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Abstract. The coexistence of multiple types of interactions within social,

technological and biological networks has moved the focus of the physics of complex

systems towards a multiplex description of the interactions between their constituents.

This novel approach has unveiled that the multiplex nature of complex systems has

strong influence in the emergence of collective states and their critical properties. Here

we address an important issue that is intrinsic to the coexistence of multiple means of

interactions within a network: their competition. To this aim, we study a two-layer

multiplex in which the activity of users can be localized in each of the layer or shared

between them, favoring that neighboring nodes within a layer focus their activity on

the same layer. This framework mimics the coexistence and competition of multiple

communication channels, in a way that the prevalence of a particular communication

platform emerges as a result of the localization of users activity in one single interaction

layer. Our results indicate that there is a transition from localization (use of a preferred

layer) to delocalization (combined usage of both layers) and that the prevalence of a

particular layer (in the localized state) depends on their structural properties.

http://arxiv.org/abs/1509.00406v1
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1. Introduction

During the last 15 years many statistical physics methods and nonlinear models have

suffered a reformulation in order to take into account non-regular interaction patterns

[1, 2, 3]. This reformulation is rooted in the availability of datasets capturing the

relationships among the constituents of macroscopic systems of diverse nature, such

as technological, biological and social ones, and their successful description in terms of

complex networks [4, 5]. As a result, many important collective phenomena taking place

in these systems, such as synchronization [6], epidemics [7], cooperation and consensus

[8] among others, have been revisited under the paradigm of complex networks [9, 10].

As data gathering techniques increase their resolution new properties of the

interaction patterns in complex systems are captured. Main features include the spatial,

temporal and multiplex nature of interaction networks. This latter ingredient has greatly

focused the attention of network science in the last years leading to a number of works

about the structure and dynamics of multilayer and multiplex networks [11, 12].

Multiplex networks [13] are often described as the framework for capturing the

interactions among a set of elements (nodes) when these interactions can take different

forms or be established through different means, each of them defining a network often

referred to as interaction layer. Thus, a multiplex network can be seen as a collection

of layers so that each node is represented in all of them (see. Fig. 1). Typical examples

of multiplex networks are transportation systems [14, 15, 16, 17], in which different

transportation modes can be used to travel between cities or urban areas, or social

systems [18], in which individuals can choose among different means and communication

platforms for interacting with each other.

Most of the times the different interaction layers forming the multiplex coexist

in a competitive way [19, 20, 21]. For instance think of two of the most important

applications for mobile communication, such as WhatsApp and Line, here the

competition relies on the usage of each platforms. The more users decide to use one

platform the more value has the platform. From the point of view of users the final

choice between these two platforms relies on two main issues. Obviously, the intrinsic

quality of the platform plays a key role in the final decision of individuals. However,

there is social added value that comes from the degree of usage of the platform among

the acquaintances of an individual. It is thus interesting how this local and context-

driven decisions affect the onset of a collective state, here represented as the localization

of the multiplex activity in one of its layers.

The article is organized as follows. In Sec. 2 we present the mathematical

formulation of the multiplex network model and derive the relevant equations to be

solved. In Sec. 3 we show the numerical results corresponding to the competition

between different interaction layers. Finally, in Sec. 4 we round off the manuscript

with the conclusions of our work and the future perspectives that it may open.
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Figure 1. Schematic representation of a two-layers multiplex network. The multiplex

is composed of 6 nodes so that each node appears in each layer and it is connected

(dashed lines) with its representation in the other layer. When layers compete, each

user must choose the layer in which is active (black), thus remaining inactive (white)

in the other one.

2. Mathematical formulation of multiplex layers competition

The physical framework used to study the layer-layer competition relies on a two-states

model (reminiscent of an Ising-like model but much simpler). In this case, nodes are

two-states (up and down) systems and the interaction neighborhood of a node depends

on its (up or down) state. Thus, at the macroscopic scale, this translates into the

existence of two interaction layers, one associated with the up state and another with

the down one. In the following we first describe in 2.1 the general Hamiltonian capturing

the interactions between the nodes of a multiplex of L layers to particularize in 2.2 to

the case of competitive interactions in a two-layers multiplex.

2.1. General formulation: Multiplexes of L layers

In general, a multiplex network is composed of L network layers of N nodes each. Since

each individual i is represented in each of the L networks, each pair of networks α and β

are interconnected by N links connecting the pair of nodes that represent the same

individual i. This setup can be seen as a collection of independent layer or platforms

available for the communication between individuals (such as WhatsApp, Line, Tango,

etc) or for data-sharing (such as Dropbox, iCloud, Box, etc), being the nodes of the

layers, the users, and the links within a layer the connections established by the users

via a particular platform.

The availability of different platforms oriented towards the same goal poses a natural

competition for the choice of the users. The essential ingredients of this competition

can be casted in a mathematical formulation in which the state of a node i in layer α

can be explained as the probability that node i is active in layer α (for communication

platforms) or the fraction of resources that node i share with its neighbors in this

layer (for data-allocation systems). In this way, the state vector of a node i in the
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interconnected multilayer network is denoted by ~pi ≡ (p
(1)
i , . . . , p

(L)
i ), together with the

constraints that the sum of the probabilities of finding a node active in each layer is

equal to 1:

L
∑

α=1

p
(α)
i = 1, i = 1, 2, . . . , N. (1)

The state of the multiplex can be represented by a L × N matrix P ≡
[

(~p1)
†, . . . , (~pN)

†
]

. The state matrix, accounting for the intensity of interaction between

the nodes is given by all possible products between the states, i.e., by the LN × LN

matrix Σ = P ⊗ P† with elements Σ
(αβ)
ij = p

(α)
i p

(β)
j . In addition, we define J as a

LN × LN interaction matrix capturing both intra-layer and inter-layer links:

J =
⊕

W(α) +D⊗ I , (2)

where I indicates the N ×N identity matrix, D is the L× L matrix accounting for the

network of layers [22] and W
(α)
ij is the weight of the interaction between nodes i and j

in layer α. More specifically, this topology describes nodes that are present in multiple

layers simultaneously and inter-layer connections are allowed only between a node and

its counterparts in the other layers. If α and β are indices indicating two given layers,

the block matrix structure of J can be indexed by four indices, two for nodes and two

for layers, i.e., by J
(αβ)
ij .

Therefore, given the ensemble of all possible states, i.e., the set {P} of all matrices

satisfying constraints Eq. (1), we can define the Hamiltonian of a specific configuration

P as:

H(P) = −

L
∑

α,β=1

N
∑

i,j=1

J
(αβ)
ij p

(α)
i p

(β)
j . (3)

2.2. Competition in 2-layers multiplexes

For the sake of simplicity, hereafter we consider the case of the competition in a multiplex

composed of two layers, i.e., L = 2. In this specific case, following Eq. (1), the state

of a node is completely determined by its probability of being active in one of the two

layers, e.g., the first one. Thus, the state of the whole multiplex can be described by the

vector ~p ≡ (p1, . . . , pN), where for simplicity we have omitted the layer index explicitly.

Moreover, we also consider a uniform and undirected connection between the two layers,

so that the interaction strength of a node i in layer 1 and its counterpart in layer 2 is

captured by the parameter Jx.

To incorporate the competition between layers we consider two essential ingredients

of the interactions at the local level. On one hand, the communication between two

agents that are connected within one of the layers is more efficient when both of them

are always active in this layer or when they allocate all of their shared resources in the

same platform. However, since the sets of contacts an individual has in the two layers

are, in principle, different, by splitting the activity between the two layers an individual
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will increase the number of simultaneous contacts. The Hamiltonian capturing these

two ingredients can be obtained from the general one in Eq. (3) as:

H(~p) = −
N
∑

i,j=1

W
(1)
ij pipj −

N
∑

i,j=1

W
(2)
ij (1− pi)(1− pj)− 2Jx

N
∑

i=1

pi(1− pi).(4)

From this Hamiltonian it becomes clear that the first two terms in the right are

those favoring the localization of the activity of each individual in layer one and two

respectively. In its turn, the third term favors the splitting of the activity of each

individual.

The relative importance of this third term with respect to those favoring the

localization of the activity within a single layer is controlled by the inter-layer coupling

Jx. Note that the limit Jx ≫ 1 means that nodes are prone to combine their activity

in both layers which, for instance, in the case of data sharing or mobile communication

platforms would represent information (pictures, files, tweets, etc) that can be easily

transferred from one platform to the other one. On the contrary, the case Jx ≪ 1

implies that a simultaneous use of platforms is hard to achieve.

3. Results

Having introduced the mathematical framework, our goal is to study the competition

between the two layers as a function of the inter-layer strength Jx and the structural

patterns of each of the network layers. To this aim, it is useful to check the behavior in

the two asymptotic limits: Jx ≫ 1 and Jx = 0. First, when Jx ≫ 1 the first two terms in

the Hamiltonian Eq. (4) become negligible, so that the configuration of minimum energy

is achieved for pi = 1/2 ∀i, i.e., when the individuals split their activity between the two

layers. On the other hand, for Jx = 0 the multiplex becomes a set of two independent

networks and the configurations localized in the first layer (~p = ~1, i.e. pi = 1 ∀i) and the

second one (~p = ~0) compete. In this case the minimum energy configuration is achieved

by concentrating all the activity in the layer α with the largest total strength:

s(α) =
N
∑

i,j=1

W
(α)
ij . (5)

For the particular case of unweighted networks this means that the layer with the largest

average degree (or largest number of links) will concentrate all the activity when Jx = 0.

From now on, we will consider that s(1) > s(2) so that in the absence of inter-layer

interactions the activity focuses on the first layer: ~p = ~1.

Considering these two asymptotic behaviors we are thus interested in characterizing

the transition from the localized activity regime at small values of inter-layer coupling

Jx to that of mixed one for large Jx. A first proxy is to check when the fully localized

solution (e.g. ~p = ~1) ceases to be the one with the minimum energy H = −s(α) (α = 1 in

the case of ~p = ~1). To this aim, we calculate the gradient of the multivariate Hamiltonian
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H(~p):

∂H

∂pi
= −2

N
∑

j=1

W
(1)
ij pj + 2

N
∑

j=1

W
(2)
ij (1− pj)− 2Jx(1− 2pi) . (6)

The values of these derivatives for the localized solution in the first layer (~p = ~1) become:

∂H

∂pi

∣

∣

∣

∣

~p=~1

= 2
(

Jx − s
(1)
i

)

, (7)

where s
(α)
i =

N
∑

j=1

W
(α)
ij is the strength of node i in layer α. For values of Jx smaller than

the strength s
(1)
i of all nodes in the first layer, the derivatives at ~p = ~1 are all negative

and thus the gradient points to the interior of the hypercube [0, 1]N , which contains all

the possible feasible states of the system. This means that the energy of the system

around ~p = ~1 is always increased for any small change of ~p inside the hypercube, showing

that ~p = ~1 has minimum energy whenever the inter-layer coupling Jx is below its critical

value:

Jc
x = min

i=1,...,N
(s

(1)
i ) = s

(1)
min . (8)

For unweighted networks it reduces to the minimum degree of the nodes in the first

layer, k
(1)
min. Above this critical inter-layer coupling Jc

x the minimum energy moves from

~p = ~1 to a new position inside the hypercube [0, 1]N , thus starting to distribute the

activity between the two layers.

From a mathematical point of view, the finding of the state with minimal energy is a

quadratic (the Hamiltonian) programming problem with linear equality (normalization

of the probabilities) and inequality (probabilities in range [0, 1]) constraints. In general,

for two layers, the candidate minimum of the Hamiltonian is calculated by setting

∂H/∂pi = 0 ∀i, which can be expressed as the following linear system:
[

2JxI−
(

W(1) +W(2)
)]

~p = Jx
~1− ~s(2) . (9)

However, its solution ~p⋆ does not always fulfill the constraints, does not constitute a

minimum, or even both conditions fail at the same time. When any of these happens,

the minimum is placed in the boundaries of the [0, 1]N hypercube, with at least one

probability equal to 1 or 0. Supposing ~p⋆ is inside the hypercube, it is a minimum if the

Hessian matrix, with components

∂2H

∂pi∂pj
= 2

(

2Jxδij −W
(1)
ij −W

(2)
ij

)

, (10)

is positive definite. When the Hessian is not positive definite, the quadratic

programming problem becomes NP-hard, and no polynomial time algorithm is known

to solve it. Since the Hessian is proportional to the matrix of the system in Eq. (9), a

positive definite Hessian implies the system has a non-singular matrix and thus a unique

solution.

Summarizing, we proceed as follows to find the state with minimum energy. For

each value of the coupling Jx, we first solve Eq. (9) and obtain a solution ~p⋆. Then, we
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Figure 2. Magnetization for multiplex networks consisting of two Erdős-Rényi (ER)

layers and varying mean degree. All ER networks have 200 nodes and minimum degree

kmin = 1. The red circles indicate the minimum values of Jx so that minimum energy

configurations can be calculated from Eq. (9). For values of Jx to the left of the red

circle, PSO has been used to compute the solutions. In the inset, zoom to show when

activity starts to be distributed in both layers.

check if ~p⋆ ∈ [0, 1]N and if all the eigenvalues of the Hessian Eq. (10) are positive. If

both conditions are fulfilled, ~p⋆ is the ground state for this value of the coupling and we

have finished. Otherwise, a heuristics is needed to solve the problem. We have chosen

Particle Swarm Optimization [23] for its simplicity, ability to cope with continuous and

bounded variables, and outstanding performance in many fields [24].

In order to represent the ground state of the Hamiltonian for each value of Jx we

make use of magnetization M(~p):

M(~p) =
1

N

N
∑

i=1

(2pi − 1) , (11)

that characterizes the level of activity between layers: M = 1 when all the activity is

concentrated in the first layer (~p = ~1) andM = −1 when it is concentrated in the second

layer (~p = ~0). Obviously, when activity is shared between the two layers (~p = ~0.5) the

magnetization vanishes, M = 0.

In Fig. 2 we show the magnetization as a function of Jx for three multiplex networks

composed of two Erdös-Rényi (ER) layers. The layers of the three multiplex networks

have average degree 〈k〉 = 4, 6 and 8 respectively. The layers were produced by means

of the algorithm introduced in [25] that allows to interpolate between ER and scale-free

networks and, as a byproduct of the procedure, enables to control the minimum degree

of the resulting graphs. In this way we have set the minimum degree to kmin = 1 in the



Layer-layer competition in multiplex complex networks 8

0 5 10 15 20
J

x

0

0.2

0.4

0.6

0.8

1

M
ER <k>=4, k

min
=1

ER <k>=6, k
min

=2

ER <k>=8, k
min

=4

0 1 2 3 4 5
J

x

0.97

0.98

0.99

1

M

Figure 3. Magnetization for multiplex networks consisting of two Erdős-Rényi (ER)

layers and varying mean and minimum degrees. All ER networks have 200 nodes. The

red circles indicate the minimum values of Jx so that minimum energy configurations

can be calculated from Eq. (9). For values of Jx to the left of the red circle, PSO has

been used to compute the solutions. In the inset, zoom to show when activity starts

to be distributed in both layers.

three cases. However, the method in [25] produces (for a given value of kmin) networks

of identical strength. Thus, we take the first network layer an add 0.05 × N links at

random to ensure that s(1) > s(2). The three curves in Fig. 2 display the transition from

localized activity for small Jx values to mixed one for large ones. Interestingly, the inset

shows that localized activity is lost as soon as Jx = 1 = kmin in agreement with our

former estimation. From this point the decay of M is slower for those multiplexes with

larger mean degree 〈k〉 in the layers.

These results are further corroborated in Fig. 3. In this case we show again three

two-layers multiplexes (again composed of coupled ER-ER networks) with the same

average degrees as in Fig. 2 (〈k〉 = 4, 6 and 8) but with different values of the minimum

degree, kmin = 1, 2 and 4 respectively. This latter feature is revealed in the inset of the

plot where we show that the state of localized activity (M = 1) is no longer the ground

state of the multiplex as soon as Jx > kmin = 1, 2 and 4. On the other hand, as in

Fig. 2, the final mixed activity state is achieved first for those multiplexes with smaller

average degree.

In both Figs. 2 and 3 the insets show that the evolution of M(Jx) close to M = 1

shows different cusps. In particular, these cusps appear at integer values of Jx, which at

the same time correspond to the values at which the number of nodes for which Eq. (7)

changes sign increases. The effect is similar to that at kmin: many nodes have pi = 1
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until Jx is equal to ki in the first layer. This rule is exact only for nodes with ki = kmin,

but also holds for an important fraction of nodes when ki > kmin. The collective effect

is reflected in the form of cusps in the curve M(Jx).

4. Conclusion

In this work we have introduced a model to analyze how layers compete for the activity

of users in a multiplex network inspired in the simultaneous interplay of communication

and data-sharing online platforms. To this aim, we have focused on a multiplex

composed of two layers and we have relied on a two-states model in which each of

the two states of a node are associated to be active in the top layer and the bottom

one respectively. At variance with the usual Ising model in a network [26], here a node

interacts only with those neighbors in the layer it is active. We have set two competing

mechanisms, one favoring activity localization and another favoring the splitting of the

node’s activity between the two layers. On one hand, if a node and all its neighbors

in a layer are active in it, this would favor an efficient communication between them.

However, when a node splits its activity between the two layers this would favor the

passage of information from a neighbor in one layer to a neighbor in the other one,

thus maximizing the outreach of information. The competition between these two

mechanisms is controlled by the inter-layer coupling Jx which can be seen as the ability

that node has to pass information from one layer to the the other.

Our results show that, regardless of the average connectivity and total strength of

the leading layer (the one that focuses all the activity for small inter-layer coupling) it

is its minimum degree what causes that nodes start to use the other layer, i.e. controls

the onset of the transition from localized to mixed activity. On the other hand, it is

the average degree of the leading layer what controls when the state of full mixing is

reached. These two results point out that the transition from localized to mixed activity

occurs via a cascade from poorly connected nodes in the leading layers (the ones that

obtain more benefits from leaving first the leading layer) to those highly connected ones

(being the ones that are less prone to leave the layer in which they are well-connected).

Thus, the larger the average degree of the leading layer, the more inter-layer coupling

is needed to persuade all the degree classes to leave the localized state.

We expect that the simple model introduced here will stimulate more research about

the coexistence and competition of interaction layers in multiplex networks making

possible the characterization of how and when the coexistence of different layers in real

multiplex systems is possible. Future research avenues include the study of other types

of layer topologies and the presence of correlations between the degrees of a node in

different layers. Moreover, a more challenging problem is the competition in multiplexes

composed of more than two layers, characterized by the Hamiltonian in Eq. (3). It is

clear, that the existence of multiple parameters for the interaction between the L layers

poses a mathematical and computational difficulty. On the other hand, this general

framework provides with the interesting scenario in which many different transitions
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between the localization in different layers are observed due to the multiple competition

between them. It is also interesting to note that we have tackled the analysis of the two-

state model by considering continuous variables, {pi}, associated to each node. However,

another possibility is to consider binary states for the nodes, as in Ising-like models, so

that metastable states can show up due to the multi-stable character of the node states

[27, 28].
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