
Please select

All

Select your subdiscipline Select a discipline

> Home / Computer Science / Programming, SWE & Operating Systems

About this book | Table of contents

Table of contents
List of Figures. List of Tables. Contributing Authors. Preface.
1: Low Power Operating System for Heterogeneous Wireless Communication
System; Suet-Fei Li, R. Sutton, J. Rabaey. 1. Introduction. 2. Event-driven versus General-
purpose OS. 3. Low Power Reactive OS for Heterogeneous Architectures. 4. Conclusion
and Future Work. References.
2: A Modified Dual-Priority Scheduling Algorithm for Hard Real-Time Systems to
Improve Energy Savings; M.A. Moncusí, A. Arenas, J. Labarta. 1. Introduction. 2. Dual-
Priority Scheduling. 3. Power-Low Modified Dual-Priority Scheduling. 4. Experimental
Results. 5. Summary. References.
3: Toward the Placement of Power Management Points in Real-Time Applications; N.
AbouGhazaleh, D. Mossé, B. Childers, R. Melhem. 1. Introduction. 2. Model. 3. Sources of
Overhead. 4. Speed Adjustment Schemes. 5. Optimal Number of PMPs. 6. Conclusion.
Appendix: Derivation of Formulas. References.
4: Energy Characterization of Embedded Real-Time Operating Systems; A. Acquaviva,
L. Benini, B. Riccó. 1. Introduction. 2. Related Work. 3. System Overview. 4.
Characterization Strategy. 5. RTOS Characterization Results. 6. Summary of Findings. 7.
Conclusions. References.
5: Dynamic Cluster Reconfiguration for Power and Performance; E. Pinheiro, R.
Bianchini, E.V. Carrera, T. Heath. 1. Motivation. 2. Cluster Configuration and Load
Distribution. 3. Methodology. 4. Experimental Results. 5. Related Work. 6. Conclusions.
References.
6: Energy Management of Virtual Memory on Diskless Devices; J. Hom, U. Kremer. 1.
Introduction. 2. Related Work. 3. Problem Formulation. 4. EEL Prototype Compiler. 5.
Experiments. 6. Future Work. 7. Conclusion. References.
7: Propagating Constants Past Software to Hardware Peripherals on Fixed-
Application Embedded Systems; G. Stitt, F. Vahid. 1. Introduction. 2. Example. 3.
Parameters in Cores. 4. Propagating Constants from Software to Hardware. 5.
Experiments. 6. Future Work. 7. Conclusions. References.
8: Constructive Timing Violation for Improving Energy Efficiency; T. Sato, I. Arita. 1.
Introduction. 2. Low Power via Fault-Tolerance. 3. Evaluation Methodology. 4. Simulation
Results. 5. Related Work. 6. Conclusion and Future Work. References.
9: Power Modeling and Reduction of VLIW Processors; Weiping Liao, Lei He. 1.
Introduction. 2. Cycle-Accurate VLIW Power Simulation. 3. Clock Ramping. 4.
Experimental Results. 5. Conclusions and Discussion. References.
10: Low-Power Design of Turbo Decoder with Exploration of Energy-Throughput
Trade-off; A. Vandecappelle, B. Bougard, K.C. Shashidhar, F. Catthoor. 1. Introduction. 2.
Data Transfer and Storage Exploration Methodology. 3. Global Data Flow and Loop
Transformations. 4. Storage Cycle Budget Distribution. 5. Memory Organization. 6.
Conclusions. References.
11: Static Analysis of Parameterized Loop Nests for Energy Efficient Use of Data
Caches; P. D'Alberto, A. Nicolau, A. Veidenbaum, R. Gupta. 1. Introduction. 2. Energy and
Line Size. 3. Background. 4. The Parameterized Loop Analysis. 5. STAMINA
Implementation Results. 6. Summary and Future Work. References.
12: A Fresh Look at Low-Power Mobile Computing; M. Franz. 1. Introduction. 2.

Print version
Recommend to others

All books by these editors
Benini, Luca
Kandemir, Mahmut
Ramanujam, J.

Related subjects
Computer Communications &
Networks
Electronics & Electrical
Engineering
General Computer Science
Programming, SWE &
Operating Systems

Compilers and Operating Systems for Low Power
Benini, Luca; Kandemir, Mahmut; Ramanujam, J. (Eds.)
Illustrated ed., 2003, 246 p., Hardcover
ISBN: 978-1-4020-7573-5

Ships within 2-3 weeks.

113,00 €

RM

Journals LNCS Series

Architecture. 3. Handover and the Quantization of Computational Resources. 4.
Segmentation of Functionality: The XU-MS Split. 5. Status and Research Vision.
References.
Index.

Help | Login | Contact | Shopping cart | About us | Terms & conditions | Impressum
Privacy statement | © Springer. Part of Springer Science+Business Media | Sitemap

1

Chapter #

A Modified Dual Priority Scheduling in Hard Real

Time Systems to Improve Energy Saving.

M.Angels Moncusí*, Alex Arenas* and Jesus Labarta’
*Dpt d'Enginyeria Informàtica i Matemàtiques-Universitat Rovira i Virgili. ‘Dpt d’Arquitectura

de Computadors-Universitat Politècnica de Catalunya

Abstract: We present a modification of the Dual Priority scheduling algorithm, for hard

real-time systems, that takes advantage of its performance to efficiently

improve energy saving. The approach exploit the priority scheme to lengthen

the runtime of tasks reducing the speed of the processor and the voltage

supply, thereby saving energy by spreading run cycles up to the maximal time

constraints allowed. We show by simulation that our approach improves the

energy saving obtained with a pre-emptive Fixed Priority scheduling.

Key words: energy-aware, on-line scheduling, hard real-time, dual-priority.

1. INTRODUCTION

The design of portable digital systems has a major drawback in the

constraint of low power consumption [1] from the operability and lifelong of

the systems point of view. A lot of efforts have been made during the last

decade to minimize this problem, but the high performance of modern

micro-processors and micro-controllers jointly with the increasing

functionality of them obtained via software still requires improvements in

the power-efficiency context.

In the use of scheduling strategies to save energy there exist two main

approaches to reduce power consumption of processors, these approaches

are speed reduction of the processor and power-down. The first approach

consist in to turn low the clock frequency along with the supply of voltage

whenever the system does not require its maximum performance. The

second approach simply turns off the power when there are not tasks to

execute in prevision, apart from the minimal amount of energy required by

2 Chapter #

the idle processor state (clock generation and timer circuits). Both

approaches are well suited for energy saving but their applicability should be

accurately designed to obtain reliable operability, especially in hard real-

time systems [2,3].

Recently, Shin and Choi [4] have proposed a power-efficient version of

the Fixed Priority scheduling for hard real-time system that deal with the two

approaches presented before. The main idea in their study is the use of a pre-

emptive Fixed Priority scheduling (Rate Monotonic scheduling RMS [5] or

Deadline Monotonic scheduling DMS) to organize the tasks according with

the pre-emptive priority scheduler into a run queue that is used to exploit

both, execution time variation and idle time intervals, to save energy by

reducing speed and voltage or power down. The process ensures that all

tasks meet their deadlines. However, the strategy of Shin and Choi [4] can

only reduce the speed of the processor when there is only one task in the run

queue, or bring the processor to power-down mode when there is an idle

interval, otherwise the processor works at the maximum speed.

In this paper we present an improvement of the strategy followed by Shin

and Choi [4] by using a modification of the Dual Priority scheduling, first

proposed by Davis and Wellings [6]. We harness the ability of the Dual

Priority to execute periodic tasks as late as possible to save energy.

The Dual Priority scheme was designed to execute aperiodic tasks

without deadlines as soon as possible while preserving the deadline

constraints of the periodic tasks. The algorithm is implemented as a three

queue structure. The upper run queue, the aperiodic run queue and the lower

run queue. Whenever a periodic task is ready to be executed enters the lower

run queue, eventually this task can be pre-empted by an aperiodic task, and

finally, if the task can not be delayed more because otherwise its deadline

could be compromised, the task promotes to the upper run queue where its

execution is prioritized.

This scenario is interesting even when no aperiodic tasks are present, as

in our case of study, in this particular case the algorithm needs only two

queues. The energy-reduction is obtained mainly by means of speed and

voltage reduction and sometimes using power-down. Our approach consist

in to run the tasks at the lowest speed that makes possible that the active task

and the rest of tasks meet their timing constraints, without imposing the

constraint of Shin and Choi [4] of only one task in the run queue to save

energy, and power-down the processor when there is an idle interval.

This approach is especially interesting because the quadratic dependency

of the power dissipation, in CMOS circuits, in the voltage supply [1]. The

power dissipation satisfies approximately the formula

clk

2

ddLt fVCpP ≅

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

3

where pt is the probability of switching in power transition, CL is the

loading capacitance, Vdd the voltage supply and fclk the clock frequency. That

means that it is always energetically favourable to perform slowly and at low

voltage than quickly at high voltage.

The basic idea of the modified algorithm we present is to organize the

run tasks in two levels of priorities. In the highest level there are the periodic

tasks that their execution can no longer be delayed by tasks from the lower

priority level otherwise they can miss their deadlines. The second level is

occupied by those periodic tasks whose execution time can still be delayed

without compromising the meeting of their deadlines. In its turn, each of the

two levels is hierarchically organized according to any static priority

assignment. To obtain an extra save in power another slight modification is

introduced, the lower run queue is sorted by the promotional times instead of

by fixed priorities. This approach is simple enough to be implemented in

most of the kernels, in comparison with Shin and Choi [4], we only use an

extra run queue and a promotion time for each periodic task in the system.

Then, the amount of extra complexity introduced by this new algorithm is

minimal.

The paper is organized as follows, in the next section we describe the

basics of the Dual Priority scheduling. Section 3 is devoted to the

modification of the algorithm to reduce energy consumption. Finally, in

section 4 we present the experimental results and the comparison with Power

Low Fixed Priority scheduling, and in section 5 we draw the conclusions.

2. DUAL PRIORITY SCHEDULING

We assume that the framework of the hard real-time system we are going

to deal with is made up of periodic tasks
1
. These tasks — numbered 1 ≤ i ≤ n

— are specified by their periods, worst case execution times and deadlines

(Ti, Ci and Di respectively).

The system is organized as concurrent tasks ruled by a pre-emptive

priority-based scheduler whose details are described below. The computation

times for context switching and for the scheduler are assumed to be

negligible, this enable us to perform the analysis straightforward without

danger of loosing generality. The extent to which these assumptions are

realistic is discussed in the analysis of the algorithm given in [6], and it turns

1 The results are not exclusive for periodic tasks. We have considered only periodic tasks as a matter of

simplicity.

4 Chapter #

out to be practical if the switch is subsumed to the worst case execution

times of the different tasks.

The mechanics of the Dual Priority Scheduling algorithm is the

following: Let us consider that the tasks have some initial priorities assigned

according to a fixed priority criterion in such a way that two different

periodic tasks have never the same priority. This initial priorities are altered

by the scheduler according to the following scheme, first, two levels of

priorities are organized, the highest level, or upper run queue (URQ) is for

tasks that can no longer be delayed by less priority tasks otherwise they

could miss their deadlines. The second level, or lower run queue (LRQ) is

occupied by those periodic tasks whose execution time can still be delayed

without compromising the meeting of their deadlines.

The scheduling algorithm is driven by the activation times of the tasks

and the promotion instants from the LRQ to the URQ, whenever one of this

time signals appears, in the following way, if:

a) The signal is the activation time (taik) for the k
th
 instance of the periodic

task i. In this case for all tasks with activation times less or equal to the

current time t, the relative promotion time instant of task i (tpi) is pre-

computed as tpi = Di – Ri (Ri corresponds to the worst case response time

of task i [8]), this value can be computed off line and provides the

maximum time a task can be delayed so that it can still meet its deadline.

Those tasks with tpi=0 are promoted to the URQ, and the rest are queued

in the LRQ. After that, we compute the absolute promotion time instant

for the k
th
 activation of task i in the LRQ as tpik = taik + Li, and a timer is

activated to this value.

b) The signal is a promotion time instant (tpik) for the k
th
 instance of the

periodic task i. In this case, all tasks in the LRQ with tpik ≤ tc (current

time) are moved to the URQ. Now, tpik corresponds to tpik = Dik – Ri,

where Dik is the absolute deadline for the k
th
 activation of task i (t0i+ kTi+

Di), where t0i is the first instant arrive time.

Finally, the next executing task is selected by picking the highest priority

task from the highest non empty priority levels (i.e. URQ or LRQ, in this

order). It executes until its termination or a pre-emption of a higher priority

task.

The on-line scheduling solution that Dual Priority Scheduling algorithm

presented is operative in the vast majority of kernels and computationally

efficient [6,7]. This algorithm was conceived to schedule tasks with hard

deadlines in a hard real-time environment containing periodic, an aperiodic

tasks coexisting. The goal of the Dual Priority Scheduling algorithm is to

give good response time to aperiodic tasks delaying as much as possible the

periodic tasks without compromising their deadline. In this hard real time

scenario there appears spare time due to tasks not consuming all its worst

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

5

case execution time. The Dual Priority algorithm can use this spare time to

execute aperiodic tasks sooner, giving them a good response time. Our goal

is to take advantage of this performance from the energy saving point of

view, the scheduling algorithm can be modified to extract the maximum time

extension allowed by the real-time system, and this lengthen of time

execution will be accompanied of a speed and voltage supply reduction, and

finally energy reduction, as we explain in the next section.

3. POWER-LOW MODIFIED DUAL PRIORITY

SCHEDULING

We have modified the Dual Priority Scheduling algorithm to help power

saving in a hard real-time system. The original Dual Priority guarantees to

meet the periodic temporal constraints, then our modification only needs to

care about when and how to reduce energy by slowing speed and voltage

jointly (we are assuming a linear relation between speed and voltage supply

decreasing).

We have ordered the URQ by the static priority of the tasks and the LRQ

by their absolute promotion time Lik. The decision to order the LRQ this way

responds to the fact that the task with the lowest Lik will promote earlier and

then it will execute earlier than the others. If the URQ is empty, the first task

of the LRQ will begin to execute as low as possible until its promotion or a

pre-emption of another task. Figure 1 shows the pseudo code for the PLMDP

(Power Low Modified Dual Priority Scheduling) The algorithm work as

follows:

a) If both queues URQ and LRQ are empty, then the power-down mode is

activated until the arrival of the next task instance taik (lines L1-L4 of

Figure 1).

b) If the queue URQ is empty but there are tasks in LRQ then the k
th

activation of the task i with the highest priority in the LRQ (that is

ordered in terms of absolute promotion time tpik) is activated (line L6 of

Figure 1). Before the execution of this tasks the algorithm needs to fix the

ratio of processor speed according with the maximum spreading in time

that is allowed to execute this task i. The speed ratio is calculated

following the heuristics proposed by Shin and Choi [4] that is built on the

assumption that the delay is negligible. The safeness of the system under

these conditions is proved on theorem 1 of the cited work. In this case,

we calculate the time the current active task promotes, tpik, as the taik plus

the deadline Di, and minus Ri (worst case response time of task i), see

line L7 of Figure 1. After that, we determine the time we dispose before

6 Chapter #

some other task will promote to the URQ to calculate the maximum

speed reduction allowed. Here we describe the different scenarios we can

find:

L1 if empty(URQ) then

L2 if empty(LRQ) then

L3 Set timer to (next taj - wake up delay)

L4 Enter power-down mode

L5 else

L6 Active task = LRQ.head -- active task=Taski

L7 tpi = tai + Di - Ri

L8 if tak < tpi and tpk < tpi then

L9

tcta

1
Speed

k −
= -- minimum speed

L10 else

L11 if tpi < tpj and Pi < Pj then -- j∈hp(i)

L12
tc)td,tp(min

))C(remainig,tptpmin(
Speed

ij

iij

−

−
=

L13 else tpi < tpm < tpj and Pm < Pi < Pj

L14
tc)td)),C(remainigtp,tp(max(min

))C(remaining,tptpmin(
Speed

iiim

iij

−+

−
=

L15 endif

L16 endif

L17 Execute active task

L18 endif

L19 else

L20 Active Task = URQ.head;

L21 if URQ.head.next = NIL then

L22
tc)td,tp(min

))C(remainig,tctpmin(
Speed

ik

ik

−

−
=

L23 else

L24 Speed = 1.0 -- maximum speed

L25 endif

L26 Execute active task

L27 endif

Figure 1. Pseudo code for the Power Low Modified Dual Priority Scheduling

If there exists some task j, not yet arrived, with a promotion time (tpj)

shorter than the promotion time of the active task (task i), then, as soon as

this task j arrives, it will pre-empt the active task. Before the arrival time

of this new task j we have an interval time to execute the active task with

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

7

a speed reduction (see L8-L9 of figure 1). In this case the speed of the

processor should be the minimum possible speed.

On the other hand, if the next promotion time will be the promotion time

of the active task, then there is no reason to restrict the speed reduction

until the following promotion time (tpk) of any task k.

If the priority of task k in the URQ is higher than the priority of active

task then we can execute the active task i, until this time tpk, reducing

speed (line L11 of Figure 1). To assign the corresponding speed, in this

case, we calculate the amount of work that the task should execute (Γk) to

do not compromise the temporal constraints. Γk will be the minimum

time of the difference between the promotion time of task k and the

promotion time of task i and the remaining execution time of Ci. We also

calculate the time we have to execute this work Γk, i.e. the difference

between the minimum time of the promotion time of task k and the

deadline of task i and the current time. (line L12 of Figure 1).

If the priority of task k is lower than the priority of active task (L13) we

should look for the promotion time of a higher priority task of active task,

because task k will never pre-empt task i. (see Figure 2 for a graphic

explanation). Γk is calculated as explain before, and to calculate the time

the task dispose to do the work Γk we have to calculate the difference

between the minimum time between the maximum between tpk and the

tpi plus the remaining Ci, and the deadline of task i, and the current time

tc (L14). (see Figure 2 for a graphic explanation of the different

possibilities).

Figure 2. Maximum extension time in three different situations

c) If the URQ has only one task to execute, then this is the active task (line

L20 of Figure 1) and the processor speed is calculated as the quotient

between the minimum time of the next promotion time and the remaining

+P

-P

tpj tpj tpj

tpi tpi tpi

tpm tpm tpm

tc tc tc
tpj-tc tpm-tc tpi+Ci-tc

Graph a) Graph b) Graph c)

8 Chapter #

Ci and the total time available to execute this tasks, that now is the

minimum between the next promotion time and the current task deadline

(see L21-L22 of Figure 1)

d) If there are more than one task in the URQ, the first task is executed at the

maximum speed allowed by the processor (see L24 of Figure 1).

At practice it is obvious that only certain discrete values of the frequency

of the clock, and then speed, are available, in this case the selection is always

a frequency equal or larger than the calculated one to ensure time

constraints.

In this algorithm, the speed is calculated in the basis that all tasks

consume its WCET, but at practice, the tasks execute only part of this

WCET nevertheless it is impossible for the scheduler to know a priory the

fraction of WCET they will used. This implies that, the speed calculated is

the minimal that guarantee the theoretical time constraints. The difference

between the theoretical time constraints and the time consumed at practice

could be normally used for the next executing task, to reduce its speed.

Now we present an example to better appreciate the functioning of our

algorithm (PLMDP) in comparison with the LPFPS. The benchmark used is

the same presented by Shin and Choi [4], Table 1. In the Figures 3 and 4 we

represent the execution of both algorithms (LPFPS and PLMDP), when all

tasks consume the 100% of their WCET, and in the Figures 5 and 6 we

represent the execution of the algorithms, when all tasks consume the 50 %

of its WCET. In all these Figures, the vertical up arrows represent the arrival

of the task to the system, the vertical down arrows represent the promotion

time of the task, and finally the horizontal arrows stands for the time the task

could lengthen its execution time. Each box represent five time units

(although our minimal calculation unit corresponds to 1 time unit), and each

line corresponds to task T1, T2 and T3 respectively. The shaded circles

represent idle time in the system, observe that in Figures 3 and 4 there is no

idle time, that is, the tasks use all possible time.

Task T D WCET R D-R P

T1 50 50 10 10 40 1

T2 80 80 20 30 50 2

T3 100 100 40 80 20 3

Table 1. Benchmark task set used by Shin and Choi[4]

In Figure 3 we have represented the behaviour of the LPFPS. The LPFPS

algorithm is driven by the Fixed Pre-emptive Priority Scheduling. This

algorithm consist on executing tasks as low as possible while satisfying time

constraints. LPFS reduce clock speed along with voltage supply only when

there is a unique task ready to be executed, otherwise the scheduling does

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

9

not guarantee the time constraints of the rest of the system tasks. It also

powers down the processor when there are not ready tasks (see Shin and

Choi [4] for an extended explanation).

Figure 3. Execution time in LPFPS when all tasks use 100% WCET.

Figure 4. Execution time in PLMDP when all tasks use 100% WCET.

Now, let focus our attention in Figure 4, that represents the behaviour of

our algorithm, it is as follows: At t=0, all three tasks arrive to the system and

then they are placed at the LRQ sorted by its promotion time (tpT3=20,

tpT1=40, tpT2=50), the first task to promote according with our scheme will

be T3, then it is activated. Its promotion time arrives at t=20, and we can

200 250 300 350 400

0 50 100 150 200

T1

T2

T3

T1

T2

T3

200 250 300 350 400

0 50 100 150 200

T1

T2

T3

T1

T2

T3

10 Chapter #

execute this task until t=40 (promotion time instant of T1) without any

problem. Executing T3 as late as possible implies that the execution time of

T3 should start at its promotion time (t=20) and it would be pre-empted at

t=40, that means that it has 40 time units to execute 20 time units, we can

then reduce the speed and the power supply. At t=40, T1 is promoted and

pre-empt T3 because T1 has a higher priority. T1 is now the active task, and

has to execute at maximum speed because T3 is in the URQ. T1 executes 10

units time and finishes by its deadline, at time t=50. At that moment, T2

promotes and as it is the higher task in the URQ, it executes at the maximum

speed until it finishes, at T=90. At this time T3 is the unique task in the URQ

so it can be executed until the next promotion time, T=90. T3 executes 40

units time it can execute at low speed, but as it remain 40 units at maximum

to finish its WCET, it has to execute at maximum speed. The algorithm

continues with this behaviour until time 200. At time t=200 we have, again,

all task in the LRQ, but now the first promotion time corresponds to T2

(tpT2=210). T2 is the active task. In order to know how much time this task

could execute its remaining time, we should look for the maximum value

between tpT2=210 plus the remaining time (20 units time) and tpT3=220 so

T2 continues until t=230, and T2 finishes. After that, T3 is the active task, it

is alone in the URQ but its remaining time is 40 units and at t=250 there will

be a promotion time of T1, so T3 has to execute at maximum speed during

20 units time. The algorithm continues with this behaviour during all its

hyper-period. After that the tasks will repeat the same pattern.

Figure 5. Execution time in LPFPS when all tasks use 50% WCET.

 0 50 100 150 200

T1

T2

T3

T1

T2

T3

200 250 300 350 400

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

11

Figure 6. Execution time in PLMDP when all tasks use 50% WCET.

In this way the algorithm uses the exceeding time to work at slow

processor speed and low voltage. In the Figures 5 and 6 we represent the

execution of both algorithms, in a different situation, when all tasks consume

the 50% of its WCET.

In Figure 5 we have represented the behaviour of the LPFPS (Shin and

Choi [4]), and in Figure 6 we represent the behaviour of our algorithm.

Although the main behaviour of the algorithm is identical to the behaviour

described before, this new situation provokes more idle time of the processor

that should be used in energy saving. At time 0, all three tasks arrive to the

system, but now, task T3 finishes at time 40 because it only executes the 50

% of its WCET. Task T1 is now the active task in the URQ, it executes 5

units time at maximum speed because its WCET is 10 and its deadline is 50,

but this task finishes at time 45 because it now executes only 5 units. After

that, there is only task T2 in the LRQ that promotes at time 50 to the URQ.

At time 50 it will arrive task T1, it enters the LRQ and promotes to the URQ

at time 90. Then we can reduce the clock speed expecting to finish at its

deadline at time 80, the minimum between the deadline of the active task

(t=80) and the promotion time of a higher priority task (t=90). As task T2

executes only a half of its WCET, it finishes at time 63 and the processor

continues with task T1 that now can reduce speed again, expecting to finish

by its deadline that is in this case the minimum between the promotion time

of task T2 and the deadline task T1. After that, task T1 executes at low speed

and finishes by time 80. At time 80 it arrives task T2 to the LRQ and it

stands alone until time 100 when task T1 and task T3 arrive. The promotion

time of task T3 occurs at time 120 while the promotion time of task T2

200 250 300 350 400

T1

T2

T3

 0 50 100 150 200

T1

T2

T3

12 Chapter #

occurs at time 130, so that in the LRQ task T3 will have the highest priority

because the promotion time is earlier. For that reason task T2 should execute

at the lowest possible speed only until task T3 arrives and pre-empt task T2.

To summarize the comparison, in Figures 3 and 4, when tasks consume

all its WCET, nor LPFPS nor PLMDP have idle interval times. In this

particular case there is not big differences between the performance of both

algorithms. The only difference is that the energy saving occurs at different

times but globally the total amount is the same. On the other hand when

tasks consumes its 50 % of WCET, Figures 5 and 6, PLMDP has only 20

units of idle time, while LPFPS has 167 free units time, this effect translates

in our algorithm in an energy saving of around 300 % with respect to

LPFPS.

In general, real time systems behave in a mixed situation with a few tasks

consuming 100% of its WCET and the rest consuming fractions of its

WCET, then our algorithm shows to improve the energy saving obtained

with a fixed priority scheduling algorithm.

4. EXPERIMENTAL RESULTS

To check the capabilities of the PLMDP approach, we have simulated

several task sets (synthetic and real) and compared the total energy results

per hyper-period obtained in front of the Low Power Fixed Priority

Scheduling (LPFPS) proposed by Shin and Choi [4]. For completeness, we

have plot the performance of both schemes in the example task set explained

before and represented by Table 1, the results of this comparison are exposed

in Figure 7. In the experiment we vary the percentage of consumption of the

worst case execution time (WCET) of tasks to better analyse the

performance in different situations.

0,0

0,2

0,4

0,6

0,8

1,0

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

Consumed WCET

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS

PLMDP

Figure 7. Comparison of both algorithms in the task set proposed by Shin and Choi [4]

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

13

In this example the average improvement calculated as the ratio between

the energy consumption of LPFPS and the energy consumption of PLMDP,

is 1,62 i.e. we save the 38,27% of the average energy consumed by LPFPS.

Note that, even when the 100% of the WCET is consumed (see Figures 3

and 4), the total consumption energy is improved by our algorithm. This

difference in energy is due to the use of the idle time to reduce the processor

speed in different instants during the hyper-period.

To test our algorithm, we have also performed several experiments using

100 different synthetic task sets for each experiment. All tasks sets are

formed by 10 schedulable periodic tasks, and for each task, we vary from

10% to 100% of the WCET consumption. In all the experiments, we check

how harmonicity could affect the results, using harmonic task set and non-

harmonic task set, and we also check how workload could change the results

varying both the workload of the system, and the tasks workload. To

summarize we have made three groups of experiments:

a) Varying the load of the system between 50% to 90%. The maximum task

workload was fixed to 20%. The periods range from 100 to 1000 time

units for the non-harmonic task sets and from 1024 to 131072 for the

harmonic task sets (Figure 8-11)

b) Varying the ratio between the maximum task period (Tmax) and the

minimum task period (Tmin) from 0,1 to 0,00001. The periods range

from Tmin to Tmax. The workload of the system is fixed to 80 % and the

maximum task workload was fixed to 20%. (Figure 12)

c) Varying the maximum of task workload between 10% and 40%. The

workload of the system was fixed to 80% and the periods are range from

100 to 1000 units of time for the non-harmonic task sets and from 1024

to 131072 for the harmonic task sets. (Figure 13)

0,0

0,2

0,4

0,6

0,8

1,0

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Consumed WCET

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS

PLMDP

Figure 8. Comparison of both algorithms when the workload of the system is 80%.

14 Chapter #

In Figure 8 we can see the influence of the usage of different percentage

of WCET in the efficiency of energy consumption. When all the tasks

consume all its WCET, the improvement of our algorithm is not

representative, but as tasks consume lower percentages of WCET our

algorithm improvement is very important. The normalized mean deviation of

the energy consumption for the LPFPS is 0,014, being the maximum

normalized deviation 0,018 and the minimum normalized deviation 0,004.

This implies that the accuracy of our results is within the 2,57% of error.

And for the PLMDP, the normalized mean deviation of the energy

consumption is 0,026, being the maximum normalized deviation 0,040 and

the minimum normalized deviation is 0,002. In that case the accuracy of the

results is within the 6,13%. The average improvement of our algorithm in

this case is 1,25 times the energy efficiency obtained by LPFPS .

0,0

0,2

0,4

0,6

0,8

1,0

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

System Workload

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS

PLMDP

Figure 9. System workload variation when all tasks consume the 100% of WCET.

0,0

0,2

0,4

0,6

0,8

1,0

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

System Workload

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS

PLMDP

Figure 10. System workload variation when all tasks consume the 50% of WCET

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

15

In Figures 9 and 10, we can see the influence of the system workload

variation when all tasks consume its 100 % of WCET and its 50 % of WCET

respectively. In the former, the average improvement of our algorithm is

1.02 times the energy efficiency obtained by LPFPS, while the improvement

increases as the percentage of WCET consumption decreases, being 1.42 in

the case of 50% of WCET consumption. In the extreme case of 10% of

WCET consumption the improvement achieves the ratio value of 34.98. The

reason of this increment is because our algorithm can adapt its behaviour to

the real load of the system, executing almost always at reduced speed. The

conclusion is that the system workload affects to both algorithms being the

interval of differences in the energy consumption [0,01 - 0,02] when tasks

consume 100%, [0,17 - 0,26] when tasks consumption is 50% of its WCET.

These differences in energy consumption between both algorithms are

practically constant when varying the workload of the system.

1,0E+00

1,0E+02

1,0E+04

1,0E+06

1,0E+08

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

Consumed WCET

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS-h PLMDP-h PLFPS-nh PLMDP-nh

Figure 11. System workload and harmonicity of the tasks periods variation

In Figure 11, note that the normalized energy consumption is represented

in logarithmic scale, we can compare the improvement of energy

consumption of our algorithm (PLMDP) in front of the LPFPS, when all task

consume its 50% of the WCET, in two different situations: when the task

periods are harmonic (LPFPS-h, PLMDP-h) and when the task periods are

non-harmonic. In the former, the mean improvement achieved by our

algorithm is 1,42 and in the latter is 1,29. The accuracy of our results are

within a 6,15% in the case of LPFPS with harmonic task, 18,5% in the case

of PLMDP with harmonic task and for the non-harmonic tasks is 5,17% and

9,85% in the case of LPFPS and PLMDP respectively. In general we see that

the differences in the accuracy of the results due to the statistics is lower for

LPFPS than for PLMD because while the LPFPS reduces speed when there

16 Chapter #

is a unique task ready to be executed, the behaviour of PLMD is more

complex and dependent of the particular task set.

0,0

0,2

0,4

0,6

0,8

1,0
1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

task workload

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n
LPFPS PLMDP

Figure 12. Maximum task workload variation. Non-harmonics periods

We checked the performance of the system when the maximum task

workload varies (Figure 12). In this situation, we can not see significant

differences in energy consumption independently if the task set is harmonic

or not. Finally, the performance is evaluated when the ratio of periods

enlarges. The results represented in figure 13 show that the variations in

energy consumption.

0,0

0,2

0,4

0,6

0,8

1,0

1,E-01 1,E-02 1,E-03 1,E-04 1,E-05

Tmin/Tmax

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS PLMDP

Figure 13. Tmin/Tmax variation

To conclude the present analysis, we have also collected some real time

applications: the Avionics task set [9], an Inertial Navigation System (INS)

[10], and a Computerized Numerical Control Machine (CNC) [11].

The two first sets represent critical mission applications and the last one

is an automatic control for specific machinery. The characteristics of the

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

17

tasks sets are the followings (Table 2 to 4):

Task T D WCET

T1 100 100 5,1

T2 20000 20000 300

T3 2500 2500 200

T4 2500 2500 500

T5 4000 4000 100

T6 5000 5000 300

T7 5000 5000 500

T8 5900 5900 800

T9 8000 8000 900

T10 8000 8000 200

T11 10000 10000 500

T12 20000 20000 300

T13 20000 200000 100

T14 20000 20000 100

T15 20000 20000 300

T16 100000 100000 100

T17 100000 100000 100
Table 2. Avionics benchmark task set[9]

Task T D WCET

T1 250 250 118

T2 4000 4000 428

T3 62500 62500 1028

T4 100000 100000 2028

T5 100000 100000 10028

T6 125000 125000 2500
Table 3. INS benchmark task set[10]

Task T D WCET

T1 2400 2400 35

T2 2400 2400 40

T3 4800 4800 180

T4 4800 4800 720

T5 2400 2400 165

T6 2400 2400 165

T7 9600 9600 570

T8 7800 7800 570
Table 4. CNC benchmark task set [11]

18 Chapter #

The results of energy consumption for each application are pictured in

Figures 14 to 16. The average factor of improvement of our algorithm in

front of LPFPS is 1,18 times for the avionics data set, 1,21 times for the INS

task set and 2.09 times for the CNC data set.

0,0

0,2

0,4

0,6

0,8

1,0

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

Consumed WCET

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS

PLMDP

Figure 14. Comparison of both algorithms in the avionics task set[9]

0,0

0,2

0,4

0,6

0,8

1,0

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

Consumed WCET

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n

LPFPS

PLMDP

Figure 15. Comparison of both algorithms in the INS task set[10]

#. A Modified Dual Priority Scheduling in Hard Real Time Systems

to Improve Energy Saving.

19

0,0

0,2

0,4

0,6

0,8

1,0

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

Consumed WCET

N
o

rm
a
li

z
e
d

 e
n

e
rg

y

c
o

n
s
u

m
p

ti
o

n
LPFPS

PLMDP

Figure 16. Comparison of both algorithms in the CNC task set [11]

If we pay attention to the specific behaviour of the individual

benchmarks we observe that the relationship between periods and WCET’s

are responsible of the main differences between both approaches, i.e., for

example in the avionics and INS task sets, there is a sub-set of tasks that

have a very large period compared with the respective WCET, this fact

implies that for a long time there is a unique task in the system, and then our

algorithm behaves very similar to LPFPS.

On the other hand, we observe also that both algorithms behave similar

when the WCET is exhausted, in three of the four case studies, that is so

because in general, in this case, there is not any extra time to consume, and

then no more energy could be saved using only a scheduling strategy.

However, in the CNC task set there appears a particular configuration of

tasks that have very large ratio between the periods and WCET, but still it is

possible to take advantage of many short times with significant reduction of

speed even when the tasks are using the whole WCET, while LPFPS, in this

same situation, has usually a few large time intervals where the speed can be

reduced (see Figure 16). In the opposite situation, i.e. when the tasks

consume less than a 10% of the WCET, it is difficult to perceive the

differences. Finally, when the utilization of the WCET is around its half the

differences between both performances are more relevant.

All the experiments represent the results of the normalized average

energy obtained, varying the consumed worst execution time from 10% to

100%. We run the simulation over one hyper-period (that is, the minimum

common multiple of the task’s period).

20 Chapter #

5. SUMMARY

We have presented a modification of the Dual Priority Scheduling to

improve the Fixed Priority Scheduling power aware while maintaining the

low complexity of the algorithmic. This approach has been shown to over-

perform the mentioned LPFPS power saving by an average factor than range

from 1,17 up to 2,09 depending on the real time application. The algorithm

does not increase the complexity of the LPFPS and can be implemented in

most of the kernels.

6. REFERENCES

[1] A.P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-power CMOS digital design”,

IEEE Journal of Solid-State circuits, vol. 27, pp. 473-484, April 1992.

[2] D. Mosse, H. Aydin, B. Childers and R. Melhem, “Compiler-assisted power-aware

scheduling for real-time applications” Workshop on Compilers and Operating systems for

Low Power COLP 2000, Philadelphia, Pennsylvania, October 2000.

[3] H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, “Determining optimal processor

speeds for periodic real-time tasks with different power characteristics” 13th Euromicro

Conference on Real-Time Systems, Delft, Netherlands, June 2001.

[4] Y. Shin and K. Choi, “Power conscious Fixed Priority scheduling in hard real-time

systems” DAC 99, New Orleans, Louisiana, ACM 1-58113-7/99/06, 1999.

[5] C. L. Liu and J.W. Layland, “Scheduling algorithms for multiprogramming in a hard real-

time environment”, JAMC 20, pp. 46-61, 1973.

[6] R. Davis and A. Wellings, "Dual Priority scheduling", Proceeding IEEE Real Time

Sistems Symposium, pp. 100-109, 1995.

[7] A. Burns and A.J. Wellings, “Dual Priority Assignment: A practical method for increasing

processor utilization”, Proceedings of 5th Euromicro Workshop on Real-Time Systems,

IEEE Computer soc. Press, pp. 48-55, 1993.

[8] M. Joseph and P. Pandya, "Finding response times in a real-time system", British

Computer Society Computer Journal, 29(5): 390-395, Cambridge University Press, 1986.

[9] C. Locke, D. Vogel and T. Mesler, “Building a predictable avionics platform in Ada: a

case study", Proceedings IEEE Real-Time Systems symposium, December 1991.

[10] A. Burns, K. Tindell and A. Wellings, "Effective analysis for engineering real-time fixed

priority schedulers", IEEE Transactions on Software Engineering, 21, pp. 475-480, May

1995.

[11] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi and H. Shin, "Visual assessment of a

real-time system design: a case study on a CNC controller", Proceedings IEEE Real-Time

Systems symposium, December 1996.

