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Abstract

Nowadays, scientific challenges usually require approaches that cross traditional boundaries

between academic disciplines, driving many researchers towards interdisciplinarity. Despite

its obvious importance, there is a lack of studies on how to quantify the influence of

interdisciplinarity on the research impact, posing uncertainty in a proper evaluation for

hiring and funding purposes. Here, we propose a method based on the analysis of bipartite

interconnected multilayer networks of citations and disciplines, to assess scholars, institutions,

and countries interdisciplinary importance. Using data about physics publications and US

patents, we show that our method allows to reward, using a quantitative approach, scholars

and institutions that have carried out interdisciplinary work and have had an impact in

different scientific areas. The proposed method could be used by funding agencies, universities

and scientific policy decision makers for hiring and funding purposes, and to complement

existing methods to rank universities and countries.
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1 Introduction

Interdisciplinary research has recently gained a central role in the advancement of

science, leading to important achievements (Nature, 2015). For instance, the 2014

Nobel Prize in Chemistry was awarded to two physicists and a physical chemist,

for “a physical technique, developed with help from chemistry, that helps illuminate

problems in biology.”1

Even though several definitions and metrics for interdisciplinarity have been

proposed (Porter et al., 2007; Leydesdorff, 2007; Wagner et al., 2011; Jensen &

Lutkouskaya, 2014; Sinatra et al., 2015; Larivière et al., 2015; Pan & Katrenko,

2015), citation impact metrics accounting for this aspect of scientific research have

not been defined yet.

On the other hand, funding agencies have created specific calls for interdisciplinary

projects, like the Interdisciplinary Programs funded by the National Science Foun-

dation.2 The European Research Council explicitly encourages applications from

1 An interdisciplinary celebration, Chemistry World (2014) http://www.rsc.org/chemistryworld/
2014/10/nobel-prize-editorial

2 https://www.nsf.gov/od/iia/additional resources/interdisciplinary research/support.jsp

http://orcid.org/0000-0002-6748-5124
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scientists having published in multidisciplinary journals,3 and the evaluation criteria

for the Marie Curie fellowships also include the interdisciplinary aspects of the

research.4 Consequently, there is significant need to evaluate projects and scholars

by considering interdisciplinarity too. The difficulties in evaluating interdisciplinary

research constitute a pressing controversy that leads many young scholars to

remain on more traditional tracks, because the risks associated to undertaking

an interdisciplinary career path seem too high (Rhoten & Parker, 2004). This work

addresses the issue of quantifying interdisciplinarity by proposing a method to rank

scientific publications (such as papers and patents) and their producers (scholars,

inventors, institutions, companies, and countries) according to their scientific impact

and its breadth over different scientific disciplines. The method is based on the

detection of the most central elements of a complex bipartite interconnected

multilayer network representing scientific producers and scientific citations within

and across different fields. The citation network is composed of multiple layers,

each representing a scientific discipline. Accounting for this diversity—instead of

neglecting the information it provides by building an aggregated representation of the

network—allows to unveil the cross-disciplinary versatility of scientific publications

and of their producers, and therefore to obtain a quantitative measure of their

interdisciplinary scientific impact.

Since the seminal work of de Solla Price (1965) and Garfield & Merton (1979),

scientists have put a great effort into trying to understand the patterns of citation

distributions (Redner, 1998; King, 2004; Radicchi et al., 2008) and the non-trivial

dynamics of scientific recognition (Guimera et al., 2005; Newman, 2009; Eom et al.,

2011; Wang et al., 2013; Penner et al., 2013; Zhang et al., 2013; Uzzi et al., 2013;

Deville et al., 2014; Ke et al., 2015). This fundamental body of work has the

ultimate goal of setting the basis for the definition of more accurate and fairer

scientific impact metrics used for evaluation purposes.

In the last decades, several indices have been presented. They are based on the

idea that we can quantify the impact of a scientific publication by counting the

number of citations it has received over the years. A widely adopted indicator to

evaluate scholars’ scientific impact is the h-index (Hirsch, 2005) (a scholar has an

index h if h of her/his publications have received at least h citations each), and its

numerous variants (Egghe, 2006; Bornmann et al., 2008; Kaur et al., 2013).

More recently, a different approach has been proposed. Building networks that

reconstruct the chains of scientific citations allows for a global understanding of

the intrigued patterns of citations between publications—or between producers. This

representation allows to unveil the difference between, for instance, a publication that

has received 10 citations coming from highly cited publications, and a publication

that has received 10 citations too, but from low-cited papers. The two have the

same number of citations but the former has clearly had a higher impact. To rank

3 “Applicants should also be able to demonstrate a promising track-record of early achievements
appropriate to their research field and career stage, including significant publications (as main
author) in major international peer-reviewed multidisciplinary scientific journals, or in the leading
international peer-reviewed journals of their respective field.” http://erc.europa.eu/funding-and-
grants/funding-schemes/starting-grants

4 Annex 2 http://ec.europa.eu/research/participants/portal/doc/call/h2020/h2020-msca-if-2015/
1645199-guide for applicants if 2015 en.pdf
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publications, journals or scholars according to their importance in the respective

citation network, researchers have proposed diffusion algorithms that simulate the

spreading of scientific credits on the network (Walker et al., 2007; Bergstrom, 2007;

Radicchi et al., 2009). In practice, this is the same idea at the basis of the PageRank,

i.e. the algorithm that Google uses to rank the pages of the World Wide Web (Brin

& Page, 1998).

2 Methodology

In this work, we propose to rank scientific publications and their producers

employing the PageRank defined on a bipartite interconnected multilayer structure

that accounts for citations within and across different disciplines. This is equivalent

to ranking nodes according to their versatility (De Domenico et al., 2015) on an

interconnected multilayer network (De Domenico et al., 2013; Kivelä et al., 2014).

To account for interdisciplinarity, we define a bipartite interconnected multilayer

network representing citations between publications (papers or patents) and rela-

tions between publications and their manufacturers (scholars, inventors, research

institutions, companies, or countries).

Given N nodes and L layers, the rank−4 multilayer adjacency tensor A
αγ̃

βδ̃
is

defined in the following way. Let Cα
β(h̃, k̃) =

∑N
i,j=1 wi,j(h̃, k̃)E

α
β(ij) be the rank−2

adjacency tensor encoding information about the relationship between layer h̃ and

k̃, where wij(h̃, k̃) indicates the intensity of the relationship between node ni in layer

h̃ and node nj in layer k̃, and Eα
β(ij) indicates the rank−2 tensor that represents the

canonical basis in the space RN×N (note that when h̃ = k̃, Cα
β(h̃, h̃) represents the

intra-layer adjacency tensor), then

A
αγ̃

βδ̃
=

L∑

h̃,k̃=1

Cα
β(h̃, k̃)E

γ̃

δ̃
(h̃, k̃) (1)

where E
γ̃

δ̃
(h̃, k̃) indicates the rank−2 tensor that represents the canonical basis in

the space RL×L. This is the general formulation of an adjacency tensor representing

a multilayer network.

To build our network, we consider N = NP +NM nodes (where NP is the number

of publications, and NM the number of manufacturers of the chosen type that

produced the NP papers. Therefore, given the ordered set of nodes {n1, . . . , nN}, the

first NP elements {n1, . . . , nNP
} represent publication, and the other NM elements

{nNP+1, . . . , nN} represent manufacturers. Moreover, we consider L = L′ + 1 layers,

where L′ is the number of scientific disciplines that the publications belong to. The

four components of the rank−2 adjacency tensor Cα
β(h̃, k̃) are defined as follows.

Cα
β(l̃x, l̃x) and Cα

β(l̃x, l̃y), with x, y ∈ [1, L′], encode information about publication

citations. Each layer represents a discipline or a subfield, therefore wij(l̃x, l̃x) =
1

NL(i)NL(j)
if both publications i and j belong to discipline x, and publication i

cites publication j. NL(i) (NL(j)) is the number of disciplines that publication i

(j) belongs to. This normalization is performed so that every citation carries one

unit of value overall. Interdisciplinary citations are instead encoded by Cα
β(l̃x, l̃y);

wij(l̃x, l̃y) = 1
NL(i)NL(j)

if publications i belongs to discipline x and j to discipline y,

and publication i cites publication j. Let l̃A denote the remaining layer, then the
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tensors Cα
β(l̃x, l̃A), with x ∈ [1, L′], encode information about the relation between

publications and their manufacturers, i.e. if the chosen type of manufacturer is

scholars, then wij(l̃x, l̃A) = 1
NL(i)

if author j is one of the authors of publication i.

If we consider research institutions, we connect each publication to the institutions

to which its authors are affiliated; if we consider countries, the connections are

to the countries in which these institutions are based. Finally, we define Cα
β(l̃A, l̃x)

and Cα
β(l̃A, l̃A) to be zero tensors. Cα

β(l̃A, l̃x) tensors are null because we do not want

the relations between publications and manufacturers to be symmetric, to avoid

unrealistic paths to take place when computing the nodes centrality. Cα
β(l̃A, l̃A) is null

because all the information is already encoded in the other tensors: we do not need

to explicitly add citation edges between authors.

In this framework, for the citation layers, each node is active on a given layer if and

only if the publication it represents belongs to the corresponding field. For example, a

monodisciplinary publication is active only on one layer, whereas an interdisciplinary

publication, pertaining to both physics and biology, is active on two layers. As a

consequence, a publication whose impact is restricted to only one discipline has

intra-layer incoming edges only, whereas a publication that has influenced the

work of researchers in more than one field has inter-layer incoming edges too,

which represent the bridges between the different fields involved. Therefore, this

framework allows for a natural representation of the interdisciplinarity degree of a

publication. Being our goal to rank publication producers too, we introduce in the

network a second type of nodes, which, according to the specific need, represent

scholars, inventors, research institutions, or countries. These nodes are active on

a dedicated layer, and each publication has directed outgoing inter-layer edges

pointing to each of its producers. Previous works on ranking producers are based

on one-mode projections of the bipartite network of publications and producers,

whereas in this work we prefer to take advantage of the complete bipartite structure

in order to avoid any information loss, as further detailed in the Supplementary

Material.

On the proposed network, the ranking is obtained through a process of diffusion

of scientific credits from paper to paper through citation edges within and across

disciplines. Producers are the sinks of this diffusion process, being represented by

nodes with no outgoing edges, and incoming edges originated from the papers they

have produced. A schematic representation of the proposed network is shown in

Figure 1.

Having defined the multilayer citation network, we propose to rank its nodes

according to their PageRank versatility, which is given by the steady-state solution

of the equation

pβδ̃(t + 1) = R
αγ̃

βδ̃
pαγ̃(t) (2)

where pαγ̃(t) is the time-dependent tensor that gives the probability to find a random

walker at a particular node α in a particular layer γ̃, and

R
αγ̃

βδ̃
=

[
rT

αγ̃

βδ̃
+

1 − r

NL
u
αγ̃

βδ̃

]
(3)

N being the number of nodes in the network, L the number of layers, and r the

teleportation rate. T
αγ̃

βδ̃
denotes the rank−4 tensor of transition probabilities for
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Fig. 1. Bipartite interconnected multilayer network. Panel (A) shows a simple example

of bipartite citation network made of eight papers and seven scholars. The eight

papers belong to two disciplines—biology and physics. Green icons represent biology

papers, blue physics, and the bicolour icon represents a paper that belongs to both

biology and physics. Continuous arrows represent citation edges, whereas dotted

arrows connect papers to its authors. Panel (B) shows the multilayer representation

of the network. Consider, for example, authors a and b. If we discard the information

about the scientific fields and consider the aggregated network shown in panel A,

then the two authors’ centrality would be the same, because they authored the same

number of papers, having an identical structure of incoming citations. However, the

multilayer framework takes into account that one of b’s papers pertains to both

physics and biology, and moreover, had an impact in both fields (one citation comes

from a physics paper and the other from a biology one). Therefore, b has a higher

versatility than a.

jumping between pairs of nodes and switching between pairs of layers, and u
αγ̃

βδ̃
is

the rank−4 tensor with all components equal to 1. Let Ωαγ̃ be the eigentensor of the

transition tensor Rαγ̃

βδ̃
, denoting the steady-state probability to find a random walker

in node α and layer γ̃. The tensor Ωαγ̃ provides the PageRank of each node (α) in

each layer (γ̃): it is crucial to remark here that this is not equivalent to calculate the

PageRank in each layer separately, because our formulation accounts for the whole

interconnected structure to solve the eigenvalue problem. To obtain the multilayer

PageRank of each node, regardless of the layer, we project the values obtained from

its replicas in different layers, obtaining the multilayer PageRank vector

ωα = Ωαγ̃u
γ̃ (4)

where uγ̃ is the vector with all components equal to 1. It has been shown (De

Domenico et al., 2015) that this operation provides the same results that would
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be obtained by calculating PageRank by means of simulated random walkers that

explore the multilayer structure according to transition rules encoded in R
αγ̃

βδ̃
.

3 Data

To illustrate the proposed ranking method, we test it on two case studies: the

American Physical Society (APS) and the U.S. patents datasets.

The first is a collection of papers published in the journals of the American

Physical Society (Physical Review Letters, Physical Review and Review of Modern

Physics) between 1985 and 2009.5 We restricted the analysis only to papers with

at most 10 authors, to avoid biases due to the papers of experimental high-

energy physics in which all the project collaborators are listed as co-authors. To

disambiguate author’s name, we used a simple technique introduced in previous

studies (Radicchi et al., 2009). Metadata in the dataset provide information about the

topic of the papers through the specification of the assigned “Physics and Astronomy

Classification Scheme” (PACS) code, developed by the American Institute of Physics

(AIP) and used in Physical Review since 1975 to identify fields and sub-fields of

physics.6 We exploited this information to build a heterogeneous interconnected

10-layer network in which each layer represents a sub-field of physics, as defined

by the PACS systems: General ; The Physics of Elementary Particles and Fields;

Nuclear Physics, Atomic and Molecular Physics; Electromagnetism, Optics, Acoustics,

Heat Transfer, Classical Mechanics, and Fluid Dynamics; Physics of Gases, Plas-

mas, and Electric Discharges; Condensed Matter: Structural, Mechanical and Thermal

Properties; Condensed Matter: Electronic Structure, Electrical, Magnetic, and Optical

Properties; Interdisciplinary Physics and Related Areas of Science and Technology;

Geophysics, Astronomy, and Astrophysics. From the paper metadata, we also extracted

the authors affiliation information, which allowed us to associate to each paper a

list of (one or more) institutions and countries. The final dataset consists of 319816

papers, 204809 authors, 626 institutions, and 54 countries. Arguably, the APS dataset

covers only Physics, but note that physics is a vast field that spans from biological

physics to astrophysics and although it may fall short of a full interdisciplinary

analysis it is clear that this is a powerful indicator of multi-topic analysis that serves

to proof the usefulness of the method.

The second dataset contains the U.S. patents granted between January 1963 and

December 1999, and all citations made to these patents between 1975 and 1999.7

To define the layers, we used the six categories proposed in previous studies (Hall

et al., 2001): Chemical (excluding Drugs); Computers and Communications; Drugs and

Medical ; Electrical and Electronics; Mechanical ; Others. Each patent is assigned to

one main class defined by the United States Patent and Trademark Office (USPTO),

and to any number of subsidiary classes. Each class belongs to one of the listed

categories, therefore each patent is associated with one or more layer according

to its classes. However, the dataset only contains the information about the main

class, therefore we complemented it by extracting the information about the other

5 Data provided by APS upon request, https://publish.aps.org/datasets
6 http://journals.aps.org/PACS
7 http://www.nber.org/patents/
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classes from the USPTO Patent Grant Full Text.8 The final dataset contains 1574882

patents, 1142499 inventors, 138833 assignees (i.e. corporations for the most part),

and 127 countries.

4 Results

Figure 2 shows the evolution of the interdisciplinary ranking of the world top physics

departments, and of the world top companies, over time. This visualization allows to

observe, for instance, the raise of the University of Texas at Austin during the 1990s,

after the establishment, in 1985, of the Center for Nonlinear Dynamics, funded and

directed by the Boltzmann Medal laureate Harry Swinney.9

Compared to previously proposed algorithms of diffusion of scientific credit, the

proposed method rewards researchers that have carried out interdisciplinary works

or have had an impact in different scientific areas. To show this, we first compare it

with the science author rank algorithm (SARA) (Radicchi et al., 2009). We find that

the rankings of APS authors obtained using SARA and using the proposed method

have a Spearman’s rank correlation of 0.77 (99% confidence level). The high value

of correlation is to be expected since both methods rank researchers simulating a

diffusion process on a citation network. However, the proposed method gives higher

ranking to versatile researchers such as the self-organized criticality pioneer Per Bak

(+21 positions gained), econophysics co-founder Eugene Stanley (+56), complex

networks pioneer Shlomo Havlin (+104), and complex systems professor Leonard

M. Sander (+93).

We show that the proposed method is in fact able to capture two fundamental

aspects of interdisciplinary research: intrinsic multidisciplinarity (i.e. publishing

papers or patents pertaining to different areas) on the one hand, and effective

interdisciplinarity, i.e. being credited by different scientific areas, on the other.

We define the topical interdisciplinarity TI(a) of an author a (who could be a

scholar or an inventor) as the average number of different scientific areas her/his

publications pertain to, i.e.

TI(a) =
1

n(a)

n(a)∑
i=1

d(pi) (5)

where n(a) is the number of publications authored by a, and d(pi) is the number of

fields that publication pi belongs to.

Moreover, for each publication p we define an entropy metrics based on the

distribution of its incoming citations across the different fields represented by the

different layers:

H(p) =
∑

fi log
1

fi
(6)

where the sum is over the different fields (layers) and fi is the proportion of

edges incident in p that come from layer i. Therefore, if a publication is only cited

by other publications belonging to its own field H(p) = 0, whereas a publication

8 http://www.google.com/googlebooks/uspto-patents-grants-text.html
9 https://web2.ph.utexas.edu/utphysicshistory/UTexas Physics History/Center for Nonlinear

Dynamics.html
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Fig. 2. Interdisciplinary ranking evolution. Panel (A) Visualization of the time

evolution of the interdisciplinary impact ranking of the top 20 physics departments,

computed using the APS dataset. The rank is visualized top-down, i.e. the top

institution is the first ranked. Panel (B) Time evolution of the interdisciplinary

impact ranking of the top 20 world companies, computed using the U.S. patent

data. Broken lines represent institutions or companies that do not belong to the top

20 in the previous or the following time stamp.
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Fig. 3. Correlations. Heat-maps representing the correlation between the gain in rank

that scholars and inventors obtain when evaluated using the proposed method—

instead of a method based on a flat representation of the citation network—and

two measures of their interdisciplinarity level. The x -axis represents, in panel (A)

and (B), scholars’ and inventors’ topical interdisciplinarity, defined as the average

number of different scientific areas their publications pertain to, and in panel (C) and

(D), their diversity in terms of disciplines of the scholars’ and inventors’ incoming

citations (citation interdisciplinarity). Correlations are calculated using Pearson’s r

coefficient, and setting the statistical significance at 0.1%. Solid lines represent density

gradient contours, and dashed lines represent linear regression models estimated via

maximum-likelihood.

that has received citations from different fields has H(p) > 0, and the higher

the number of fields it has had impact on, the higher its entropy. For each

author a, we then compute her/his citation interdisciplinarity CI(a) as the average

entropy of her/his publications

CI(a) =
1

n(a)

n(a)∑
i=1

H(pi). (7)

We find a strong positive correlation between the gain in rank that scholars

and inventors obtain when evaluated using the proposed method—instead of a

method based on a flat representation of the citation network—and their topical
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interdisciplinarity (Figure 3, panels (a) and (b)). Moreover, we find that the rank

gain is also positively correlated with the disciplinary diversity of scholars’ and

inventors’ incoming citations (Figure 3, panels (c) and (d)). To control for the effects

of productivity, i.e. the fact that a researcher that produces more papers has more

chances to publish in more areas or to be cited by papers in many different areas,

we perform the same analysis on two subsets of the data by considering in each case

only authors with a fixed number of publications (20±2 and 50±2). The correlation

coefficients found in these subsets are consistent with those found using the whole

dataset, demonstrating that the proposed method is not biased by productivity. The

results are reported in the Supplementary Material.

5 Discussion

In this paper, we propose a methodology to assess the citation impact of scientific

publications and their producers that intrinsically accounts for their interdisciplinar-

ity. This aspect was not included in previous citation impact indicators.

Even though numerous metrics have been proposed to assess citation impact,

several issues have been raised. These include the accounting of self-citations (Glänzel

et al., 2006), the choice of the appropriate citation time window (Wang, 2013),

field normalisation (Li et al., 2013), and author credit allocation (Gauffriau et al.,

2008). Despite the vast literature on the subject, consensus is still lacking on how

to solve these issues. Here, we propose a method whose objective is to account

for interdisciplinarity, and we do not enter those debates. However, the bipartite

interconnected multilayer networks of citations and disciplines that we introduce can

be adapted to take into account specific needs. For example, edges connecting papers

to their authors could be weighted differently to take into account non-homogeneous

allocation of credit, or a specific time window could be chosen a priori to select the

papers constituting the network.

Going beyond the presented assessment of the benefits produced by interdisci-

plinarity, the method proposed in this work could constitute a tool for funding

agencies and academic hiring decision makers to quantify the impact of interdisci-

plinary research and its producers, for a faster advancement of excellent science.
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