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Abstract. Identifying community structure can be a potent tool in the analysis and
understanding of the structure of complex networks. Up to now, methods for evaluating
the performance of identification algorithms use ad-hoc networks with communities of
equal size. We show that inhomogeneities in community sizes can and do affect the
performance of algorithms considerably, and propose an alternative method which
takes these factors into account. Furthermore, we propose a simple modification of
the algorithm proposed by Newman for community detection (Phys. Rev. E 69
066133) which treats communities of different sizes on an equal footing, and show that
it outperforms the original algorithm while retaining its speed.

1. Introduction

Natural and artificial systems often have architectures which are best described as

complex networks. The topologies of networks have been extensively studied in various

disciplines in recent years, particularly within physics [1, 2, 3, 4, 5]. A part of

that research has been directed at the study of modules or communities in networks.

Communities can be defined as subsets of nodes which are densely connected to each

other and loosely connected to the rest of the network. Such structures have been

discovered in networks as diverse as banking networks, metabolic networks, the airport

network and most notably in social networks [6, 7, 8, 9, 10].

Despite efforts spanning several decades in this direction [11, 12], the identification

of community structure in networks remains an open problem. The space of possible

partitions of even a small network is very large indeed. Several methods have been

proposed for finding meaningful partitions in networks of reasonable size. These methods

vary considerably from one another, not only in their general approach, but also in

sensitivity and computational effort (for recent reviews, see [13, 14] and chapter 7.1 of

[5]). In general, those methods which are more accurate tend to be able to explore a
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larger portion of the partition space, and are therefore computationally expensive (see

for example [15, 16]). On the other hand, those methods which explore a smaller region

of the partition space tend to be faster, but as a consequence, less accurate [17, 18]. The

challenge, therefore, is to find methods which are both fast and accurate, and several

attempts have been made [19, 20, 21].

In this paper we reevaluate the benchmark most commonly used at present to

measure the sensitivity of a particular community identification algorithm [22]. This

benchmark, although useful, does not take into account the fact that networks exhibit

community structure where the community sizes are highly skewed, despite the fact

that several authors have observed that distributions of community sizes seem to follow

power laws in many cases [17, 18, 23, 24, 25, 26]. In the next section we propose a

benchmark for measuring algorithm sensitivity which takes this skew into account. In

section 3 we examine Newman’s Fast algorithm (NF) for community detection [17], and

see that it is affected by a skew in the community size distribution, showing a tendency

to find large communities at the expense of smaller ones. We propose a modification

of the algorithm, in which the communities of different sizes are treated equally, and in

section 4 we show that it outperforms the NF algorithm in sensitivity, with no tradeoff

in terms of computational effort.

2. Evaluating algorithm performance on ad-hoc networks

To quantify how good a particular network partition is, the modularity measure Q was

introduced in [22], and has been widely used since then. Based on a predefined set of

communities i in a network, a community connection matrix eij is defined, where each

member represents the proportion of links from community i to community j. Note that

the matrix is normalised, that is, each of the members of the matrix eij = Lij

Ltotal
, Lij

being the number of links between community i and community j, and Ltotal is the total

number of links in the network [22]. The proportion of links belonging to community i

is denoted ai and is simply the sum, ai =
∑

i eij. The computation of Q is as follows:

Q =
∑

i

(eii − a2
i ) (1)

The modularity, Q, quantifies the difference between the intra-community links and

the expected value for the same communities in a randomised network. Note that the

modularity is a relative value, and while it gives an idea of how good a partition of

the network is, it cannot tell us whether this partition is the best one possible. It does

provide a useful way of comparing the performance of different community identification

algorithms applied on one particular network.

The method most commonly used to compare the sensitivity of community

identification methods was also proposed in [22], and is independent of the modularity

measure. It uses a benchmark test based on networks typically containing 128 nodes

grouped into four communities which contain the same number of nodes, 32, and links

(on average 16 per node, k = 16). Pairs of nodes belonging to the same community are
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linked with probability pin, whereas pairs belonging to different communities are joined

with probability pout. The value of pout controls the average number of links a node

has to members of any other community, zout. While pout (and therefore zout) is varied

freely, the value of pin is chosen to keep the total average node degree k constant. As

zout is increased from zero, the communities become more and more fuzzy and harder to

identify. Different community detection algorithms, when applied to these networks may

give different results, reflecting their sensitivity. Since the ‘real’ community structure is

well known in this case, it is possible to measure how well the partitions the algorithm

finds compare to the original partitions.

Here we use a measure based on information theory for this purpose. The

normalised mutual information, I(A,B), explicitly measures the amount of information

about partition A that is gained by knowing partition B [27, 28]. This independent

measure is based on defining a confusion matrix M, where rows correspond to “real”

communities, and columns correspond to “found” communities. The element of M, Mij

is the number of nodes in the real community i that appear in the found community j.

A measure of similarity between the partitions, is then:

I(A,B) =
−2

∑cA
i=1

∑cB
j=1 Mij log

(
MijN

Mi.M.j

)

∑cA
i=1 Mi. log

(
Mi.

N

)
+

∑cB
j=1 M.j log

(
M.j

N

) (2)

where the number of real communities is denoted cA and the number of found

communities is denoted cB, N is the number of nodes, the sum over row i of matrix Mij

is denoted Mi. and the sum over column j is denoted M.j.

We choose to use this measure rather than the fraction of correctly identified nodes,

as described in [22] and [17]. Both measures of accuracy give a good idea of how a

community detection algorithm performs. However, I(A,B) is more representative of

sensitivity if the performance is dubious, since it measures the amount of information

correctly extracted by the algorithm explicitly, just from the topology of the network.

As an example, for small zout, where two original communities are clustered together

by the algorithm, this measure does not punish the algorithm as severely, taking into

account the ability to extract at least some information about the community structure.

On the other hand, for large zout, this method is able to detect that the clusters found

by the algorithm have little to do with the original communities, and I(A,B) → 0 [14].

This behaviour can be seen in Figure 1b. More importantly, I(A,B) is more generally

applicable and totally independent of the number and size of the partitions involved,

making it ideal for use in the following parts of the paper, where we will be varying

both.

Because of the particular definition of these ad-hoc networks, it is tempting to

think that similar networks with four communities sharing the same value of zout/k will

have an equivalent community structure, and that a particular method of community

identification will perform equally well. This, however, is highly dependent on the

number of nodes that the network has, and more importantly the number of nodes in

each community. For example a network with 128 nodes with four communities each of



Effect of size heterogeneity on community identification in complex networks 4

0.1
0.2
0.3
0.4
0.5
0.6

Q

NF 128
Modified 128
NF 512
Modified 512
Pre-defined

0

0.2

0.4

0.6

0.8

I(
A

,B
),

 %

NF 128 Percent
Modified 128 Percent
NF 128 I(A,B)
Modified 128 I(A,B)

0 0.2 0.4 0.6 0.8 1
zout/k

0

0.2

0.4

0.6

0.8

I(
A

,B
)

NF 128
Modified 128
NF 512
Modified 512

(a)

(b)

(c)

Figure 1. Sensitivity of the NF algorithm and the modification described in Section 3,
applied to ad-hoc networks with four equal-sized communities, for two network sizes,
128 nodes and 512 nodes, with average degree k = 16. (a) shows the variation of
modularity found by the algorithms with zout/k. For low values of zout/k, the value
of Q of the partitions found closely follow the expected modularity. For higher values
of zout/k, the partitions found show a better modularity than pre-defined partitions.
There is little difference between results for different network sizes. (b) Comparison
between I(A,B) and fraction of correctly identified nodes, as in [22], for networks with
128 nodes. The two measures behave very similarly, but I(A,B) is more sensitive to
errors. (c) The comparison between pre-defined and found partitions using the mutual
information measure I(A,B) is shown. Both algorithms have similar sensitivity for
both network sizes, but the sensitivity is reduced at the same value of zout/k for the
larger network, suggesting that communities are more fuzzy the larger they are, as
discussed in the text.

size 32 with k = 16 and zout = 6, say, will have a better defined community structure

than a network with the same values of k and zout which is comprised of 512 nodes with

four communities each of size 128. This is simply due to the fact that the internal links

are spread out over a larger number of nodes, thus making the communities less dense,

in terms of proportion of actual links to possible links. In Figure 1c, we can see that

the same algorithm will perform significantly better on a network with 128 nodes than

on one with 512 nodes with the same values of k and zout.

Furthermore, in real networks the distribution of community sizes is highly skewed,

and has been observed to follow power laws in many cases [23, 25, 13, 18, 26]. We argue

that this difference in sizes is important and affects different identification algorithms in

different ways. To be able to evaluate the effect that a spread in community sizes will

have on the performance of any algorithm, we first need to be able to create networks

with controlled community structure of differing community sizes.
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Consider a set of Nc communities where each community contains ni nodes.

Considering pairs of nodes, if both nodes are in the same community a link is placed

between them with probability Pin, otherwise they are connected with probability Pe.

Should Pin be constant for all communities, the number of links of community i would

scale as the square of its size, n2
i . Therefore, as the number of internal links grows

faster than the size of community, large communities will be denser in comparison to

small ones, and therefore much easier to find. To give the same weight to communities of

different sizes, we propose that Pin = F/ni where F is a control parameter. This ensures

that the small communities do get the same treatment as large communities by keeping

the number of links within i scaling as ni. Now, we are able to control both internal and

external cohesion by varying F and Pe respectively. This method of network creation

is equivalent to creating a random Erdös- Renyi network with the probability of linking

being equal to Pe and then superposing Nc random networks whose sizes correspond to

ni where the probability of internal linking is F/ni.

Figure 2(a and b) shows two networks with 5 communities each, containing one

community of 64 nodes and 4 communities of 16 nodes each for two different values

of Pe and F . Figure 2c shows the value of Q when the network partition corresponds

exactly to the prescribed communities as a function of F and Pe. While these community

sizes are chosen to be illustrative, this method of network creation is completely general

and community sizes can be drawn from any given distribution.

3. Dynamics of the Fast algorithm and its modification

The performance of various community identification algorithms has recently been

studied both in terms of speed and in terms of accuracy. Having a method of generation

of networks with communities of differing sizes puts us in a position to test the way

these sizes can affect the performances of identification algorithms. In particular we

concentrate on Newman’s Fast algorithm as proposed in [17]. It is dubbed fast since

it runs in almost linear time for sparse networks, O(n log2 n) [18], and while it is not

the most accurate method, it remains the only algorithm able to extract community

structure information from very large networks [14].

Let us consider a network that has been partitioned in some arbitrary way. Joining

two neighbouring partitions i and j, would produce a change in modularity:

∆Qij = 2(eij − aiaj) (3)

This can be interpreted as a measure of affinity of communities i and j, and can

subsequently be used to find the two communities which are most alike (highest ∆Q).

Starting with each node in the network in its own community, one can join pairs of

communities with the highest ∆Q. This process can then be performed and repeated

until the whole network is contained in one community. As the author states in [13],

this is very similar to agglomerative hierarchical clustering methods [29, 30]. Here,

“distance” measures such as single linkage or complete linkage are replaced by ∆Q. It
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Figure 2. Two examples networks created as described in the main text with 5
communities four of which have 16 nodes and one has 64, (a) has Pe = 0.007 and
F = 8 and in (b) Pe = 0.03 and F = 3. (c) The modularity Q of networks as
generated in the main text for values of Pe between 0.001 and 0.03, and values of F

between 1 and 14. The dark zones represent parts of the parameter space where the
networks constructed were disconnected for more than 1 in 100 realisations.

also differs from hierarchical clustering in that not all pairs of clusters are compared,

only those connected by real links in the network.

Let us analyse carefully how the algorithm proceeds when applied on the well

studied karate club friendship network of Zachary [31]. Data on the network was

collected over a two year period before the club split due to an internal dispute during

which some of the members started their own club. The fissure is apparent in the

topology of the network before the split (see Figure 3a), and this data set has become

somewhat of a standard case study for community detection algorithms in the literature

[19, 20, 32, 10, 13, 21, 33, 34, 35].

Figure 3c shows the dendrogram as generated by the fast algorithm, with the

different colours depicting the partition at the highest value of Q = 0.3807. In the first

step of the algorithm, ai is simply the degree of node i and eij is 1 for any neighbour

pair. Hence, the pair of nodes that will be joined first is the neighbour pair that has

the smallest product of degrees. In the case of the karate club network, these are nodes

6 and 17 with degrees 3 and 2 respectively. Note that once a community has joined

with another, the resulting community tends to join again, since the first term of 4, eij,

tends to be increased by the joining of neighbouring communities, especially in networks

with high clustering. So, the cluster of nodes 6 and 17 absorb their common neighbour,

node 7. This larger cluster now has an even larger eij to common neighbours and in
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the following steps absorbs nodes 1, 5 and 11, until no common neighbours exist. This

process occurs in a similar fashion for nodes 24, 27, 28, 30 and 34. We observe that

when choosing the pair of communities to be joined, large communities are favoured at

the expense of smaller ones. In turn, this leads to the formation of a few large clusters

in networks where a larger number of smaller clusters may represent the real community

structure better.
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Figure 3. (a) Zachary’s karate club network (b) Modularity as algorithms progress
(c) Dendrogram representing the progress of fast algorithm, where formation of large
clusters is favoured early (d) Dendrogram representing the progress of our modification,
all clusters are treated on an equal footing and individual nodes are absorbed into
clusters early.

To avoid this and to treat each community as equal, we ”normalise” ∆Q by the
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number of links:

∆Q′
ij =

∆Qij

ai

=
2

ai

(eij − aiaj) (4)

It is important to note that while the pair of nodes with the largest value of ∆Q′

is chosen, the real value of Q must be calculated at each step using the original ∆Q, or

measuring the value of Q explicitly. Note that as opposed to the original formulation,

this measure is asymmetric, that is ∆Q′
ij 6= ∆Q′

ji. But, the implementation of the

algorithm ensures that both ∆Q′
ij and ∆Q′

ji are considered when choosing the pair of

communities to join, and, since we are interested in only the largest value of ∆Q′ at

each step, this poses no problem. In essence, the modified algorithm is able to take a

different path in the partition space from the original, in part due to this asymmetry.

For each possible merging of neighbouring communities, there exists only one value of

∆Q, whereas ∆Q′ takes two different values, if the two communities have a different

number of links ai 6= aj.

This normalisation insures that clusters with fewer links have the largest values of

∆Q′, and therefore are joined earlier. Taking the karate club network as an example

again, we see that neighbouring nodes where one neighbour has the smallest degree are

joined first. This ensures that nodes with only one link are joined at the beginning of

the process, such as node 12 (see Fig. 3d.). Curiously, using another method based

on synchronisation recently proposed by two of us produces a very similar dendrogram

[36]. We argue that this is a better way to proceed. A partition containing a single node

will always contribute negatively to the value of Q, even if the degree of that node is

1. For example in [37] the authors find a partition with Q = 0.412 which has node 12

as a separate community, using an entirely different method for exploring the partition

space. But, Qi=12 = −1/78 and the same partition, only with node 12 contained within

it’s neighbour community, has Q = 0.418 ‡.
While the NF algorithm also ensures that single node partitions are not found in

the optimal state, our modification performs this absorption much earlier. This means

that in the first few steps of our algorithm will inevitably appear to performing worse

than the NF algorithm. As it progresses, however, it overtakes the NF algorithm in

terms of Q, as we can see in Figure 3b. Indeed, we find that when our modification does

not match the performance of the NF algorithm in terms of Q, it improves it.

4. Testing the modification

To test the performance of the modification proposed, we have applied the algorithm

on several networks, both ad-hoc and real. To begin with we look at networks with four

equal sized communities, as described in [22].

As zout/k increases, the modularity of the pre-defined partition decreases as

Q = 3/4 − zout/k irrespective of network or community size. Figure 1a shows the

‡ Such a partition is found by a more exhaustive search of the partition space, by using for example
the EO algorithm by Duch and Arenas [20].
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expected modularity value compared with those found by the NF algorithm and our

modification. For low values of zout/k both algorithms find communities with the value

of Q following the expected value closely. For higher zout/k these values deviate from the

expected value as the communities found by the algorithm do not correspond exactly to

pre-defined communities. In fact, as zout/k increases above 0.5 the pre-defined partitions

give a lower value of Q than those found by the algorithm, which tend towards the value

that random networks exhibit due to fluctuations [16]. The values of Q found by our

modification is very similar to those found by the NF algorithm.

The deviation between pre-defined and found partitions is seen more clearly by

looking at the mutual information measure I(A,B) in the lower part of Figure 1. As

zout/k increases beyond the point where communities are well defined, the amount of

information about community structure the algorithms are able to extract decreases.

When the communities found have hardly any relation to pre-defined ones, as is the

case for high zout/k, I(A, B) tends to zero. As network size increases however, the

algorithms are able to extract less information from the network structure. This supports

the suggestion that communities in these networks become more fuzzy as their size

increases. Once again, our modification performs very similarly to the NF algorithm.

It seems logical that both algorithms perform with similar accuracy for these

networks. As we have seen in 3 the NF algorithm seems to favour the formation of

larger communities. However when the communities to be found are all of the same

size, one would expect it to perform quite well. Our modification has little effect in this

case.

The difference between the algorithms appears when communities of different sizes

are present within the network. Using the network construction method proposed in

Section 2, we study the performance of the algorithm on networks with 21 communities.

The communities are chosen by hand, with one community of 128 nodes, four

communities with 32 nodes each and 16 communities containing 8 nodes each. This

corresponds to a size distribution which follows a power law (with only three points),

where the exponent is -1. In Figure 4 we show the difference in performance between the

NF algorithm and our modification. They are compared both in terms of modularity

and mutual information. Our modification performs better in all parts of the parameter

space, with some regions showing up to 25% improvement over the original algorithm.

The regions where the improvement is largest are those where the communities are fuzzy,

that is, for high values of external cohesion Ps and low values of internal cohesion F .

This suggests that our modified algorithm will perform better in real networks,

where the size of communities is highly heterogeneous and the community structure is

fuzzy. To check this, we also performed tests on some real networks. Table 1 shows

the comparison of our modified algorithms with Newman’s original formulation and,

where possible with the extremal optimisation algorithm. We looked at the network of

Jazz bands with nodes representing the bands, and links between bands representing

at least one musician that played in both [24]; the e-mail network of University Rovira

i Virgili [23] where e-mail addresses are connected by exchanging messages; and the
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Figure 4. Difference in performance between the NF algorithm and our modification
(a) proportion of improvement in Q (b) proportion of improvement in I(A,B). Our
modified algorithm outperforms the NF algorithm in all parts of parameter space, but
the difference is most pronounced for high values of Pe and low values F , i.e. where the
communities are fuzzy. Each point is an average over 100 realisations of the network.

Table 1. Table of optimal modularity values obtained by the Extremal Optimisation
algorithm, QEO [20], the NF algorithm, QNF [17], and the modification presented
here, QM .

Network Size QEO QNF QM

Zachary 34 0.4188 0.381 0.4087

Jazz bands 198 0.4452 0.4389 0.4409

E-mail 1144 0.5738 0.4796 0.5569

PGP 10680 0.8459 0.7329 0.7462

arXiv 44337 N/A 0.7165 0.7606

WWW 325729 N/A 0.9269 0.9403

Actor 374511 N/A 0.6829 0.7194

network of users of the pretty good privacy (PGP) algorithm for secure information

transactions [38]. These are medium sized networks and are still tractable with the

Extremal Optimisation (EO) algorithm [20], which has a larger running time scaling as

O(n2 log n). In these networks, the EO algorithm clearly performs best out of the three,

which is no surprise since it explores much more of the partition space than either of the

others. It is, however, impractical to use in very large networks due to running time. In

large networks such as the co-authorship network of the arXiv preprint database [39],

the network of web pages within the nd.edu domain [40], or the actor network [41], our

algorithm is still able to run in a reasonable time. It improves on the results of the NF

algorithm, finding partitions up to 16% better in terms of Q, with no tradeoff in speed.
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5. Conclusion

To conclude, in this paper we have proposed a more realistic benchmark test for

community detection algorithms in complex networks which takes into account the

heterogeneity of community size observed in real networks. We have also shown that

Newman’s fast community detection algorithm tends to favour the creation of large

communities at the expense of smaller ones. We propose a simple modification of the

fast algorithm which can ensure that communities of differing sizes are treated on an

equal footing, thus side-stepping this potential problem. Upon comparing the sensitivity

of our modification to that of the original algorithm, we saw that they perform almost

identically in ad-hoc networks with communities of equal size. However, when compared

using the proposed benchmark test, the improvement in sensitivity increases. Therefore,

we claim that the heterogeneity in community size should be considered when evaluating

community detection algorithms.

Furthermore, we have seen that our modified algorithm gives improved results for

all real networks studied. This improvement is up to 16% in some studied networks.

The improvement in results comes at no extra computational cost, and a reasonable

implementation of the algorithm will run in O(n log2 n) time. We recommend the use

of this simple modification for the study of community structure in very large complex

networks.
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[38] Guardiola X, Guimerà R, Arenas A, Dı́az-Guilera A, Streib D and Amaral L A N, 2002, Preprint

cond-mat/0206240.
[39] Newman M E J, 2001, Phys. Rev. E, 64, 016132.
[40] Albert R, Jeong H, Barabási A L, 1999, Nature, 401, 130.
[41] Barabási A L and Albert R, 1999, Science, 286, 509.


