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Abstract. Community definitions usually focus on edges, inside and between the

communities. However, the high density of edges within a community determines

correlations between nodes going beyond nearest-neighbours, and which are indicated

by the presence of motifs. We show how motifs can be used to define general classes of

nodes, including communities, by extending the mathematical expression of Newman-

Girvan modularity. We construct then a general framework and apply it to some

synthetic and real networks.
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1. Introduction

Modular structure in complex networks has become a challenging subject of study

starting with its very definition [1]. One of the most successful approaches has been

the introduction of the quality function called modularity [2, 3], that accomplishes two

goals: (i) it implicitly defines modules, and (ii) it provides with a quantitative measure

to find them. It is based on the intuitive idea that random networks are not expected

to exhibit modular structure (communities) beyond fluctuations.

A lot of work has been done to devise reliable techniques to maximize modularity [4,

5, 6, 7, 8, 9]. However, very little has been done to analyze the concept of modularity

itself and its reliability as a method for community detection. To a large extent, the

success of modularity as a quality function to analyze the modular structure of complex

networks, relies on its intrinsic simplicity. The researcher interested in this analysis is

endowed with a non-parametric function to be optimized: modularity. The result of the

analysis will provide a partition of the network into communities such that the number

of edges within each community is larger than the number of edges one would expect to

find by random chance. As a consequence, each community is a subset of nodes more

connected between them than with the rest of the nodes in the network. Recently, it has

been shown that modularity is not the panacea of the community detection problem; in

particular it suffers from a resolution limit that avoids grasping the modular structure of

networks at low scales [10]. Moreover, modularity is strongly focused on communities, so

it cannot be used in general to detect groups of nodes revealed by alternative connectivity

patterns. The only exception is represented by “anti-communities”, i.e. groups of nodes

with a few edges inside and many edges connecting different groups. The presence

of anti-communities indicates that the network has a multipartite structure. Anti-

communities could be detected by modularity minimization [11], although the results

are not so good, as we mention in section 3.

In general, detecting multipartite structure from first principles requires a definition

of the classes that is quite different (in fact, opposite) with respect to standard

community definitions. Let us consider bipartite networks, where nodes/actors are

connected through other entities, for example collaboration in a work, attendance to

an event, etc. In these specific cases, nodes of the same class (e.g. actors) are not

directly linked, or share but a few edges, and usually some projection of the network in

a subnetwork of only a class of nodes is needed for subsequent analysis. For example, in

a projection into the actors space, two actors could be connected if they share a team,

and the weight of this link could be either one (unweighted projection) or the number of

shared teams (weighted projection). However any projection implies knowledge about

the different classes of nodes. The definition of community must be generalized to deal

with these cases. Doing it within a modularity-based framework requires a different

formulation of modularity [12, 13].

We remark that bipartite networks are characterized by the fact that any path

with even length starting from a node of either class ends in the same class, due to the
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absence of internal edges in each class. So, if the two classes are A and B and we start

from a node iA of class A, the first step leads to one of its neighbours, say iB, which is

in B, the next step to a neighbour jA of iB, which is in A, and so on. In this way, paths

of even length starting and ending in the same class may reveal bipartite structure, if

there are many of them. On the other hand, in a graph with modular structure, there

are many edges inside each module, so one expects accordingly a large number of paths

between the nodes. In particular, one expects a large number of cycles, i.e. closed paths.

We deduce that short paths, or motifs, of a network, could be used to define and

identify both communities and more general topological classes of nodes. Here we

propose a general framework to classify nodes based on motifs. Classes will be defined

based on the principle that they “contain” more motifs than a null model representing

a randomized version of the network at study. We adopt the null model of modularity,

i.e. a random network with the same degree/strength sequence of the original network,

because modularity lends itself to a simple generalization, which makes calculations

straightforward. We shall derive different extensions of modularity, where the building

blocks will be the motifs and not just the edges, as in the original expression. After

that, we shall maximize the new functions to detect the classes.

We stress that we use a modularity-based framework only as an illustrative example

of how motifs could be defined to detect general node classes in networks, but in general

our framework can be useful to any other method designed to detect substructure in

networks. Note that the extended quality functions, that we shall introduce, also obey

the principle of the resolution limit, which states that modularity will not be able to

resolve substructures beyond a certain size limit, just like the original modularity [10].

However this limit is now motif-dependent and then several resolution of substructures

can be achieved by changing the motif.

The rest of the paper is structured as follows: in the next section we present the

mathematical formalism of the generalized modularities; then, we test the framework

on synthetic and real networks; finally we discuss the results obtained.

2. Mathematical formulation of motif modularity

The original definition of modularity by Newman and Girvan [2] only deals with

unweighted and undirected networks. Later on, Newman generalized it to cope with

weighted networks [3]. In this work we start from an extension of modularity to weighted

directed networks [14], which reduces to the previous one for undirected networks, and

which is calculated as follows:

Q(C) =
1

2w

N
∑

i=1

N
∑

j=1

(

wij −
wout

i win
j

2w

)

δ(Ci, Cj) , (2.1)

where wij is the weight of the connection from the ith to the jth node, wout
i =

∑

j wij

and win
j =

∑

i wij stand for their output and input strengths respectively, 2w =
∑

ij wij

is the total strength of the network, Ci is the index of the community which node i

belongs to, and the Kronecker δ is 1 if nodes i and j are in the same community, 0



Motif-based communities in complex networks 4

otherwise. For undirected networks, wout
i = win

i ≡ wi, thus recovering the weighted

undirected definition of modularity in [3]. The larger the value of modularity, the better

the corresponding partition of the network into modules.

In the next subsections we develop the mathematical formulation of a motif

modularity which generalizes the standard one in (2.1). First, the most general

framework is explained, and then the formalism is applied to several classes of motifs.

2.1. General motif modularity

Let M = (VM, EM) be a motif (connected undirected graph, or weakly connected

directed graph), where VM is the set of M nodes of the motif, and EM ⊆ VM × VM is

the set of its edges.

Let {wij ≥ 0 | i, j = 1, . . . , N} be the weights of a (directed or undirected) network

of N nodes, where wij = 0 if there is no edge from the ith to the jth node, and

wij ∈ {0, 1} if the network is unweighted. The nodes of the motif will be labeled by the

indices i1, i2, . . . , iM , all of them running between 1 and N .

Given a certain partition C of an unweighted network in communities, the number

of motifs fully included within the communities is given by

ΨM(C) =
N
∑

i1=1

N
∑

i2=1

· · ·
N
∑

iM =1

∏

(a,b)∈EM

wiaib δ(Cia , Cib) . (2.2)

Degenerated motifs, i.e. those where some nodes are counted more than once, are

included in this sum. The formula also holds for weighted networks, which can be

inferred from the mapping between weighted networks and unweighted multigraphs [3].

The maximum value of ΨM(C) corresponds to the partition in a single community

containing all the nodes:

ΨM =
N
∑

i1=1

N
∑

i2=1

· · ·
N
∑

iM=1

∏

(a,b)∈EM

wiaib . (2.3)

For a random network preserving the nodes’ strengths, these quantities are

respectively

ΩM(C) =
N
∑

i1=1

N
∑

i2=1

· · ·
N
∑

iM=1

∏

(a,b)∈EM

wout
ia

win
ib

δ(Cia , Cib) (2.4)

and

ΩM =
N
∑

i1=1

N
∑

i2=1

· · ·
N
∑

iM =1

∏

(a,b)∈EM

wout
ia

win
ib

. (2.5)

Now, by analogy with the standard modularity, we define the motif modularity as

the fraction of motifs inside the communities minus the fraction in a random network

which preserves the nodes’ strengths:

QM(C) =
ΨM(C)

ΨM

−
ΩM(C)

ΩM

. (2.6)
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The introduction of nullcase weights nij , masked weights wij(C) and masked nullcase

weights nij(C),

nij = wout
i win

j , (2.7)

wij(C) = wijδ(Ci, Cj) , (2.8)

nij(C) = nijδ(Ci, Cj) , (2.9)

allows the simplification of the previous expressions, in particular motif modularity:

QM(C) =

∑

i1i2···iM

∏

(a,b)∈EM

wiaib(C)

∑

i1i2···iM

∏

(a,b)∈EM

wiaib

−

∑

i1i2···iM

∏

(a,b)∈EM

niaib(C)

∑

i1i2···iM

∏

(a,b)∈EM

niaib

. (2.10)

Motif modularity may be further generalized by relaxing the condition that all nodes

of the motif should be fully inside the modules. This is done just by removing some of

the maskings in (2.10) as required, and possibly with the addition of some Kronecker δ

functions between non-adjacent nodes of the motif. In this way, it is possible to define

classes of nodes different from communities, as we shall see in subsection 2.3.

2.2. Cycle modularity

Among the simplest possible motifs, triangles are the ones which have deserved more

attention in the networks literature. For instance, it has been shown that real networks

have higher clustering coefficients than expected in random networks [15]. Thus, it

would be desirable to be able to find “communities of triangles”. Our approach

consists in the definition of a triangle modularity Q△(C), based on the triangular motif

E△ = {(1, 2), (2, 3), (3, 1)}, which reads:

Q△(C) =

∑

ijk

wij(C)wjk(C)wki(C)

∑

ijk

wijwjkwki

−

∑

ijk

nij(C)njk(C)nki(C)

∑

ijk

nijnjknki

. (2.11)

Triangle modularity is trivially generalizable to cycles of length ℓ, making use of

the cyclical motif EC(ℓ) = {(1, 2), (2, 3), . . . , (ℓ−1, ℓ), (ℓ, 1)}. The number of these motifs

within the communities is given by

ΨC(ℓ)(C) =
∑

i1i2···iℓ

wi1i2(C)wi2i3(C) · · ·wiℓ−1iℓ(C)wiℓi1(C) . (2.12)

The full formula for the cycle modularity QC(ℓ)(C) follows immediately from it.

If the network is directed, other non-cyclical motifs exist. We skip them, since their

derivation is straightforward.

2.3. Path modularity

A path P(ℓ) of length ℓ is simply the linear motif EP(ℓ) = {(1, 2), (2, 3), . . . , (ℓ, ℓ + 1)}.

We remark that cycles are closed paths, but here we shall only consider open paths.
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The number of paths of length ℓ fully inside the communities is given by

ΨP(ℓ)(C) =
∑

i1i2···iℓ+1

wi1i2(C)wi2i3(C) · · ·wiℓiℓ+1
(C) . (2.13)

Note that this expression equals the sum of the components of the ℓth power of the

masked weight matrix.

The path of length ℓ = 1 corresponds to the simplest motif EP(1) = {(1, 2)}, which

is just a single edge, so its motif modularity (2.10) equals the standard definition of

modularity (2.1).

Paths of length 2 are also useful for the analysis of bipartite networks, provided

one removes the constraint that all nodes of the path belong to the same module. If

one allows that the middle node of a path of length 2 could be any node of the network,

whereas the first and third nodes are kept within the same group, the path can be used

to discover relationships between nodes of different groups. If a network is bipartite, for

instance, there will be many paths of length 2 starting from a class and returning to it

from the other class. If only the extremes of the path P̃(ℓ) are required to be inside the

community, their total number is given by

Ψ
P̃(ℓ)(C) =

∑

i1i2···iℓ+1

wi1i2wi2i3 · · ·wiℓiℓ+1
δ(Ci1, Ciℓ+1

) . (2.14)

In this case, the calculation makes use of the ℓth power of the weight matrix (instead of

the masked weight matrix), and the masking is applied to the sum of their components.

3. Examples and tests

When one is faced with the problem of community detection in a particular network,

the first thing to do should be to answer the following question: what sort of

connectivity patterns or motifs are pertinent in this study? According to the answer,

it is straightforward to select one of the possible motif modularities. We present in this

section examples of the application of the previous framework to two synthetic networks.

Finally, we perform two tests on real networks for which the real partitions observed are

known.

The synthetic networks that we have generated for this purpose are the clique &

circle network and the star network. In figure 1 we show these networks as well as the

classes found using different motif modularities. Suppose we want to find node classes

by means of triangles. When we optimize the triangle modularity for the clique & circle

network, the clique forms a community whereas the nodes of the circle are separated

into five singleton communities. This is due to the absence of triangles within the circle.

On the contrary, the standard modularity identifies the circle as a community.

The second example, the star network, is a case where the path motifs prove to be

useful. This network can be seen as a simple bipartite network with eight actors (the

leaf nodes) and just one event (the hub node). In this case, recalling what we have said

in the previous section, the path modularity of length 2 with a free intermediate node is

the proper motif modularity to use. The results confirm that the star is decomposed in
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Figure 1. Results for two synthetic networks: (a) Clique & circle network, with

triangle modularity; (b) Star network, with paths of size 2 modularity with free

intermediate node (see text for details). Members of the same class are depicted using

equal symbol and color.

two classes, one for the leaves and another for the hub. The same partition is obtained

for any even path length with free intermediate nodes, while for odd path lengths all

nodes are joined in a single community. This holds as well if one maximizes the standard

modularity; however, the correct partition of the network can be recovered by modularity

minimization.

The real networks used for testing are the Zachary Karate Club network [16] and the

Southern Women Event Participation network [17, 18]. A description of each network

can be found in their respective references. For the mathematical analysis presented

here the interesting fact regarding these networks is that we know the real splittings

occurred in the Zachary network, as well as the most plausible classification assigned in

the literature to the Women Event Participation data, as reported by Freeman [18]. In

figure 2 we show both networks as well as their respective partitions.

For the Zachary Karate Club network, the nature of the data suggests to try an

optimization of path modularities, since the decision of following any of the two leaders

during the splitting of the club surely depended on higher order friendship relationships

(friends of friends, and so on). When a path modularity of length 1 is considered (i.e. the

classical definition of modularity), the best partition obtained splits each one of the two

real communities into two sub-communities, yielding a partition in four communities.

But when one looks for a more compact structure of the communities, which can be

accomplished by increasing the length of the paths, the optimization of path modularity

delivers the real splitting observed, for all path lengths we have used (from 2 to 6). The

same result is obtained when the paths are replaced by cycles (lengths from 4 to 9).

Triangles give almost the exact partition, but with two exceptions: nodes 10 and 12

become isolated, because they do not belong to any triangle.
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Figure 2. Results for two real networks: (a) Zachary Karate Club network. We

depict the real splitting obtained when using several path and cycle modularities; (b)

Southern Women Event Participation network. We depict the results of the analysis

of this multipartite network without any projection, simply applying modularity of

path free intermediate of length 2. Remarkably the results show clearly the role

differentiation of women and events, as well as the splitting of women according to

the events participation that has been reported in the literature.

The second network tested is a multipartite network. In this case, as well as for

the star network, the use of path modularity of length 2 with a free intermediate node

is crucial, and it accounts for the role differentiation between women and events. The

results not only reveal the two roles of events and women, but also recover their internal

split according to their participation in events, a classification made by social scientists

[18] (with the same exception of one woman, as in the weighted projection and bipartite

methods in [12]). In this case, the minimization of standard modularity is only able to

separate women and events, with no further subdivision.

4. Conclusions

In this work we have shown that a general classification of node groups in networks is

possible if one uses motifs as elementary units, instead of simple edges. To show that,

we generalized Newman-Girvan modularity by replacing edges with motifs. The new
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versions of modularity obtained have been tested on synthetic and real networks, and are

able to recover expected connectivity patterns in networks, both when the networks have

modular structure and when they have multipartite structure. However, the principle

goes beyond the use of modularity and could inspire promising alternative frameworks.
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[14] Arenas A, Duch J, Fernández A and Gómez S 2007 Size reduction of complex networks preserving

modularity New J. Phys. 9 176

[15] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Network Motifs:

Simple Building Blocks of Complex Networks Science 298 824

[16] Zachary W W 1977 An information flow model for conflict and fission in small groups J. Anthr.

Res. 33 452

[17] Davis A, Gardner B B and Gardner M R 1941 Deep South (Chicago: The University of Chicago

Press)

[18] Freeman L 2003 Finding Social Groups: A Meta-Analysis of the Southern Women Data Dynamic



Motif-based communities in complex networks 10

Social Network Modeling Analysis: Workshop Summary and Papers ed R Breiger, K Carley and

P Pattison (Washington DC: The National Academies Press) p 39


