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Abstract

We study evolutionary game dynamics on structured populations in which individuals take part in several

layers of networks of interactions simultaneously. This multiplex of interdependent networks accounts for

the different kind of social ties each individual has. By coupling the evolutionary dynamics of a Prisoner’s

Dilemma game in each of the networks, we show that the resilience of cooperative behaviors for extremely

large values of the temptation to defect is enhanced by the multiplex structure. Furthermore, this resilience

is intrinsically related to a non-trivial organization of cooperation across the network layers, thus providing

a new way out for cooperation to survive in structured populations.
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The understanding of the emergence of cooperative behavior in human and animal societies

[1, 2] as well as in other contexts (e.g., the formation of multicellular organisms or their organs

[3]) is a major challenge in science. Interdisciplinary physicists have paid attention to this problem

because of the underlying nonlinear and stochastic nature of the interactions among the entities

involved [4–6]. The mathematical setting that has led to many deep insights about this problem is

evolutionary game theory [7–9], that allows to formulate in quantitative terms the most important

prototypical social interactions, such as conflicts and/or dilemmas [10]. Scientists have unraveled

that a key issue to ascertain the evolution of cooperation is the network of relationships [11–13]

among the intervening agents. This drive us to evolutionary game theory on graphs, one of the most

intriguing dynamical processes on networks and one that is currently receiving a lot of attention

[14–21].

As network science evolves [22–25], new questions about the capital problem of the emergence

of cooperation arise. The empirical resolution of the structure and time evolution of social ties has

been simultaneously improved. These advances has been largely facilitated by the explosion of

data about mobile communication [28, 29], web-based social platforms [26, 27] and even the

monitoring of face-to-face human interactions [30, 31]. Thus, although the network perspective

has offered a novel way out for cooperation to survive in social systems [32–35], the latter advances

on the characterization of social systems demand more work to unveil the influence that social

patterns have on the evolution of cooperation. Particularly important in the description of social

systems are those structures that account for multiple types of links and time-evolution of links,

commonly known as multiplex [36–38].

Social systems are shown as a superposition or projection of a number of interdependent com-

plex social networks, where nodes represent individuals and links account for different kind of

social ties such as those stablished with family relatives, friends, work collaborators, etc. In our

daily life we experience this social splitting by distinguishing our behavior within each of the so-

cial layers we belong to. However, the influence that the multiplex nature of social interactions

has on the evolution of cooperation is still an open question, being recently tackled [39] within

a framework consisting in two coupled networks. Besides, on more general grounds, it has been

recently shown that the interdependent structure can influence dramatically the functioning of

complex systems in the context of percolation [40–44] and cascade failures [41, 45]. Thus, it is

necessary to study how the interplay among such multiple interdependent social networks affects

the onset of large scale human behavior, in particular the emergence of cooperation in multiplexes.
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In this report, we address the problem of the emergence of cooperation in multiplexes. We

will use tools of complex networks and evolutionary game theory to shed light on the emergence

of cooperation in populations of individuals participating simultaneously in several networks in

which a Prisoner’s Dilemma game is played. Our results show that a mutiplex structure enhances

the resilience of cooperation to defection. Moreover, we show that this latter enhancement relies

on a nontrivial organization of the cooperative behavior across the network layers.

Let us first describe the multiplex backbone in which the evolutionary game is implemented.

We consider a set of m interdependent networks each of them containing the same number N

nodes and L links. Each individual is represented by one node in each of the m networks layers

while its neighbors are (in principle) different for each of the layers (see Fig. 1). In this way we

define a set of m adjacency matrices {Al} (with l = 1, ...,m) so that Al
ij = 1 when individuals i

and j are connected within network l whereas Al
ij = 0 otherwise. Thus, a given individual, say i,

is connected to kli =
∑

j A
l
ij other individuals within network layer l. In our case we will consider

that each of the layers is an Erdös-Rényi (ER) random graph characterized by an average degree

〈k〉 = 2L/N . In this way, the probability that an individual is connected to k individual in a given

layer is given by the Poisson distribution: P (k) = 〈k〉k exp(−k)/k!.

Having introduced the multiplex composed by the set of m interdependent networks we now

focus on the formulation of the evolutionary dynamics. Each of the individuals, say i, adopts a

given strategy sli(t) for playing with its neighbors in network l at time step t. This strategy can be

cooperation [sli(t) = 1] or defection [sli(t) = 0]. Then, at each time step, each individual plays

a Prisoner’s Dilemma (PD) game with its neighbors in network l. For each of the kli PD games

played within network layer l an individual i facing a cooperator neighbor will collect a payoff

1 or b > 1 when playing as cooperator or as defector respectively. On the contrary if i faces a

defector it will not collect any payoff regardless of its strategy. This is the weak version of the

PD game which makes use of a single parameter b accounting for the temptation of playing as

defector. After round t of the PD game, an individual has played once with its kli neighbors in

layer l thus collecting an overall payoff pli(t). Obviously, the net payoff of a player i is the sum of

all the payoffs collected in each of the m network layers, Pi(t) =
∑

l p
l
i, achieved by using a set

of strategies {sli(t)}.

Once the PD is played, all the players update their strategies simultaneously, i.e., we consider

synchronous updates. The update process makes use of the replicator-like rule that works as

follows. Each of the players, say i, chooses a layer, say l, at random among the m possible
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networks and a neighbor j (also randomly) among its kli acquaintances. Then it compares their

total payoffs, Pi(t) and Pj(t), obtained in the last round of the game. If Pi(t) > Pj(t) nothing

happens and i will use the same strategy within the network layer l in the next round of the PD

game, si(t+ 1) = si(t). However, when Pj(t) > Pi(t) agent i will take the strategy of j at layer l

with a probability proportional to their payoff difference:

Πl
i→j(t) =

Pj(t)− Pi(t)

bmax(Ki, Kj)
, (1)

where Ki =
∑

l k
l
i. Note that the update process entangles the evolutionary dynamics of the net-

work layers as the choice of what strategy will be used in a given layer during the next round

of the game depends on the overall payoffs, not only on the payoffs obtained in the particular

layer. Although other entanglements are also possible to make the evolutionary dynamics of the

m networks interdependent, the one used in this work relies on the social nature of layers’ inter-

dependency. While two neighbors within a given layer know the strategies used by each other in

the layer, they are unaware of their opponent’s strategies in the remaining networks, so they have

to assume that the total benefit or success achieved by their layer’s acquaintances is the outcome

of using the observed strategy in each of the m networks of the multiplex.

Following the above evolutionary rules we let evolve the states of each individual in each of the

layers and compute the instantaneous level of cooperation cl(t) in each layer l and in the whole

multiplex c(t) as:

c(t) =
1

m

m∑
l=1

cl(t) =
1

m ·N

m∑
l=1

N∑
i=1

sli(t) . (2)

RESULTS

In Fig. 2 we plot the average fraction of cooperators 〈c〉 (see Methods) versus b for different

values of the numberm of layers and two values of the layers’ average degree 〈k〉 = 3 and 20. Note

that the case m = 1 corresponds to the absence of layers’ interdependency. While for low values

of the temptation b the average level of cooperation on the multiplex decreases with the number

m of layers, it increases with m for higher values of b, so that the decrease of cooperation with b

becomes progressively slower as the number of layers in the multiplex increases. Importantly, the

resilience of cooperation observed for large values of the temptation to defect is not restricted to

the weak version of the PD game; we have checked that our results qualitatively remain unaltered
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when two defectors playing get a positive payoff, i.e., when defection is a strict best response to

itself.

The possibility that agents adopt different strategies in different layers is crucial for the re-

silience of cooperation in multiplexes, as revealed in Fig. 3, where we show the average cooper-

ation level achieved in the multiplex when agents use homogeneous strategies (sli independent of

l), i.e., the same strategy in the m layers. Indeed, for homogeneous strategists’ populations the

cooperation decays dramatically with b, the faster the larger the value of m. This can be easily

understood as follows: The situation when agents use homogeneous strategies is equivalent to

consider the standard evolutionary game dynamics on a network whose set of links is the union of

the set of layer’s links (with weights assigned to them whenever two agents are neighbors in more

than one layer in the multiplex). This network has (approximately) an average degree of m〈k〉,

which for large values of m approaches a well-mixed population, where cooperation extinguishes

quickly.

The survival of cooperation in multiplexes is supported by the network structure inside the

multiplex layers, i.e. on network reciprocity [46]. One can easily prove that if the layers are

assumed to be well-mixed (fully connected), then the only surviving strategy of the evolutionary

dynamics is to defect in all the layers. To characterize the degree of heterogeneity of the surviving

strategies on the multiplex, let us consider the fraction xi(t) of layers where agent i plays as a

cooperator at time t:

xi(t) =
1

m

m∑
l=1

sli(t) , (3)

that, after averaging over the observation time interval T (see above) defines the variable x, whose

probability density P (x) as a function of b is shown in Fig. 4. One should remark that P (x)

exhibits a well defined maximum for each value of b, along with a relatively small width around

it. In other words, for each value of b there is a truly characteristic value of the fraction x of layers

where a randomly chosen agent behaves cooperatively. On the contrary, the layer’s cooperation

level c̄l possess a rather wide distribution density, as shown in Fig 5. In a given multiplex realiza-

tion, and for a given value of the temptation parameter b, layers with quite dispersed cooperation

levels coexist, so that there is no truly characteristic value for the layer’s cooperation. In other

words, the cooperative components [whose number is typically m · xmax, where xmax is the loca-

tion of the maximum of P (x)] of the agents’ set of strategies {sli(t)} are not uniformly distributed

on the multiplex layers.
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The above findings suggest the failure of ”mean-field-like” theoretical explanations of the ob-

served behavior based on the absence of correlations. As an example, consider a layer l, and let us

assume that the payoff an agent receives from the games played on the rest of layers is normally

distributed according to the hypothesis that it has 〈k〉 neighbors on each layer and that agents use

the cooperative strategy in each layer with a probability x, independently of each other. One can

compute easily the mean and the variance of this payoff distribution, as a function of x, m and b

(see Methods). For self-consistency, one can assign to x the value cl(t) of the instantaneous co-

operation in the considered layer, and then proceed to run the evolutionary game dynamics on the

layer with payoffs given by the sum of the payoff obtained in the layer plus a payoff taken from

this ”mean-field-like” distribution. The results obtained from this approach are shown in Fig. 3.

The only feature of the behavior observed in the multiplex that seems to be slightly captured, but

only qualitatively, by this approach is the tendency when m increases to the decrease of cooper-

ation for low values of b, and its increase for high values of b. The building up of correlations in

the distribution over the multiplex layers of the fraction of cooperative strategies appears to be an

essential ingredient for the observed enhancement of cooperation in multiplexes.

DISCUSSION

Summing up, we have incorporated the multiplex character of social interactions into the for-

mulation of evolutionary games in structured populations. By considering a Prisoner’s Dilemma

game we have shown that cooperation is able to resist under extremely adverse conditions, for

which the usual simplex formulation, i.e. the network approach, fails. In a nutshell, the addition

of network layers has two effects. On one hand the level of cooperation for low values of the

temptation to defect appears to decrease. However, the enhancement of the cooperation resilience

shows up when temptation is further increased. It is in the region of large temptation when the

interdependency of network layers outperform, regarding the average level of cooperation, the be-

havior found in simplex networks reaching values of b > 3 for which even scale-free networks fail

to sustain cooperation [34, 35].

The observed resilience of multiplex networks is sustained in the segregation of cooperative and

defective strategies across the multiple network layers contained in the multiplex. Moreover, we

have shown that this segregation is non-trivial by comparing with mean-field approaches producing

no cooperation. Thus, our results point out a complementary mechanism to the so-called network
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reciprocity, paving the way to the study of more complex and realistic multiplex architectures and

alternative dynamical couplings between the networks embedded in them. Let us note, that we

have made use of network layers with a regular (Erdös-Rényi) topology in order to avoid spurious

effects, such as the degree heterogeneity, that may contribute to the enhancement of cooperation.

However, the study of multiplex topologies incorporating the interdependency of scale-free layers

seems a promising continuation of the results presented here.
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METHODS

Numerical and Statistical details of the simulations

In our simulations we start from a configuration in which a player i in layer l cooperates or

defects with equal probability. Then, we run the evolutionary dynamics for a transient time t0 of

typically t0 = 2 × 104 generations. After this transient period we further iterate the evolutionary

dynamics over a time interval T of typically 105 generations. It is during this latter window when

we compute the quantities of interest such as the average cooperation level in a given layer l, c̄l

(l = 1, ...,m):

c̄l =
1

N · T

t0+T∑
t=t0

N∑
i=1

sli(t) , (4)

or the average cooperation in the whole multiplex c̄:

c̄ =
1

m

m∑
l=1

c̄l , (5)

The values shown in each plot represent the average of the above quantities over a number of

realizations, typically 50. After this latter average we obtain the final average level of cooperation

〈c〉 for each value of the temptation parameter b.

Mean-field calculation

The mean-field assumption for the coupling of layers assumes that there is no correlation be-

tween the strategies used by an individual in each of the m layers. To this aim, we consider a

network (single layer) in which an individual plays a PD game with his neighbors receiving a pay-

off. In addition we add to this latter payoff a quantity mimicking the payoff obtained in the rest of

(m − 1) layers. This additional payoff is randomly assigned after each round of the game from a

normal distribution whose precise form depends on the number of cooperators in the system.

To compute the mean and variance of the normal distribution at work, we first consider that

all the nodes in the network are connected to 〈k〉 neighbors in each of the network layers. In

this way, the possible payoffs of a given individual i in one of the network layers l are pli =

{0, 1, 2, ..., 〈k〉, b, 2b, ..., 〈k〉b}. Considering now that players use the cooperative strategy in each

layer with probability x, independently of each other, and that the multiplex is composed of m

network layers we can assign compute the probability q(pli) that player i obtain a payoff pli in layer
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l. In our case, we fix 〈k〉 = 3 so that there are 7 possible payoffs whose probabilities read:

q(P1 = 0) = x(1− x)3 + (1− x)4 ,

q(P2 = 1) = 3(x)2(1− x)2 ,

q(P3 = 2) = 3(x)3(1− x) ,

q(P4 = 3) = (x)4 ,

q(P5 = b) = 3(x)(1− x)3 ,

q(P6 = 2b) = 3(x)2(1− x)2 ,

q(P7 = 3b) = (x)3(1− x) .

With these expressions one can easily compute the expected value for the payoff obtained by an

individual i in a layer l given the value of x as:

p̄li =
7∑

j=1

q(Pj)Pj = 3x[b(1− x) + x] , (6)

while the variance of the above expected value reads:

σ2 =
7∑

j=1

q(Pj)P
2
j − P̄j

2
= 3x{(1 + 2x)[b2(1− x) + x]− 3x[b(1− x) + x]2} . (7)

Given the values of x and b, equations (6) and (7) allow us to compute the normal distribution and

assign the additional payoofs a player receives from the other (m−1) layers. For self-consistency,

at each time step, the value of x is re-computed from the fraction of cooperators in the system, i.e.

cl(t), in the considered layer.
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FIG. 1. Schematic representation of a multiplex network. The multiplex is made of N = 5 nodes

embedded within m = 3 interdependent networks (or layers) each one containing L = 3 links.

FIG. 2. Cooperation diagrams of multinetworks. Average level of cooperation 〈c〉 as a function of the

temptation to defect b for several multinetworks with different number of layers m. In panel A the network

layers are ER graphs with 〈k〉 = 3 (sparse graphs) while in panel B we have 〈k〉 = 20. In both cases

N = 250 nodes. As can be observed, the resilience of cooperation increases remarkably as the number of

layers m grows. Finally, panel C shows the curves 〈c〉(b) for ER graphs with 〈k〉 = 3 (as in panel A) for

m = 2 and m = 10 and different network sizes N = 100, 200 and 400.

FIG. 3. Comparison with the cooperation diagrams of null models. Average degree of cooperation

〈c〉 as a function of b (solid line with filled circles) for m = 3 (A), 6 (B), 10 (C) and 20 (D). In each

panel we show the case of a simplex (m = 1) network, the evolution 〈c〉(b) for homogeneous strategists’

populations corresponding to each value of m (Homo.) and the curve 〈c〉(b) corresponding to the mean-field

assumption for the coupling between layers (M.F.). Each multiplex network has N = 250 nodes while the

interdependent layers are ER graphs with 〈k〉 = 3.

FIG. 4. Evolution of the degree of cooperation of individuals across layers. Each contour plot shows the

evolution of the probability P (x) of finding an individual playing as cooperator in a fraction x of the network

layers as b increases. In A m = 15 while for B m = 20. In both cases the networks have N = 250 nodes

while each layer is an ER graph with 〈k〉 = 3. Observe that the resilience of cooperation is intrinsically due

to the fact that individuals play different strategies across the different layers (no homogeneous strategists

appear until defection dominates at very high values of b). For each value of b there is a well defined

maximum for P (x).

FIG. 5. Histograms of layers’ cooperation level. The panels show the probability of finding a level of

cooperation cl in a randomly chosen layer of the multiplex. The results are obtained from a multiplex of

m = 20 layers and four different values of the temptation parameter b = 1.0, 1.2, 1.4, and 1.6 from panels

A to D. 50 realizations of the multiplex were employed.
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