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Abstract. In a recent article, we studied the dynamics of traffic in complex networks [1]. In particular,
we computed how the fluctuations scale with the mean, o ~ (f)“. Using a general model which includes
nodes with finite capacity we found a continuous range of a values between 1/2 and 1. Here we resume
the results, adding a brief analysis about the self-similarity of the traffic dynamics in our model.
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1 Introduction

The study of the dynamic processes over complex net-
works have emerged recently, complementing the extensive
work about topological properties. Most of the work has
been focused in the traffic flow, determining the bounds
for this flow to become congested [4] or the origin of the
traffic fluctuations [2].

Menezes and Barabési [2] propose a model to under-
stand the origin of fluctuations in traffic, relating the av-
erage number of packets (f); processed by nodes during
a certain time interval, and the standard deviation o; of
this quantity. They find that there is an scaling relation
o ~ (f)*, and propose two universal values of o depending
on the characteristics of the dynamic process.

Using a more general framework [1] we show that the
value of this exponent depends on some extra factors not
considered previously, as the sampling process or the ef-
fects of limited capacity processing, obtaining a continu-
ous range of values between o = 1/2 and « = 1. Experi-
mental results also confirm that there are not two univer-
sal classes for the a exponent. For instance, the Abilene
network (part of the Internet 2 core) has values between
0.7 and 0.85 [1], and the NYSE has values between 0.77
and 0.88 [3].

In this article we review the model and the analysis of
some effects over the relation between the mean and the
fluctuations. We also show that our model in its present
form is unable to reproduce the self-similarity of traffic in
time reported in many real systems. The reason is that we
use a Poisson distribution for the injection of packets in
the network that does not account for a bursting behavior
of traffic, in accordance with the literature in computer
science about this same problem in the Internet traffic [5,
6,7].

2 The model

The underlying network topology used in this analysis is
a BA Scale-Free with N = 1000 nodes and v = 3, where
each node has an associated M/M/1 queue. The dynamic
process works in continuous time with the following rules:
Data packets enter the system at a randomly selected node
following a Poisson distribution with parameter A. The
time needed to process one packet in each node is con-
trolled by an exponential distribution with parameter u.
Every packet performs S random steps, and then is deleted
from the network.

Each individual node has an arrival ratio controlled by
a Poisson distribution with parameter )\ff = B;\ where
B, is the algorithmic betweenness of node ¢ (the relative
number of paths in the network that go through node i
given a specific routing algorithm) [3]. The system starts
collapsing if A > u (being B, the highest algorithmic
betweenness).

Every P time units we collect data of how many pack-
ets had passed through each node.

3 Transitions of the exponent

In [1] we examined the effects of three parameters in the
relation between o ~ (f)®, observing different transitions
of the a exponent.

The first transition appears changing the size of the
time window P used to gather the data from the nodes.
Selecting a value of P < 1/ 2t , we always observe the
scaling o ~ f)l/ 2. regardless of other parameters. This
scaling exponent is easy to understand. In this situation,
the nodes will deliver either one packet or none, at each
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time interval. Therefore the average and the standard de-
viation can be expressed as:

(fy =ni/n (1)
o= [% [n1(1 = ()% + no(f)?]]"/> (2)

where nq is the number of intervals a packet is delivered
and ng the intervals where no packet is delivered. Eq. 2
can be simplified to

o =[(1—(M{MN? (3)

So in the case where the average flow is (f) < 1 we
always recover the o ~ (f)!/? scaling law. Otherwise, the
exponent value depends on the other parameters.

Assuming that the sampling of the data is performed
at intervals of length P <« 1/ 2 , we can produce a sec-
ond transition between o = 1/2 and o = 1 changing the
behavior of the traffic in the system. In this case, the total
traffic T (number of packets flowing through the network
per unit time) is determined by a Poisson process with
mean (T) = AS. Keeping the total traffic mean (T') fixed,
we can control the variability (fluctuations) of the incom-
ing traffic to a node by varying the values of A and S
proportionally.

The transition is obtained here simply by increasing
the number of steps S the packet performs on the net-
work while maintaining the mean value of the total traffic
(decreasing the number of new packets ). The o = 1/2
turns up because the number of steps each packet per-
forms is small, acting like a random deposition and being
independent of the topology of the network, )\ff ~ A. Oth-
erwise, when the number of steps in the network grows,
the topology induces dynamical correlations that affect
the scaling of fluctuations via the algorithmic between-
ness, )\ff ~ AB;, producing the transition to @ = 1, and
therefore reproducing the results obtained in [2].

Finally we extend the simple model adding persistent
queues controlled by the parameter p (rate of service) and
observing the interactions between packets. When conges-
tion occurs, the queues corresponding to those nodes with
the highest B; will always have more packets than those
that can be delivered in a period P. This means that the
number of packets delivered by these nodes will be con-
trolled exclusively by the service rate and will be again
fitted by a = 1/2 (corresponding to the exponential ser-
vice distribution), independently of the other parameters.

4 Self-similarity of traffic in the model

The next step when using the proposed model to analyze
traffic consist into respond to the following question: Is the
proposed traffic model able to reproduce the self-similarity
of traffic in time observed in some real systems, as for ex-
ample the Internet? It has been discussed that Poisson
models aren’t realistic [5] because do not reproduce some
characteristics of the real dynamics like ’burstinness’ that

Internet exhibit. Other authors [7] still defend that in cer-
tain cases, Internet traffic can still be modeled using Pois-
son models when we are near the edge of congestion. To
test the validity of the simple model used in the simula-
tions, we have studied one statistical property of the dy-
namics, the self-similarity of the traffic that flows in the
model.

There are several methods to determine the self-similarity

of traffic flow. Here we will use the relation between the
time and the variability of the traffic, ¢ ~ PP. It is ex-
pected that in Poisson models we will find a decay with
exponent 3 = —1, due to the lack of autocorrelations in
the traffic [6], as we find in the analysis of our model. In-
stead, real Internet router traffic data used in [1] exhibit
values between = —0.4 and 3 = —0.1. See Figure 1.
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Fig. 1. Plot o versus P. The symbols corresponds to different
realizations of our model varying the parameters. The dotted
line corresponds to the analysis of the Washington Abilene
router.

We conclude that our model in its present form can
not reproduce the self-similarity expected, independently
on the parameters that control the scaling of fluctuations
of the mean of traffic. We guess that the self-similarity will
be reproduced if the injection of packets into the system
follows a heavy-tailed distribution instead of a Poisson dis-
tribution, however we can still not prove this conjecture.
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