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Abstract

We present here a dynamic formalism which allow to compute ana-
litically the stationary properties of networks of neural oscillators. This
technique, derived originally to study situations away from equilibrium,
is an alternative to standard methods developed to analyze the be-
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1 Introduction

The analysis of the dynamical properties of attractor neural networks (ANN)
are the focus of important works in the last years. Not only because it can
provide information about the short and long time behaviour of networks char-
acterized by symmetric and asymmetric couplings but also because they are
the only way to understand the nature of some collective phenomena, such
as mutual synchronization in the temporal activity of large assemblies of neu-
rons [1], which are responsible of interesting effects related to the processing

of information observed in real experiments performed in the visual cortex of

monkeys [2].

The conventional models of ANN characterize the activity of the neurons
through binary values, corresponding to the active and non-active state of each
neuron {3]. However, in order to reproduce synchronization between members
of a population it is convenient to introduce new variables which could provide
information about the degree of coherence in the temporal response of active
neurons. A possible way to do this, is by associating a phase to each element
of the system and consequently to model neurons as oscillators. One of the
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most common models of phase oscillators is the so called Kuramoto’s model

[4], whose dynamics is governed by

4o, =
—= =ikt + Y Kysin(6; ~ 0,) 1

7=1
where K; is the coupling matrix, 6; the phase of the i-th oscillator, w; is a
random frequency for each oscillator that obeys a certain distribution g(w), N
the size of the population and +;(t) independent white noise random processes

with zero mean and correlation

< () (t) >=2D6;6(t =), D >0 (2)

An important point in our discussion is the specific form proposed for the
couplings since it is the bridge that allows to make the analogy between models
of phase oscillators and ANN. After a suitable choice of Kj; it is possible to
wonder about the ability of the system to work as an associative memory [5].

Let us consider a population of N neurons, active at high rate during a
given period of time that can carry information about their phase. As usual
i ANN we want to store p sets of random patterns (phases) {¢} and a simple
way to do this task is to assume that the synaptic efficacies (couplings) are
given by

k& -
Kij = N ; cos(§;' — &) (3)

where k is the intensity of the coupling. This form preserves the basic idea of
the Hebb 's rule but now adapted to the symmetry of our problem.

Our goal is to determine the stationary properties of the model described
by equations (1) and (3) through a mean-field formalism widely used in the
analysis of large populations of coupled oscillators [6], but new in the treat-
ment of the features of ANN. We will show that this technique is an excellent
alternative to conventional methods of analysis of associative memories, such
as the replica method.

Notice that when the distribution of frequencies vanishes (g(w) = §(w)) our

neurons are no longer oscillators. In this case our system becomes a Q-state
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clock model of neural network in the limit @ — oo, which has been extensively
studied by Cook [7] in the replica symmetry approximation. We will show that
with our method it is possible to reproduce the results of [7] in a simpler way,
emphasizing the relevant influence of g{w) on the long time properties of the

system.

Description of problem and results

In this preliminar study we have only considered the behaviour of the system
in the low loading limit, i.e., in the case where the capacity a=p/N, defined
as the ratio between the number of patterns and the number of units of the
system, goes to zero. To analyze our model it is convenient to introduce the

following order parameters

- 1 .
moibl ot (0;£LY)
e =5 Z e (4)
7
¢4 play the role of a mean phase, ¢* measures the correlation between the state

of the system and the pattern £#, and ¢ is another correlation not relevant in
our study. Then the evolution equation for the phase oscillators is

do;
dt

k. . ..
=wity E 92 sin(8Z — 0: + &) + ¢ sin(¢ — 0; — €2)] + v(t) (5)
u=1

In the thermodynamic limit N — oo, it is possible to derive a non-linear

Folker-Planck equatibn for the one oscillator probability density p(0,t,w, £)

dp 0 d%p
o tagVel=Dgz =0 (6)
where V is the drift velocity term
k< |
V=lw+ o) ldhsin(¢h —0— £4) + ¢ sin(¢” — 0+ &%) (7)

=1
If g(w) and f.(€#) are the frequency and pattern distribution, respectively,
the order parameters (4) become



164

gt = / / dwd0 ) p(0,,€, ..., €)g(w) [T Fule)de*  (8)
p=1

Since we are interested in the long time behaviour of the system we have

solved the equation (6) for the stationary case

0) [*™ d
(0,0 €4 = F(0) J, anf(ﬂan) (9

where

F(0) = cap {i 5 [gf cos(# — 0 — ) + g cos(#” — 0+ 5“)1J (10)
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L p=1 d

(11)

ELI]C]. 2 2
z:/ wmm/ H(0, n)d (12)
0 0

Equations (9)-(12) describe the behaviour of the system in the most general
case. However since we are interested in the limit of o — 0 we can assume that
if the initial state of the system has a macroscopic correlation with a pattern
g, then only the order parameter ¢ = ¢ will be relevant, what simplifies
notably the nature of the problem. The situation with o # 0 will be considered

elsewhere. Notice that ¢

g=<cos{¢—0—¢)> (13)

plays the role of the overlap in classical models of ANN; i.e., the projection of
the state of the system over the memories except for a mean phase ¢ that goes
to zero when the distribution of natural frequencies g(w) is even and has zero
mean.

To calculate q we can proceed in two different manners, either by solving

directly equation (8), what is complex because it means to solve an integral
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equation impliying to get values of ¢ through numerical integration, or by
identifying Z as a generating functional of the order parameters. This method
is more clegant and give algebraic expressions casier to deal with. Let us
rewrite Z as

Z:/ﬁdU_F(O,O')/WH(G,n)dn (14)

where
F(0,5) = eaplo cos( — 0+ &) (15)
then it is straightforward to see that
d |
¢ =<< “8';1112]0:%>> (16)

where << .. >> is an average over w and £. To carry out the calculation we

apply the following identity

oL cos(ip— 9—-n+c)m_[( .;.zz ) cosn(¢—60 —n 4 &I (ng)' (17)

n=

Integrating (12), averaging over ¢ and evaluating the partial derivate (16)
we obtain a self-consistent equation for the g parameter

L Ao(BOL(BY) + 27 wimpar In(BO) Tner(B) + Lnss (B))(2) N
PI(B) + 25 o 2(Ba)(%) v
(18)

where I, are the modified Bessel Tunctions of first kind of order n, § = %

and <>, means an average over the distribution of frequencies. Taking into
account the symmetry proper ties of the modified Bessel functions for u integer

(I = I.,), we can summarize this formula in

= 213 2-[ n—
q —< Z..oo w -I-D nul n(ﬁq) 1(ﬁq) >, (19)
Z_Oo w2+D2n2 ( (1)

In practice the numerical computation of this algebraic expression is not

difficult because the maximum contribution to the mnfinity sum comes from

the modified Bessel functions of lower orders.
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It is interesting to compare our results with those given by Cook in [7] in
the limit of @ — oco. We observe from (18) that when w — 0 {absence of

frequencies), the overlap is

g = 5Li(Bq)
Is(Bq)

which is exactly the same expresion reported by Cook. However our result

(20)

1s more general because we have included the effect of a distribution of fre-
quencies. Additionally it is not difficult to deal with more complex situations

(e.g. random fields). This shows the power of the formalism developed in this

paper.
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