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Abstract. We present a formalism that is able to cope with search and
congestion simultaneously. This formalism avoids the problem of simu-
lating the dynamics of the search-communication process which turns
out to be impracticable, specially close to the congestion point where
search costs (time) diverge.

1 Introduction

In recent years, the study of static and dynamical properties of complex networks
has received a lot of attention [1,2,3,4,5]. Complex networks appear in such di-
verse disciplines as sociology, biology, chemistry, physics or computer science.
In particular, great effort has been exerted to understand the behavior of tech-
nologically based communication networks such as the Internet [6], the World
Wide Web [7], or e-mail networks [8,9,10]. One of the common facts behind these
structures is the short mean distance between nodes. Furthermore, these short
paths can be found with strategies that do not precise a complete knowledge of
the pattern of interactions between the nodes. Related to the search problem,
when the network is facing a number of simultaneous processes, we find that the
network can get collapsed because some of these problems are travelling through
the same node, and this raises the problem of congestion. We introduce a for-
malism that enables to handle these two problems in a common framework by
writing the dynamical properties of the search process in terms of the topological
properties of the network [11].

First we calculate the average number of steps (search cost) needed to find a
certain node in the network given the search algorithm and the topology of the
network. The calculation is exact if the search algorithm is Markovian. Next,
congestion is introduced assuming that the network is formed by nodes that
behave like queues, meaning that are able to deliver a finite number of packets
at each time step [12,13,14]. In this context, we are able (i) to calculate explicitly
the point at which the arrival rate of packets leads to network collapse, in the
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sense that the average time needed to perform a search becomes unbounded,
and (ii) to determine, below the point of collapse, how the average search time
depends on the rate at which search process are started. In both cases, the
relevant quantities are expressed in terms of the topology of the network and
the search algorithm.

2 Search

Following the steps introduced in [11] let us consider a single information packet
at node i whose destination is node k. The probability for the packet to go from i
to a new node j in its next step is pk

ij . In particular, pk
kj = 0 ∀j so that the packet

is removed as soon as it arrives to its destination. This formulation is completely
general, and the precise form of pk

ij will depend on the search algorithm that will
be discussed later on. In particular, when the search is Markovian, pk

ij does not
depend on previous positions of the packet. Using matrix notation we can define
the matrices Dk whose elements Dk

ij are the average number of steps needed to
go from i to j for a packet traveling towards k. Dk

ij are such that dik = Dk
ik. These

matrices are related to the probabilities pk
ij through the following expression [11]

Dk =
[
(I − pk)−1]2 pk, (1)

where I is the identity matrix. In particular, the element Dk
ik is the average

number of steps needed to get from i to k when using the search algorithm given
by the set of matrices pk. When the search algorithm has global knowledge
of the structure of the network and the packets follow minimum paths between
nodes, the effective distance will coincide with the topological minimum distance;
otherwise, the effective distance between nodes will be, in general, larger than
the topological minimum distance.

Finally, the average search cost in the network is

d =

∑
i,k Dk

ik

S(S − 1)
, (2)

where S is the number of nodes in the network. This expression allows to cal-
culate exactly the average search cost performing simple matrix algebra. Note
that simulation based calculation of this quantity would require, in principle, to
generate an infinite amount of packets and let them travel from all possible ori-
gins to all possible destinations following all possible paths, which are in general
arbitrarily long.

3 Load

When there are many simultaneous search process, the effective distance is not
a good measure of performance since, even when the distance is small, accumu-
lation of packets can generate long delays. Rather, the characteristic time, τ ,
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needed to get from the origin to the destination is the right measure. According
to Little’s law of queuing theory[12], the characteristic time is proportional to
the average total load of the network, N . In our case, the total load is identified
with the total number of floating packets, which is the algebraic sum of the sin-
gle queues of the nodes. Thus minimizing τ is equivalent to minimizing N . In
the following, we show how to calculate the load of a network using only the pk

matrices as has been done for the case of no congestion.
First, we calculate the average number of times, bk

ij , that a packet generated
at i and with destination k passes through j,

bk =
∞∑

n=1

(
pk

)n
= (I − pk)−1pk. (3)

Note that the elements bk
ij are sums of probabilities but are not probabilities

themselves.
The effective betweenness of node j, Bj , is defined as the sum over all pos-

sible origins and destinations of the packets, and represents the total number
of packets that would pass through j if one packet would be generated at each
node at each time step with destination to any other node:

Bj =
∑

i,k

bk
ij . (4)

Again, as in the case of the effective distance, when the search algorithm is able
to find the minimum paths between nodes, the effective betweenness will coincide
with the topological betweenness, βj , as usually defined [15,16].

4 Search and Congestion

Now consider the following general scenario. In a communication network, each
node generates one packet at each time step with probability ρ independently
of the rest of the nodes. The destination of each of these packets is randomly
fixed at the moment of its creation. On the other hand, the nodes are queues
that can store as many packets as needed but can deliver, on average, only a
finite number of them at each time step—without lost of generality, we fix this
number to 1. For low values of ρ the system reaches a steady state in which the
total number of floating packets in the network N(t) fluctuates around a finite
value. As ρ increases, the system undergoes a continuous phase transition from
this free phase to a congested phase in which N(t) ∝ t [14]. Right at the critical
point, ρc, quantities such as N(t) and the characteristic time diverge [17]. In
the free phase, there is no accumulation at any node in the network and the
number of packets that arrive to node j is, on average, ρBj/(S − 1). Therefore,
a particular node will collapse when ρBj/(S − 1) > 1 and the critical congestion
point of the network will be

ρc =
S − 1
B∗ (5)
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where B∗ is the maximum effective betweenness in the network, that corresponds
to the most central node.

To calculate the time average of the load of the network, N , it is necessary
to establish the behavior of the queues. In the general scenario proposed above,
the arrival of packets to a given node j is a Poisson process with mean µj =
ρBj/(S−1). Regarding the delivery of the packets, consider the following model.
For a node j with νj packets stored in its queue, each packet jumps to the next
node (chosen according to the algorithm defined through the matrices pk) with
probability 1/νj . In this model, the delivery of packets is also a Poisson process.
In such a simple case in which both the arrival and the delivery are Poisson
processes, queues are called M/M/1 in the computer science literature and the
average size of the queues is given by [12]

〈νj〉 =
µj

1 − µj
=

ρBj

S−1

1 − ρBj

S−1

. (6)

The average load of the network N is

N =
S∑

j=1

〈νj〉 =
S∑

j=1

ρBj

S−1

1 − ρBj

S−1

. (7)

It is straightforward to extend the calculations to other types of queues. For
instance, the queues used in [13] are such that one packet is delivered determin-
istically at each time step. These queues are called M/D/1 and the corresponding
expression for the size of the queues is 〈νj〉 = µ2

j/(1 − µj). Moreover, it is worth
noting that the fact that we are able to map the behavior of the nodes to that
of M/M/1 queues implies that any conclusion that we are able to draw will be
valid in general for any system of M/M/1 queues, and with slight modifications
for other types of queues.

There are two interesting limiting cases of equation (7). When ρ is very small,
〈νj〉 ≈ µj and taking into account that

∑
j Bj =

∑
i,k dk

ik, one obtains

N ≈ ρSd ρ → 0. (8)

On the other hand, when ρ approaches ρc most of the load of the network comes
from the most congested node, and therefore

N ≈ 1
1 − ρB∗

S−1

ρ → ρc, (9)

where B∗ is, as before, the betweenness of the most central node. The last two
expressions suggest the following interesting problem: to minimize the load of a
network it is necessary to minimize the effective distance between nodes if the
amount of packets is small, but it is necessary to minimize the largest effective
betweenness of the network if the amount of packets is large. The first is accom-
plished by a star-like centralized network, that is, a network with a few central
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nodes and all the others connected to them. Rather, the second is accomplished
by a distributed, very decentralized, network in which all the nodes support a
similar load. In [11] we checked that those are indeed the optimal structures
by means of an extensive generalized simulated annealing [18]. This behavior is
common to any system of queues provided that the communication depends only
on the sender. In queues M/D/1, for example, equation (8) reads N ≈ (ρSd)2

(thus, minimization of N still implies minimization of d) and equation (9) is
unchanged.

5 Limitations of the Calculation and Bounds to Other
Models

It is worth noting that there are only two assumptions in the calculations above.
The first one has already been mentioned: the movement of the packets needs to
be Markovian to define the jump probability matrices pk. Although this is not
strictly true in real communication networks — where packets are not allowed
usually to go through a given node more than once — it can be seen as a first
approximation [19,14,13]. The second assumption is that the jump probabilities
pk

ij do not depend on the congestion state of the network, although communica-
tion protocols sometimes try to avoid congested regions, and then Bj = Bj(ρ).
However, all the derivations above will still be true in a number of general situa-
tions, including situations in which the paths that the packets follow are unique,
in which the routing tables are fixed, or situations in which the structure of the
network is very homogeneous and thus the congestion of all the nodes is similar.

When these two assumptions are fulfilled the calculations are exact. For ex-
ample, the calculation of ρc using equation (5) coincides exactly (within the
simulation error) with simulations of the communication model where the com-
munication only depends on the sender of the packet. Compared to situations
in which packets avoid congested regions, equations (5)–(9) correspond to the
worst case scenario and thus provide bounds to more realistic scenarios in which
the search algorithm interactively avoids congestion. Consider, for example, ρc

in the model presented in [14], where the communication depends not only on
the sender but also on the availability of the receiver. The fact that the packets
are sent with higher probability to less congested nodes implies that the flow is
better balanced among nodes. Although the assumptions of the present calcula-
tion do not apply, one would expect that the value of ρc estimated analytically
will be a lower bound to the real situation in which load is more balanced.

For an accurate description of the algorithm used in the computer simulations
we need to specify the set of matrices pk

ij . We have assumed that the movement
of the packets is Markovian, this implies that the probabilities do not depend
on the packet history. In a purely local search scenario, where the knowledge
that the nodes have about the network structure is bounded, the nodes face
the problem of forwarding the packets. In order to quantify this information we
introduce the radius of knowledge as a measure the distance along network links
that a node can identify the destination of a packet. Thus, when this radius is
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zero, packets travel completely at random until they reach its destination, and
then we have

pk
ij = (1 − δik)

aij∑
l ail

. (10)

where aij are the elements of the adjacency matrix of the network: aij = 1 if
i and j are connected in the network and aij = 0 otherwise. This expression
means that packets are uniformly distributed among neighbors unless they have
reach their destination. The delta symbol ensures that pk

kj = 0 ∀j and the packet
disappears from the network. When the radius of knowledge is 1, a node is able
to recognize one of its neighbors as the destination and then the packet is sent
to it; otherwise, the packet is just sent at random to one of the neighbors of the
node. The corresponding pk matrices are given by

pk
ij = aikδjk + (1 − aik − δik)

aij∑
l ail

. (11)

The first term corresponds to i and k being neighbors: then the packet will go
to j if and only if j = k, i.e. the packet will be sent directly to the destination.
The second term corresponds to i and k not being neighbors: in this case, j is
chosen at random among the neighbors of i.

We have compared our predictions using a radius of knowledge equal to
one with simulations of the communication model introduced in [14], where the
communication between the nodes depends on the receiver’s state as well, and
packets are automatically delivered if a neighbor is its final destination. Figure 1
shows that our model is indeed a lower bound and, moreover, that the analytical
estimation provides a good approximation to the simulated value.

This figure also confirms another expected and useful result. For a given size
of the network and a given number of links, the most robust networks, that is
those with higher ρc, are those with better balanced load. For these networks,
the effect of avoiding congestion is less important and therefore the analytical
estimation turns out to be more accurate.

6 Packet Dynamics

We have performed simulations of the communication model described in the pre-
vious sections for the structures shown in [11] to be optimal in the two regimes:
for a low load, the star-like centralized one, and for a high load, the distributed
one. We note that for a fixed number of nodes and links, the distributed network
has a larger value of ρc than its centralized counterpart. In the case we are con-
sidering of 32 nodes and 128 links, the critical values of ρc are 0.256 and 0.162,
respectively. Nevertheless, the dynamical behavior near the critical value of the
load has to be very similar. In Fig. 1 we have plotted the standard deviation in
the number of packets in the most connected nodes and in the total number of
packets in the network.
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Fig. 1. Left: Comparison between the predictions of equation (5) for ρc with between-
nesses computed according to (11) and the results obtained for the communication
model discussed in [14]. The analytical value is a lower bound to the actual value. To
keep the figure simple, we do not show results corresponding to the model discussed in
the current work, but the points would lay exactly on the diagonal line, since all the
assumptions of the calculation are fulfilled. Right: Standard deviation in (squares) total
number of packets and (diamonds) number of packets in the most connected nodes.
The straight lines have slope -1 and are guides to the eye.

In the type of queue we are considering, the variance in the number of packets
in any node is given by [12]

σj =
√

µj

1 − µj
=

√
ρBj

S−1

1 − ρBj

S−1

. (12)

Since the most connected nodes are those with the highest effective betweenness
and its value determines the critical value of ρ, we expect that at these nodes

σm.c.n. � 1
ρc − ρ

. (13)

and this is precisely the behavior we infer from Fig. 1.
On the other hand, for the total number of packets, there a clear distinction

between the two networks. In the centralized one, there are just a few nodes,
three in our case, that carry most of the network load and hence the main
contributions to the variance, making that the variance in the total number of
packets follows the same law as the single most connected nodes. Contrary to
this, for the distributed network there are much more nodes with a critical load
and correlation are induced that may disrupt the single node behavior.

7 Conclusion

We have presented a single model that can handle simultaneously search and
congestion in a general network. The dynamical properties of the network can be



Local Search with Congestion in Complex Communication Networks 1085

related to purely topological properties, in terms of the connectivity matrix and
on the search algorithm. Close to the critical point where congestion develops the
system presents an interesting behavior since the variance of the total number
of packets cannot be easily related to the variance of the number of packets in
the single nodes.
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