The Joker effect: cooperation driven by destructive agents
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Abstract

Understanding the emergence of cooperation is a centta issevolutionary game theory. The hardest setup for tteénatent

of cooperation in a population of individuals is the Publiod@s game in which cooperative agents generate a commonagood
their own expenses, while defectors “free-ride” this go&¥entually this causes the exhaustion of the good, a situathich

is bad for everybody. Previous results have shown thatdoirimg reputation, allowing for volunteer participatigeynishing
defectors, rewarding cooperators or structuring ageats enhance cooperation. Here we present a model which shmwthie
introduction of rare, malicious agents —that we term jokegserforming just destructive actions on the other agemsde bursts

of cooperation. The appearance of jokers promotes a ropkrpecissors dynamics, where jokers outbeat defectors@pkrators
outperform jokers, which are subsequently invaded by defsc Thus, paradoxically, the existence of destructivensgacting
indiscriminately promotes cooperation.
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1. Introduction Indeed, prey species frequently form groups to increasstuthe

. . vival rate against predator attacks (Hamilton, 1971; Kr&bs
In the recent Hollywood movighe Dark Knight(2008) the g P (

ic ch K h keri di hol . Davies, 1993). In some cases, this has been proven to happen
comic character known as the Joker jeopardizes a wholetgociey, o, i, the absence of kinship among its members, as in the col

spreading chaos and destruction with no aim of benefitahie. T lective defense of spiny lobsters (Lavalli & Herrnkind, 200
situation is so critical that even the mob is willing to coogte
with honest people to stop this nonsensical catastroph& Th The existence of these temporary coalitions for defense
fiction provides a visual metaphor of how an event like this ca against a common danger in rational and irrational ageikis al
force exploiters of society to collaborate temporarily @hti  calls for an evolutionary explanation. In this article wepr
the common enemy. Society is an emergent structure regultipose a stylized evolutionary game (Hofbauer & Sigmund, 1998
from the cooperation among its members, and exploiters neegimed at studying theoretically this enhancement of camper
society to survive, even if they do not contribute to it. Thhey  tion driven by the emergence of purely destructive agertie. T
are specially sensitive to the destruction of society pedgibe-  game does not try to model any specific situation, but it pro-
cause, being selfish agents, society is their only sourcaref s poses an abstract setting in which the role of the indiserimi
vival. The appearance of the Joker provides a strong ineenti nate destructive action of these agents in enhancing caoper
for cooperation. tion is made clear. Our model is a modification of the stan-
Beside situations like the one depicted by the Joker metaphodard Public Goods (PG) game (Groves & Ledyard, 1977), the
the importance of the inclusion of malicious agents on te@a n-players version of Prisoner’s Dilemma and a paradigm of
is also illustrated in other scenarios. Here are a few exesapl the risk of exploitation faced by cooperative behavior @Hay
Temporary coalitions of rival parties are constantly fodne 1968). It has been shown that several mechanisms involving
whenever a common enemy arises, only to restore their old rireputation (Milinski et al., 2005), allowing for voluntepar-
valry once this enemy has been wiped out. During the Secongkipation (Hauert et al., 2002a,b), punishing defectéeh &
World War U.S.A. and U.S.S.R. were allied in fighting Hitler, Gachter, 1999, 2000), rewarding cooperators (Sigmundi et a
but they got engaged in the Cold War for decades after the da2001) or structuring agents (Szabd & Hauert, 2002; Wakano
ger of Nazism had been ruled out. It is also well known '[hatet a|_, 2009; Hauert et a|_, 2008), can enhance Cooperaﬁon_
strong affective links between humans are created when theyere, we present a different mechanism for the enhancerhent o
face a common difficult situation. Biology is another sourcecooperation based on the existence of evil agents. The game i
of potential examples. For instance, it has been shownttieat t volvesn players who belong to one out of three different types:
perception of an increase in the risk of predation can indoee  cooperators, who contribute to the public good at a cost for
operative behavior in some bird species (Krams et al., 2010themselves; defectors, who free-ride the public good atwo e
pense; and jokers, who do not participate in the public good
*Corresponding author. —hence obtain no benefit whatsoever— and only inflict dam-
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age to the public good. Groups are formed randomly, and eacH
player’s strategy is established before the group is sdect M

Hence, players have no memory. Remarkably, the appearance @ ] i [
o |

of jokers promotes a rock-paper-scissors dynamics, wiogre | /4 \
ers outbeat defectors and cooperators outperform jokéishw @4_©
are subsequently invaded by defectors. In contrast to quevi
models (Hauert et al., 2002a,b), the cycles induced by goker 3
are limit cycles, i.e. attractors of the dynamics, and eixist f @
the presence of mutations; these properties make themtrobus / \
evolutionary outcomes. Therefore, paradoxically, thetexice 3 @‘_@
of destructive agents acting indiscriminately promotesper-
ation. 1
The paper is organized as follows. Section 2 exposes the
model and shows the existence of cycles. Section 3 analyzes ‘ ‘
the dynamics for infinite populations, and section 4 compare 0 d, d, d
the joker model with other RPS dynamics.

Figure 1: Dynamics of invasions in a Public Goods game with jokersThe
axes represent the gain factorof the Public Goods game (i.e., the payoff
each cooperator yields to the public good) and the “damalge” O that ev-
ery joker inflicts on the public good. The tragedy of the commoccurs for
The PG game works as usual: every cooperator yields a ben-< r < rmax = n(M - 1)/(M - n) (see text), which includes the dilemmatic

efitb = rc (r > 1) to be shared by cooperators and defectorgegion 1_< r<n characterlstl_c of PG games. leferent_ colors are e}s&gﬂed t

like at a cost for herself (thiS cost can be setdo= 1 with- different invasion patterns: Light blue corresponds togiare where J invades
a ) . - . . both C and D (lll); light green corresponds to a region whegither C nor J
out loss of generality: all other payoffs are given in unifs 0 invades each other (there is bistability on the J-C line)Ditvades C and
c), and defectors produce no benefit at all but get their shari in tum invaded by J, so again everything ends up in J (Hplly, light yel-

f th li _As for the new nts (ioker verv iiok low corresponds to a region where D invades C, J invades DCbovades J
.Oﬂt. N pug c gOOdd SO 0 tt) € he de tS”(JObe S")’ € e.ylgo N back, thus generating a rock-paper-scissors cycle (I).|atter behavior is the
Inflicts a damage- _< to e_s ared equally by all NON-JOKErS gggence of thdoker effect. The equations of the straight lines separating the
and gets no benefit. In a given game<Om < n denotes the  three regions are (from top to bottom}= 1 + d(n — 1) andr = 1+ d/(M — 1).
number of cooperators, 8 j < nthe number of jokers, and Notice that this scheme is valid for arbitrany> 1. Also, for fixedr, all three

; _ ; regions are crossed upon varyidgwhereas vice versa is only true provided

— — > - —
n-m-jJ= 0 the number of d.efeCt0r§ N — | EXpresses d < d; = M/(M = n). The Joker effect does not occurdf> d;. For large
the n_Umber of no_n'JOkerS- In t_h|5 group, the payoff of a defec populations,M > 1, the region for the rock-paper-scissors cycle simplifies t
tor will be TIp(m, j) = (rm — dj)/S, and that of a cooperator n>r>1+(n-1)dandd < 1.
IIc = IIp — 1. Then, in each group, defectors will always do
better than cooperators. Jokers’ payoff is always 0.

A usual requirement of PG games is tlak n. Without
this requirement the solution in which allplayers are defec-
tors is no longer a Nash equilibrium —hence the dilemma goes
away. As shown later, the evolutionary dynamics for infinite
populations yields the same constraint, i.e.t ik n the dy-
namics asymptotically approaches the tragedy of the corsmon |l. Joker-cooperator bistability: If 1 + d/(M - 1) < r <

2. A Public Good game with jokers: existence of limit cycles

I. Rock-paper-scissors cycleilt arises whenever > 1 +
d(n - 1). This condition expresses the fact that a single
cooperator gets a positive payoff in spite of the damage
inflicted byn — 1 jokers and therefore being a cooperator
pays (jokers get no payoff whatsoever).

However this is no longer true for finite populations, where 1 + (n - 1)d neither jokers nor cooperators can invade
the upper bound of for which the tragedy of the commons each other. Nonetheless defectors always invade cooper-
takes place grows ad, the population size, decreases. In this ators, and jokers always invade defectors, so eventually
case the tragedy of the commons arises wheneven max = only jokers survive, either because they are initially a ma-
n(M - 1)/(M - n) (see A; notice in passing that for a popula- jority or indirectly through the emergence of defectors.

tion of M = n individuals, the evolutionary dynamics yields a
tragedy of the commons for every> 1).

An invasion analysis provides the clue as to why a rock-
paper-scissors (RPS) cycle is to be expected when jokexs int
vene in the game. We shall assume that we have a population of
M players of the same type and will consider putative mutation The RPS cycle &D—J—C occurring in region | is the essence
of one individual to any of the other two types. The mutationof the Joker effect.
will thrive if the average payoff of the mutant after manyeint
actions overcomes the average payoff of a non-mutant playeé
The result of this analysis (see A) is summarized in Fig. 1,
which represents the three different patterns of invagiahdan We can gain further insight into this effect by studying a
be observed within the region of interest¥ < rpax, d > 0: replicator-mutator dynamics (Maynard Smith, 1982). We as-

Ill. Jokerinvasion: If r < 1+d/(M-1) jokers will invade any
homogeneous population, so a homogeneous population
of jokers is the only stable solution. Notice that this regio
disappears for large populatiord (— ) because > 1.

Infinite populations



sume a very large population in which the three types are
present at time in fractionsx (cooperators)y (defectors), and

z = 1 - x— z (jokers). Agents interact with the whole popu-
lation by engaging in the above described game within group
of n randomly chosen individuals (Hauert et al., 2006). Aver-
age payoffs of a cooperator, a defector, and a joker are dénot
Pc(x, 2), Po(x, 2), andPy(X, 2), respectively. Assuming individ-
uals of a given type mutate to any other type at a fate 1,

the replicator-mutator equations for this system will be

%= X(Pc — P) + u(1 - 3),

y=Yy(Po — P) + (1 - 3y), 1)
z=2P;-P) + u(1-32),

whereP = xPc + yPp + zP; is the mean payoff of the popula-
tion at a given time. Explicit expressions fé¢, Pp, andP; can
be obtained by averaging over all samples of groups mfy-
ers extracted from a population containiMix cooperatorsivly
defectors, and/z jokers, in the limit of very large populations
(M — o0); the derivation can be found in B. Let us recall that
the parameters of the game in the infinite population limit sa
isfy 1 <r < nandd > 0; the first condition enforces the public
goods dilemma, and the second one implies that jokers beat dgi ure 2:The Joker effect in public goods games for large, well-mixego
fectors in the_ ab_sence o_f cooperators, b?gause defewsee ulgtions. The simplex descrﬁ)es th% repIicgator—mutatorgd)Y/namics,lEQera
the damage inflicted by jokers thus obtaining a negativefdayo population of cooperators, defectors and jokers with patamvalues satisfy-
The stability analysis of the dynamical system (1) recov-ingn>r > 1+ d(n - 1), for which a rock-paper-scissor dynamics is expected
ers the picture displayed in Fig. 1 (takimg N Oo)_ When (yellow region in.Fig. 1). When mutatipn rates are small,.mh.h/ equilibrium
r < 1+ (n-1)dthe system is in region II. The only stable equi- :isnz)refﬁﬂzrﬂ(\gh'te dot), and trajectories end up in a stésl cycle (black
. \ ) . g . presence of jokers induces periodically rathef cooperators.
librium is a population of only jokers and any trajectory &j (  Cooperators abound during short time spans, as shown byrtaifgaction of
is asymptotically attracted to it. Thus, in this region tlesiluc-  cooperators in the equilibrium point. Parameters: 5,r = 3, d = 0.4 and
tive power of jokers is high enough to wipe out the population ?‘Szr?a?]%?rh(g‘ggﬁjrgzzfr‘z"‘(t)%d?)‘;s'”9 amodified version of the Dyritankage
of both cooperators and defectors. But the most interesting ' '
uation takes place when

r>1+(n-1)d, (2

i.e., inregion I. In the absence of mutations the dynamigsd s
tem (1) has three saddle points at the corners of the simple
as well as an unstable mixed equilibrium (see C). As a con
sequence, the attractor of the system is the heteroclitit or
C —» D —» J— C. The period is infinite because the system de-
ays more and more around the saddle points. When mutalioff9ue, SRR T ST 2 LR e e
occur the corners qf thg smplex are no Ipnger equilibrial an - dam‘;Jge increases. Parametars:5, r — 3 andy = 0,001, 4
one is left with the interior fixed point, which for small muta
tions is a repeller (see C). Since trajectories are confiritidnw
the closed region of the simplex, they are attracted to destab ?
limit cycle for anyr > 1 (a direct consequence of the Poincaré-
Bendixon theorem (Simmons & Krantz, 2006)), as shown in
Fig. 2. A\
The size of the cycle depends on the parameter values. 4w — ‘
grows adl increases —i.e., when jokers play a more important -
role (Fig. 3)— and as the mutation rate decreases (Fig. 4). Fo
both, large \_/alues af [compatible with condition (2)] and very Figure 4:Replicator-mutator dynamics as a function of the mutation rate x.
small mutations, the cycle closely follows the boundarfedh®  (a) For very small mutation rates cycles approach the bayrafahe simplex.
simplex (see Fig. 4a). By increasing the mutation rate ¢@iy  (b) Asp increases, the cycle amplitude decreases and, abovecalcvitiue
over Q01), cycles disappear in a Hopf bifurcation yielding a(typically, He = 0.01), cycles disappear in a Hopf bifurcation yielding a stabl
stable mixed equilibrium (Figs. 4b-c). mixed equilibrium (c). Parameters:= 5,r = 3 andd = 0.4.

b)

A

§=0.001 4 o p=0.01




4. Discussion and conclusions

This evolution has some resemblances with the effect of vol
unteering in a PG game (Hauert et al., 2002a,b), but the tw
games are fundamentally different. This can be told from the
dynamic behavior of the system. In both cases, the existenc
of a third agent which does not participate in the game is the
ultimate reason why cooperators periodically thrive tigtoa
Rock-Paper-Scissor dynamics. However, while the lonarega
leads to neutrally stable cycles around a center, trajiestan
the Joker model are attracted by the heteroclinic cycle C—-D—
J-C. The dlﬁer_ence IS even more stnklr_1g if mutations are in Figure 5: Replicator-mutator dynamics for d = 0. If jokers are just passive
cluded. Mutations replace the cycles in the loner model byagents cooperators go extinct. fa} 0. The system ends up in a point of the
a stable mixed equilibrium. In contrast, in the Joker modeline DJ with a majority of defectors. (i) = 0.001. Mutation generates one
mutations substitute the heteroclinic orbit by a stabletliy- single stable state made up mostly by defectors. Parameters, r = 3 and
cle, which undergoes a transition (Hopf bifurcation) toabd -
mixed equilibrium above a threshold mutation rate.

These two scenarios can be understood from the analysis &G, may help understand the appearance of cognitive abiliti
general RPS games (Hofbauer & Sigmund, 1998). There artat allow individuals to foresee the destructive periqu®-
three situations: (a) orbits are attracted towards an agtmp moting in advance the necessary cooperation to avoid them.
ically stable mixed equilibrium (the case of the loners game We have proven this “Joker effect” to occur both in finite and
with mutations), (b) orbits cycle around a neutrally stabhiged  infinite populations, discarding the possibility of its bgian
equilibrium (the case of the loners game without mutatipns)artificial size-depending phenomenon. Further researce-is
and (c) orbits go away from an unstable mixed equilibrium andquired to ascertain the scope of the constructive role dfdes
approach the heteroclinic orbit defined by the border ofime s tion in general settings. This provides a new frameworklier t
plex (the case of the Joker game without mutations). If mutaevolution of cooperation that may find important implicato
tions are added to the latter type of RPS games, limit cycles social, biological, economical, and even philosophaat-
and a Hopf bifurcation upon increasing the mutation rate ar¢exts, and that is worth exploring either with differentiasts
also found (Mobilia, 2010). Limit cycles are robust to pertu of this game or with new, more specific games accounting for
bations and have a well defined amplitude irrespective of théndiscriminate destruction.
initial fractions of players (as long as it is not at the bardg
the simplex). Therefore, they are true attractors of theadyn
ics, and can thus be regarded as a robust evolutionary oatco
in contrast to neutrally stable cycles.

nfi\cknowledgments

: - . Financial support from Ministerio de Ciencia y Tec-
In contrast to loners, which do not participate in the gante bunologia (Spain) under projects FIS2009-13730-C02-0A(A.

receive a benefit outside of it, jokers do not receive any fiene FIS2009-13370-C02-01 (J.C. and RJ.R) and MOSAICO
at all and cause damage to players. Both loner and joker mog-

- . : J.A.C.); from the Director, Office of Science, Computa-
els coincide —in the absence of mutations— when the damag[Ional and Technology Research. U.S. Department of En-
inflicted by jokers and the benefit obtained by loners are bo”érgy under Contract No DE-ACOé—OSCHllZSl (AA): from
zero. In this case both become simply non-participantsen th he Barcelona Graduaté School of Economics ;;m-d’ of the
game, and the only effect they produce is a reduction in the eftGovernment of Catalonia (AA); from the Generalitat de
fective number of players in the game, which is not enough toCataIunya under project 2009.8(.3;?0838 (A.A.) 2009SGRO164
induce an oscillatory dynamics (see Fig. 5). In othe_r WordS(J.C. and R.J.R.) and from Comunidad de I\/iadrid under project
*MODELICO-CM (J.A.C.). R.J.R. acknowledges the financial
support of the Universitat Autbnoma de Barcelona (PIF gran

and the Spanish government (FPU grant).

the population of cooperators in the presence of jokers njn o
happen, remarkably, providetl > 0, i.e., if jokers are truly
destructive agents.

In this letter we have shed light on a still unexplored aspect
of evolutionary game theory (the presence of a destrudtigés A, Finite populations: invasion analysis
egy) in the prototypical PG game. We have shown, both theoret
ically and by numerical simulations, that the addition ofgiy We shall consider the situation in which in a homogeneous
destructive agents (jokers) to a standard PG game has,garad population ofM individuals with the same strategy Y, one of
ically, a positive effect on cooperation. Bursts of cooparm them mutates (changes) to a different type X. The new individ
are induced through the appearance of a RPS cycle in whichal will invade provided its average payoff after many iater
jokers beat defectors, who beat cooperators, who beatjaker tions, Px, is larger than the average payoff of a Y individual,
succession. The evolutionary dynamics provoked by therJokei.e., Px > Py. Average payoffs can be evaluated as follows.
with periods of cooperation, defection and destructionhaf t The population is made of one X player akd— 1 Y players.
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Thus, when playing the game, the X player will always intéerac (E) 1D+ (M - 1)J.

with n— 1Y players. Therefore

Py = IIx(1X, (n - 1)Y). 3)

On the other hand, the — 1 opponents of a Y player can be
of just two types: either alh — 1 are Y players, on — 2 are

Y players and one is the single X player. The latter situation

occurs with probabilityrf — 1)/(M — 1). Therefore the average
payoff of a Y player will be
n-1

M-n
M1 + HY(lX, (n— 1)Y)m

Py =Tly(nY) (4)

Po=-(n-1d. P;=0. (12)

As long asd > 0 we will haveP; > Pp, thenD never
invades J

(F) 13+ (M - 1)D.

__d
M-1

As long asd > 0 we will haveP; > Pp, thenJ always
invades D

Pp = P,=0. (13)

Next we derive the invasion conditions for homogeneous popu Figure 1 illustrates the different regions of interest iisth
lations of three types of players. In this new scenario wetmusgame. The most interesting one is that in which there is a-rock

consider the six different situations arising form the [atier-
actions that can be formed:

(A) 1D + (M - 1)C.

rn-1 r
PDZT——.
n

nM-1’

PCZr—l— (5)

The tragedy of the commons occurs when defectors over-

come cooperators, i.ePy > Pc. This happens iff

M-1
_n‘

r<n

(6)

paper-scissor rotation between C, D, and J, which corretgpon
to

M-1 r—
1<r<n|vI - 0<d<m. (14)

B. Infinite populations: average payoffs

We evaluate here the average paydtfs obtained by each
strategy ( =C, D, J) in this game when the population is very
large. These functions will determine the dynamics of the
population through the replicator equation. As before, dam
groups ofn individuals playing the game are randomly formed,
and it is assumed that each player is sampled a large number of

We will henceforth assume (6) to hold. This condition con-; . << pefore payoffs are compared in order to update stesteg

tains the dilemmatic region & r < n of PG games. In the
limit M — oo, the inequality (6) reduces to < n and

The payoff for a given strategy is therefore proportionahte
average payoff that a player using this strategy obtaingnja

both, the conditions for the dilemma and the tragedy of theo\gainst the whole population. This average payoff will debe

commons coincide.

(B) 1C+ (M - 1)D.

r rn-1
Pc—ﬁ—l, PD_HM—l' (7)
Because of (6Pp > P¢, soC never invades D.
(C) 13+ (M —1)C.
Pc=r-1- _d P;=0 (8)
C = M _ 1’ J = .
SinceP; > Pc iff
r<l+ m, (9)
thend invades C iff(9) holds
(D) 1C+ (M —1)J.
Pczr—(n—l)d—l, PJ=0. (10)
SincePc > P; iff
r>1+(n-1)d, (11)

thenC invades J iff(11) holds

only on the player’s strategy and the composition of the popu
lation, described by a fractionof cooperatorsz of jokers and

y = 1 - x — z of defectors. Notice tha®; = 0 for any com-
position of the population, so only cooperators’ and defiett
payoffs need to be calculated.

B.1. Defectors
The average payoff of a defector is

where the symba} - - ) denotes an average over samples-ef
opponents randomly selected from the population. The geera
(m/S) can be obtained as in (Hauert et al., 2002b), yielding

<g> - 1f z(l_ n%l_—znz))'

Sincej = n - S, the second term in Eq. (15) can be written as
n{1/S) -1, where

1

S
the factor in front of 1S in the summation being the probabil-
ity of having S — 1 non-jokers in a group afi — 1 randomly

rm—dj

s}
S

(15)

N (n- 1) 1
— (1 _ Z)S—lzn—S_’
Szl(s -1 S



chosen players. By using the identaf 1) = b(f), the latter ~ Sincen = 2 > r > 1, one has 0< 7 < 1, as it should. The
expression becomes second equality?p = 0, produces

1 1-2" 2-r
il QO ) Xo =2d ——.
S n(l-2 r

g_onditionr > 1+ d from expression (2) guarantees thak0

Xo < land O< yp =1- Xy —2 < 1. In order to analyze the

stability of this equilibrium, we consider frequencieandz as

X 1-2 1-7 the independent variables of the two-dimensional system. T

=T 1 z( - n(l- z)) - ( 1 1)» (16) prove that the equilibrium is a repeller it suffices to shoatth
the trace and determinant of the Jacobian matrix at the fixed

the first term arising from the exploitation of cooperatansla point are both positive. Far = 2, equations (1) become

the second one being the damage inflicted by jokers.

Joining the two averages one gets the average payoff of a d
fector,

Pp

1
X = —Ex(2d22—rz+2—r—2x+rx), (20)
B.2. Cooperators z=7[(1-r)x+dZ1-2)]. (21)
The differencéPp — Pc can be written as

The Jacobian matrix in the interior equilibrium is

r
Po-Pc= <1 - §> (17) d2-r?  d2-r)(r? + 4dr - 8d)
2 3
because in a group & — 1 opponents switching from coop- ' ' , (22)
eration to defection yields a payoff increment of 1/S: the (@2-n(r-1 d2-nNEr-4)
defector’s payoff gets reduced IbyS because there is one co- r rz

operator less in the group, but adds 1 to her payoff because s(hhose traceT, and determinanD, are
does not pay the cost of cooperating (Hauert et al., 2002i®. T ’ ’
average in the r.h.s. of Eq. (17) just contaisl/S >, thus _2d2-r)(r-1)
yielding T= r2 >0, (23)
1-2
PD _ PC =1- [ (18) _ d(r - 2)2(r2 + r(d - 1) - 2d) )

nl-z’ D= 3

(24)

Finally, from Eqgs. (16) and (18) one gets T is positive because = 2 > r > 1. To prove that the determi-

X ( 1 ) o nant is positive, we should realize that the second braokieg i

Pc =r - + = - expression can be written 8@ — 1) — d(2 - r), which is larger
1- i . nl-2) ni-z (19) than 2¢ - 1) > 0 because > 1+ d.
—d{=—=-1}.
( 1-z ) C.2. Interior fixed point for n> 3

We use the same procedure as in the previous case. The frac-

C. Infinite populations: proof of existence of limit cycles tion of jokersz, of the interior equilibrium arises frofc = Pp,
namely Eqg. (18). Once it is foundy follows from Py = 0, c.f.
To complete the proof that the system ends up in a limit cy-Ed- (16).
cle it remains to show that the interior equilibrium of Eq3 (1 _
is a repeller, i.e., its two eigenvalues have positive reatgp  C.2.1. Calculation ofg

The interior equilibrium and its stability can be evaluaitethe 2 is obtained as the solution to
limit of small mutation rates, the one we are interested im. |
this case, one can neglect the dependengérothe position of 1- ri- z =0, (25)
the fixed point. We are thus faced with the solution of the dy- nl-z
namical system (1) without the mutation term. The calcatati \hich is equivalent to
becomes simple fan = 2, and tractable fon > 3. The proofs
are treated separately in the next subsections. 1
Z =n/r. (26)

Il
o

C.1. Interior fixed point for n= 2 !

The latter equation has exactly one solution, namely thesero
ing of the polynomial in the I.h.s of Eq. (26) with the congtan
n/r > 1. Sincer > 1, this occurs at & zy < 1, consistent with
2_ the meaning ofy. There is no analytical solution to Eq. (25) for
H=—". arbitraryn. There exists, however, a simple analytical solution

The interior fixed point Xo, Yo, Z0) satisfiesPc = Pp = 0.
According to Eq. 18, the first equality requires{Xo)r = 2,
yielding
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