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We study the dynamical behavior of an ensemble of oscillators interacting through short-range
bidirectional pulses. The geometry is 1D with periodic boundary conditions. Our interest is
twofold — to explore the conditions required to fully reach synchronization and o investigate
the time needed to reach such a state. We present both theoretical and numerical results.

The analysis of the dynamic properties of popula-
tions of pulse-coupled oscillators are the starting
point of many studies devoted to understand some
phenomena such as synchronization, phase locking
or the emergence of spatiotemporal patterns which
appear so frequently when analyzing the behavior
of heart pacemaker cells, integrate and fire neurons,
and other systems made of excitable units [Peskin,
1984; Mirollo & Strogatz, 1990; Kuramoto, 1991;
Abbott & Van Vreeswijk, 1993; Treves, 1993].
Mean-field models or populations of just a few
oscillators are the typical subject that has been con-
sidered in scientific literature. In these simplified
systems, it is possible to investigate analytically the
main mechanisms leading to the formation of as-
semblies of synchronized elements as well as other
spatiotemnporal structures. However, such restric-
tions do not allow to consider the effect of certain
variables whose effect can be crucial for realistic
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systems. The specific topology or geometry of the
system, as well as the precise connectivity between
units are some typical examples which usually in-
duce important changes in the collective behavior of
these models. Unfortunately, a rigorous mathemat-
ical description of them is still missing. The major-
ity of studies rely on simulations showing the out-
standing richness that a low-dimensional system of
pulse-coupled oscillators may display. Some exam-
ples are self-organized criticality, chaos, quasiperi-
odicity, etc [Perez et al., 1996]. In other cases,
the stability of some observed behaviors is proven
[Goldsztein & Strogatz, 1995; Diaz-Guilera et al.,
1997] but not the mechanisms leading to them.
The first step forward was very recently given
by [Diaz-Guilera et al., 1998}, hereafter called DPA.
Assuming a system defined on a ring, they devel-
oped a mathematical formalism powerful enough
to get analytic information not only about the
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mechanisms which are responsible for synchroniza-
tion and formation of spatiotemporal structures,
but also, as a complement, to prove under which
conditions they are stable solutions of the dynam-
ical equations. They considered one-directional in-
teractions which allow to simplify the analysis. The
study of a more general situation is desirable.

The aim of this paper is to show that such
formalism is able to handle more difficult situa-
tions. In particular, we consider here a popula-
tion of pulse-coupled oscillators with bidirectional
couplings. This fact is important because the back-
wards effect of the coupling might break the co-
herent activity of an ensemble of oscillators previ-
ously synchronized. Small changes in local aspects
of the coupling may lead to important cooperative
effects.

Let us start the discussion by infroducing the
model and the notation used throughout the pa-
per. We have considered a population of (N + 1)
pacemakers distributed on a ring. This geometry
is interesting to analyze certain problems related to
cardiac activity. For instance, to study some types
of cardiac arrhythmia characterized by an abnor-
mally rapid heartbeat whose period is set by the
time that an excitation takes to travel a circuit.
This observation can be explained by modeling ap-
propriately the circulation of a wave of excitation
in a one-dimensional ring [Ito & Glass, 1992]. The
study of the sinus rhythm has also been studied
in systems with similar geometry and bidirectional
couplings [Lkeda, 1982]. Other systems whose dy-
namical evolution is restricted to a limit cycle, and
therefore can be described in terms of only one de-
gree of freedom, can also be tackled with the same
tools.

The usual description of the state of one unit
is performed in terms of one physical variable that,
in general, it is voltage-like quantity. However, af-
ter a straightforward transformation [Corral et al.,
1995], it is always possible to write the evolution of
each oscillator in terms of a phase variable ¢ € [0, 1]
which evolves linearly in time. In addition, the ef-
fect of pulsating-interaction between oscillators can
be written down through the so-called phase re-
sponse curve (PRC) which measures the effective
change in ¢ due to the firing process. In general,
all the nonlinearities of the problem are included
in this function. In this paper, we are interested in
monotonic functions which are closely related to the
convex character of the evolution of the voltage-like
variable in formal pacemakers (perfect integrators).

Within this space of functions we have chosen the
linear case because it allows to get analytical results
without losing any of the features which character-
ize the synchronization process between units. Let
us clarify this point. When a given unit reaches a
threshold value ¢, = 1, it fires and changes the
state of its neighbors according to

> 1=
¢i 2 {¢nn — Oppn + EPpp = fdpn
Vi=0,..., N (1)

where nn denotes the nearest neighbors, £ is the
strength of the coupling and where N +1 =0 is
due to the boundary conditions. According to the
aforementioned definition p¢ is the PRC.

Omne of the key points of the mathematical for-
malism relies on a suitable transformation which
allows to trace the phases of the oscillators after
each firing and construct return maps of the com-
plete cycle. For details see [Corral et al., 1995]. The
transformation which intrinsically includes transla-
tions and rotations always keeps information about
the element of the population which will fire im-
mediately. This is a very appropriate way to know
details about the spatiotemporal structure which is
dynamically forming at every time step.

From our point of view the most direct way to
understand the mechanism underlying synchroniza-
tion or any other time-dependent phenomenon is to
start analyzing the simplest situation with physical
interest. For a population with bidirectional cou-
plings we consider only four oscillators. In DPA and
for the one-directional case the same scheme was ap-
plied. However, they started with an even simpler
situation, since only three elements were the mat-
ter of attention. For hidirectional interactions, such
a case is trivial due to the symmetry of the prob-
lem since one firing affects all neighbors and from
an effective point of view, the problem is a mean-
fleld which has been already solved in [Mirollo &
Strogatz, 1990].

For the four pacemakers system there are six
possible sequences of firings such that one member
of the population fires once and only once in each
cycle. If we assume that the oscillator which fires is
always labeled as unit 0 and the rest of elements
are ordered from this unit clockwise, then these
sequences are the following:

e A:0,1,2,3
e B:0,1, 3,2
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where the sequence has to be understood as the
order in which the oscillators reach the threshold.
The dynamical process of firings can be described
in terms of a set of matrices which take into ac-
count the “jump” (distance) between those oscil-
lators which fire consecutively [Diaz-Guilera et al.,

1998]. It is straightforward to check that they are
- 10
My=)—p 0 p (2)
—u 0 0
0 -1 p :
My=10 -1 0 (3)
p =1 0
0 0 —p
My=|p 0 —pu {4)
01 —u

and that all the cycles related to the different or-
ders are constructed by combining the three previ-
ous matrices as follows

s A: 0, ]., 2,3—)T10T10T10T1
e B: 0, 1, 3,2—%T20T30T20T1
e C:0,2,1,3-T10oThoT3015
e D:0,2,3,13Ty0lhcT10Ty
e E: 0, ,1,2—)’T20T10T20T3
e :0,3,2,1 3 T30T30T307T4

where T} is defined as
¢ =Ti(¢) =1+ Mo,

where ¢’ is a vector with N components since the
zeroth component does not play any role in the
description.

Before computing the fixed points of the trans-
formation as well as the stability of the associated
eigenvalues, let us notice that matrices My, M,
and Ms have exactly the same structure as in the
one-directional coupling case except for one c¢olumn
which is multiplied by p. Therefore many: proper-
ties of the new matrices can be discussed directly
without the explicit calculation of them. In particu-
lar, in DPA it was shown that the resultant matrices
had eigenvalues with moduli larger or smaller than

1 depending on the sign of the coupling which is
rather important because it determines the stabil-
ity of the fixed points and as a consequence ensures
that for excitatory couplings the oscillators will syn-
chronize their activity while for the inhibitory case
complex spatiotemporal structures will be formed
in the stationary state. Now, these properties do
not change at all. The nature of the eigenvalues
does not change, and independent of the particu-
lar position of the new fixed points, the conditions
for stability are the same as in the one-directional
case. Fven more, it is straightforward to show that
the modulus of the eigenvalues that in the afore-
mentioned case were larger than 1 are now larger
and the opposite for those which are smaller than
one. This fact sugpgests that the stability of the typ-
ical spatiotemporal structures found in DPA such
as the chessboard configuration are more stable for
the bidirectional case and the opposite on the other
side, i.e. units synchronize faster.

The generalization to an arbitrary number of
oscillators is a technical matter that follows the
same steps discussed in DPA. For this reason the
mathematical details will not be discussed here
again. However, we want to stress that accord-
ing to these results the physical scenario defined
for a population with one-directional couplings still
holds. The oscillators synchronize due to a mech-
anism of dimensional reduction. However, let us
remark an important difference with respect to the
previous case. In the bidirectional case one cannot
ensure that two units firing at unison in a given
cycle will do it again in the next one, however it
can be ensured through simple algebra that the
number of synchronized oscillators cannot decrease
at any time. In other words, if a couple breaks
their mutual synchrony necessarily one of the ele-
ments of this couple will synchronize with the other
neighbor. This fact shows that the term “dimen-
sional reduction” is more appropriate than the word
“absorption” used currently in the literature. On
the other hand, in the typical inhibitory patterns
the oscillators tend to be as far as possible from the
nearest neighbors.

As a complement of the previous studies, we
have analyzed the time required to fully reach syn-
chronization for the bidirectional case. In particu-
lar, we have focused our attention on two particu-
lar situations. It is well-known that for only two
oscillators the maximal time needed to find both
moving in synchrony is when in the initial condition
the units are separated from each other by ¢ == 0.5,
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i.e. when they are separated as far as possible. We
wanted to check whether such phenomenen is also
observed for larger populations. To do this, we have
assumed that the oscillators are distributed ran-
domly in a interval [$min, 1] where ¢min is a variable
quantity. Figure 1 shows the results for different
coupling strengths & averaged over 200 samples. As
we can see, the randomization breaks the singular
character of ¢ = 0.5 and the time grows monotoni-
cally with the width of the interval.

We have also studied for a fixed interval and for
a fixed number of elements how the synchronization
time depends on the magnitude of the coupling.
In the mean-field case it was shown [Mirollo &
Strogatz, 1990] that the functional dependence goes
as t & 1/e. Figure 2 shows our results for the bidi-
rectional case. It is interesting to see that the same
relationship between both variables still holds for
short-range couplings.

In conclusion, we have studied under which
conditions a population of pulse-coupled oscillators
with bidirectional interactions display either syn-
chronization or spatiotemporal structures. We have
followed the mathematical formalism developed in
DPA for a simpler case, noticing that the phys-
ical mechanisms underlying both phenomena are
the same (dimensional reduction) as in the one-
directional situation. We have also studied the time
required to get synchronization, observing the same
functional dependence in the coupling found for the
mean-field approach.

1000G T T T T T T T T T
'eps=0.001' ¢
'eps=0.003 +
° ° ‘eps=0.01" 1
P e e o, o "aps=0.08' X
d ‘eps=0.1" 2 E
00 F L, °o p ;
+ o
*or ¢ %
f B o0gg + @
8 g + ¢
g4 + o4 )
100 5 x z LA o 3
3 XX oy 3 4 "
L a . + o
Faoaoa, X % [B] o +
&, X a]
FS X o =] +
10 A a X o) E
Q 3 & a a * X
£ S a a x ;
+ A
a X
a
1 L L] L L 1 1 1 1 | -
o 01 02 03 04 06 06 07 08 09 t

Phase

Fig. 1. Time needed to fully reach synchronization versus
¢min for several values of the coupling. The results are an
average over 200 samples. The results are given for N = 32.
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Fig. 2. Time needed to fully reach synchronization versus
magnitude of the coupling for different population sizes. The
results are an average over 200 samples. We have also plotted
the 1/x line as a guide for the eye.
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