Moving Average Frequency Reduction for Low Power in Hard Real Time
Systems

M.Angels Moncusi, Alex Arenas
{amoncusi,aarenas}(@etse.urv.es
Dpt d'Enginyeria Informatica i Matematiques
Universitat Rovira i Virgili
Campus Sescelades, Av dels Paisos Catalans, 26
43007 Tarragona, Spain

Abstract

We present a new policy to improve power saving in
hard real time systems guarantying all tasks deadlines
based on a moving average frequency reduction. Our
study focus on the improvement obtained using this policy
on the low power dual priority scheduling algorithm [3].
The resulting modified algorithm uses the total workload,
the task execution history and the breakdown utilization to
estimate the average minimum frequency of the processor
to accomplish maximal energy reduction while meeting
deadlines. The moving average strategy has been
proposed to estimate the empirical execution time beyond
the WCET, then updating the processor frequency for
every task accordingly. We have performed extensive
simulations that show a considerable enhancement in
energy saving compared to original low power dual
priority scheduling algorithm.

Keywords: Static priorities, power aware scheduling, Dynamic
Voltage Scaling, Worst Case Execution Time.

1. Introduction

The energy consumption in portable and hard real time
systems is a fundamental problem in the design of modern
computational devices [1]. A lot of efforts have been made
during the last decade to minimize this drawback, but the
high performance of modern microprocessors and micro-
controllers jointly with the increasing functionality of them
obtained via software still require improvements in the
power-efficiency context.

The dynamic power consumption in CMOS circuits is
given by the equation P = p, C, Vpp’ f, where P is the
power consumption, p, is the probability of switching in
power transition, C; is the load capacitance, Vpp is the
voltage supply and f is the operating clock frequency.
Since the power has a quadratic dependency on the supply
voltage, it is always energetically favorable scaling the
voltage supply down. If the processor uses the voltage
scaling technique to scale frequency, the relation between
power and frequency is given by P(f) < C; Vo’ f=k f3
[2-4]. The main techniques that take advantage of this non-

‘This research is supported by MCYT project number TIN2004-07739-C02-01

Jesus Labarta
Jjesus@ac.upc.es
Dpt d’Arquitectura de Computadors
Universitat Politécnica de Catalunya
Jordi Girona, 1-3. D6 Campus Nord
08034 Barcelona, Spain

linear dependence are: Clustering Voltage Scaling and
Dynamic Voltage Scaling (CVS and DVS) [5-6] Its
functioning is based on the reduction of the voltage supply
along with the processor frequency, and have been
successfully used in many applications.

In hard real time systems these techniques could affect
adversely the system performance, because time
restrictions are critical. Nevertheless, the DVS technique is
used in hard real time systems via power aware scheduling
algorithms that determine the operating frequency of the
processor that guarantees all real-time constraints while
minimizing the energy consumption. Generally speaking,
the scheduling algorithms reduce the voltage supply along
with the processor operating frequency whenever the full
system performance is not necessary and the tasks
deadlines are not going to be compromised. Basically,
these power aware schedulers use the idle time intervals to
slow down the processor, executing tasks at reduced
operating frequency.

To calculate the abovementioned reduction of the
operating frequency, there are mainly two different
approaches: static and dynamic [4,6-10]. In the static
approach, the frequency is calculated off-line, before
runtime, for each task independently. Once the execution
starts the frequency could be readjusted on-line depending
on the dynamic slack that has been generated — i.e. part of
the worst case execution time not consumed. In the
dynamic approach, the operating frequency is calculated
on-line, just before running each task, once the scheduler
knows exactly what the history about the previous executed
tasks have been and when the rest of tasks will arrive
[4,8,10].

We will focus our attention on the dynamic approach.
In this approach, whenever it exist more than one task in
the system, the operating frequency reduction could be
performed following at least three general policies:

= Executing ready tasks at the maximum processor
operating frequency, and reducing the operating
frequency only to execute the last task in the system.
This conservative approach cannot use the idle time

that could appear if the last task does not consume all
its WCET because there is no task ready to be
executed. The Cycle-conservative RT-DVS [8], the
dynamic Reclaiming algorithm [10] and the Low
Power Fixed Priority algorithm [11] uses a similar
policy. See the sketch a) in Figure 1.

= Executing the first task at reduced speed and the
following tasks at maximum operating frequency, this
is a greedy approach. The first task executed uses the
maximum possible idle time to reduce the clock
operating frequency while the rest of tasks have to be
executed necessarily at the maximum operating
frequency. The advantage of this policy is that if a task
does not consume all its WCET, the following task
can use this time and then its operating frequency can
be reduced. The Look-Ahead RT-DVS [8], the
Aggressive Speed Reduction [10] and the Power Low
Modified Scheduling Algorithm [3,12] uses a similar
policy. See the sketch b) in Figure 1.

= Executing all ready tasks at some reduced operating
frequencies whenever is possible. This scheme is
similar to the static calculation of the operating
frequency. Within this scheme all tasks execute at
reduced operating frequency, trying to avoid any task
execution at maximum operating frequency. In this
case if the tasks finishes earlier, the slack generated
can be used to reduce the operating frequency of the
next task. See the sketch c¢) in Figure 1.

In this paper, we expose how to implement a dynamic
approximation to the last policy in a dual priority scheme.

To motivate our work, based on the execution of tasks
at a certain average frequency, let us compare the
differences in energy saving obtained using the three
aforementioned policies in a toy model. Let us assume a
task set formed by two tasks, fask; and task,, with a period
and deadline of 100 time units, and a WCET of 30 time
units each. Their execution is sketched in Figure 1.

Depending on the different operating frequencies at
which the tasks represented in Figure 1 are executed, the
total energy consumption values are: a) E=3.52, b) E=3.52
and finally in c¢) E=2.16. Note that, in the latest policy,
both tasks execute at a certain average operating frequency
that shows to be clearly energetically favorable. This
efficiency relies on the fact that the maximum operating
frequency has been avoided, and because the relation
between energy consumption and operating frequency is
quadratic.

Note that the value for the average frequency used in
Figure lc corresponds exactly to the processor utilization
percentage, in our case 60%, and this indicates a strong
relationship between them. A similar approach considering
the frequency reduction as a function of the processor
utilization has been used in [9,10] for the Earliest Deadline
First scheduling (EDF).

The rest of the paper is structured as follows: in section
2 we set the framework of the system, in section 3 we
present a simple example of efficient reduction for Rate
Monotonic scheduling. In section 4, we expose the
modifications in the low power dual priority algorithm. In
section 5, we compare the efficiency of the described
policy with two energy aware scheduling algorithms.
Finally in section 6 we present the conclusions of the
current work.

: task | task)
21
=
£ 05 e
£
- 0 20 40 60 80 100
Time
21
g 0.5 e e Case b)
=3 Py
20 &
] 0 20 40_l_ 60 80 100
21
=
505 Case ¢)
o
2l
] 0 20 40T 60 80 100

Figure 1: Three possible policies for tasks execution at different
operating frequencies: a) task; is executed at the maximum
operating frequency, and task; is executed at 0.42 of the maximum
operating frequency; b) task; is executed at 0.42 and task, executes
at the maximum operating frequency; c) the execution of both tasks
is at 0.6 of the maximum operating frequency.

2. Framework

We consider task sets consisting on n independent
periodic tasks, T;...T,, each task T; characterized by a 3-
tuple (C;,T,D;), where C; is the worst case execution time
of ;. For each task instance the execution time varies from
0.1*C; to C;. T; stands for its period (or minimum inter-
arrival time), and D; is its relative deadline. The tasks sets
are scheduled using a fixed priority pre-emptive algorithm
in a multi-operating frequency processor.

The computation time overhead for context switching
and for the scheduler are assumed to be negligible. The
extent to which these assumptions are realistic is discussed
in the analysis of the algorithm given in [13] and it turns
out to be practical if the switch is subsumed to the worst-
case execution times of the different tasks. We also assume
that the voltage scaling overhead is negligible; the safeness
of the system under these conditions is proved on theorem
1 of the work by Shin and Choi [11]. When the processor
is powered down we consider zero energy consumption.
Note that we also are assuming that the energy
consumption is minimized whenever the supply voltage is
scaled down. A recent work of Miyoshi et al. [14] has
pointed out that there exists some practical processors with
energy-inefficient operating frequencies for which this
hypothesis does not hold, in these cases the current
approach should be correctly to avoid entering the range of
non-operative frequencies.

The whole system will be characterized by the
processor utilization (U) and the breakdown utilization
(BU) [15,16]. The Processor Utilization (U) is defined as

7 C; (1)
U=§E

and the BU is defined as the fraction of the utilization
factor that marks the border for a system to be schedulable.
To calculate BU, each execution time C; in a given task set
is multiplied by a constant scaling factor o, while the
periods remain fixed. The task set is scaled to the point at
which it is just schedulable, such that any increment of o
would cause at least one task to miss its deadline. The
utilization of the task set at that point, ¥; (aC/T;) is the BU
[16]. This scaling factor affects schedulability the same
way the operating frequency reduction affects, then the BU
should be considered as a lower bound to the static
operating frequency reduction.

3. Average frequency reduction policy

Suppose that we have a system with only one task
whose period and deadline is set to 100 time units and
whose WCET is set to 60 time units. The processor
utilization is 60%, the hyper-period is 100 and the
Breakdown Utilization is 100 %, that is, we can scale the
task set up to a real utilization of 100% (i.e. no idle time).
In this simple situation, the execution frequency should be
set exactly to 0.6 of the maximum processor frequency
corresponding to 60(workload)/100(time units). Note that
in this case the frequency reduction is optimal, i.e. a
reduction below 0.6 makes the system not to meet the
deadlines and a reduction over 0.6 will imply larger energy
consumption.

Let us now consider an heterogeneous task set (see
Table 1). The system is characterized by U=80% and
BU=88%. If the scheduler extrapolates the average
frequency policy presented before, the estimated frequency
turns out to be 0.8. Using this frequency, the WCRTs
(Worst Case Response Time) of tasks are 3.75, 26.25 and
63.75 respectively, and therefore Task; misses its deadline.
This simple example shows that this frequency reduction is
not feasible due to the real time constraints. A more
accurate estimation of the average frequency in this case
should take into account that the spanning time of tasks in
a Fixed Priority system is constrained by the BU to 88%,
then the appropriate frequency should be represented by
the ratio U/BU. Using this ratio, the frequency reduction is
0.91 and the WCRTSs of tasks are 3.34, 23.36 and 59.4
respectively, consequently all deadlines are meet.

Period | Deadline WCET | WCRT
Task; 10 10 3 3
Task, 40 40 12 18
Task; 60 60 12 33

Table 1: Characteristics of the task set.

The determination of the average frequency reduction
in a more general situation where there are N tasks in the
system competing for real time execution is far more
complicated. In this scenario, the tasks priorities as well as
the constraints imposed by the deadlines increase the
complexity of the optimization problem. An off-line
optimization algorithm will not provide the correct values
due to the dynamic interferences that take place on-line,
and on the other hand an optimization algorithm on-line
will require as much computational resources as the real
time system itself.

Our idea in this general case is to use the ratio U/BU
as an estimation of the average frequency. To show the
reliability of this estimation, we analyze the behavior of
Rate Monotonic scheduling using an average frequency
reduction policy.

In Figure 2, we present the results of the average
operating frequency for different Us and BUs. Symbols
represent the empirical frequency we found via simulation
(we simulate the execution of all tasks sets reducing
progressively the processor operating frequency from the
maximum to the minimum, to all tasks in each task set. We
stop when one deadline is missed), while the lines
represent the theoretical estimation of this frequency using
the ratio U/BU.

1
¥
- + .
095] - R .« *°
oy e o« x X
€ 094 + .
g e o XX N
goss| o xx X X
-~ x x x X *
© 08 x X% P
2 o XXX P
3 075 - VeSS R
& PSS & R
= 0654 == . o
P *
06 3
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86
Breakdown utilization

Figure 2: Lowest feasible frequency vs breakdown utilization for
4000 random task-sets with 8 independents task characterized by
non-harmonics periods. Different symbols correspond to processor
utilizations ranging from 60% to 95%. Lines represent the
theoretical estimation based on the ration U/BU.

We also checked the effect of variability in number of
periodic tasks, the harmonicity of the periods and the
processor utilizations. In particular we have simulated a
number of independent periodic tasks varying from 8§ to 16
for both harmonic and non-harmonic periods. The results
do not differ from those presented in Figure 2.

4. The Enhanced Power Low Dual Priority

The benefits in energy saving obtained in the Rate
Monotonic Algorithm by applying the average operating
frequency policy can be generalized to other fixed priority
pre-emptive scheduling algorithms.

In particular, we are interested into extend these results
to the Power Low Modified Dual Priority Scheduling
algorithm (based on the Dual Priority scheduling [13])
because its adequacy to manage power saving in more

complex scenarios that could include aperiodic requests
and because its performance has been contrasted against
other fixed priority algorithms [11]. The original Power
Low Dual Priority Scheduling algorithm (PLMDP) [12]
guarantees to meet the temporal constraints and a
significant energy consumption reduction.

Based on the results obtained for the RMA we propose
the use of a balanced operating frequency reduction policy
that gives to all ready tasks the opportunity to reduce its
execution operating frequency. The balance is intended to
provide an average operating frequency according to U/BU
and it is controlled dynamically. Qualitatively the idea
work as follows: If a task should execute at a certain
operating frequency higher than the estimated average to
meet its deadline, then the following tasks try to execute at
an operating frequency lower than the estimated average to
compensate the global effect in the system. Then our
algorithm is designed to achieve an average operating
frequency according to the ratio U/BU while meeting
deadlines. BU is statically calculated off-line.

The PLMDP defines three levels of priorities that are
organized as follows, the highest level, or upper run queue
(URQ) is for tasks that can no longer be delayed by less
priority tasks otherwise they cold miss their deadlines. The
lowest level, or lower run queue (LRQ) occupied by those
periodic tasks whose execution time can still be delayed
without compromising their deadlines. At the beginning of
each hyper-period the remaining processor utilization
(W, is set to the total workload of the task set = U.

The scheduling algorithm is driven by the following
events:

1. Promotion time instant (7p;) [12] The moment at
which the task is promoted from the LRQ to the URQ.
At this moment the task can pre-empt a lower priority
task currently in execution. At this time instant, W,,,, is
updated according to its real use, it is decremented by
the consumed time of the pre-empted task.

2. Activation time (7a;). The task is queued in the LRQ
sorted by its promotion time instant. At this moment
this task can pre-empt a lower priority periodic task
currently in execution, and W,,,, is updated.

3. Task finalization time. At this time instant, W,,, is
decremented by the consumed time plus the spare time
of this task. After that, the highest priority task from
the highest non-empty priority level (i.e. URQ or
LRQ, in this order) is selected for execution.

In the new algorithm Enhanced Power Low Dual-
Priority EPLDP, the processor operating frequency is
individually calculated for each task, once the scheduler
decides which task must be executed (Figure 3). The
algorithm reduces the operating frequency at the maximum
value between the frequency estimated by the original
PLMDP, and the ratio between the processor utilization
and the breakdown utilization: U,,/BU. This operating
frequency is the lowest frequency that assures that no

deadline will be missed'. Before calculating the operating
frequency U,., is updated to the ratio between the
workload that remains to be executed and the remaining
time to arrive to the end of the hyperperiod.

Vv :[W yom j @)

hyperperiod —tc

Summarizing, the resulting algorithm (EPLDP) works
as follows:

// Tp is the promoted time; Td is the deadline time; te is the current time
// % is the active task; Tk is the next promoted task

// Urem is the remaining utilization = U — executed workload

L1 ifnot empty (URQ) then

L2 Active Task (1i)= URQ.head;

L3 if URQ.head.next = NIL

L4 Frequency= ma{ min(Tpy, —tc,remaining ;) , U, em J
min(Tpy , Td;)—tc BU
Ls else
L6 Frequency = MAX FREQ;
L7 endif
L8 else
L9 if not empty (LRQ) then
L10 Active task (t;)= LRQ.head;
L11 if Tpx < Tpi then
L12 Uyem
Frequency= [WJ
L13 else
L14 Frequency=max [min(Tpk —1Ip;,remaining ,)MJ
min(Tpy,Td;)—tc BU
L15 endif
L16 else
L17 Set timer to (next Ta; - wake up delay);
L18 Enter power-down mode;
L19 endif
L20 endif
L21 endif

L22 execute Active Task (1;) at calculated operating frequency;

Figure 3: Enhanced Power Low Dual-Priority (EPLDP) Scheduling.

1. If there is not any ready task in the system we set the
timer to the next arriving task minus the wake up
delay, and power down the processor.

2. If there is more than one task in the URQ then it must
be executed at the maximum operating frequency.

3. If there is only one task in the URQ then it can be
executed at low frequency:

min(Tpy,Td;)—tc " BU

where Tp, is the promotion time instant of any task in
the system excluding the current executing task,
remaining; is the non-executed worst execution time of
the current task, 7d; is the deadline of the current task,

Ty, e, remaining ; (3)
Frequency = max [mm(Tpk te,remaining ;) U yom j

! The feasibility of our algorithm is achieved whenever the Dual
Priority Algorithm is feasible [13] because our algorithm always
uses the Dual Priority schedule as a lower bound for feasibility.

and finally zc is the current time. The desired operating
frequency is based on the remaining workload, the
remaining time to the hyper-period, and the BU.

4. If there is not any task in the URQ but there are some
tasks in the LRQ then we can execute at the average
operating frequency U,,/BU.

At practice only certain discrete values of the frequency
of the clock, and then speed, are attainable depending on
the accuracy of the tuning, in this case the frequency
selected should be a frequency equal or larger than the
frequency obtained by the calculations to ensure time
constraints.

The algorithm is designed to achieve an average
operating frequency equal to the ratio U,,/BU. This
average is achieved whenever all tasks consume the 100%
of its WCET. When the WCET is not totally consumed
then this average is overestimated (in the next section we
will discuss how to take advantage of this fact). The
performance of the PLMDP is flexible to different WCET
consumptions adapting is behavior when needed. At a
certain critical value of the WCET consumption we expect
PLMDP to overcome the performance of the EPLDP
because this overestimation. In figure 4 we show the
experimental critical curve for the WCET consumption
delimiting the area of efficiency of both algorithms.

100%
90%
HES EPLDP
E 0%
2 e0%
8 s0%
o o40%
o
3
o PLMDP
[
60% 65% 70% 75% 80% 85% 90% 95%
a) %Processor Utilization
100%
90%
3 EPLDP
E 70%
2 60%
8 s0%
E 40%
% o U
10%
0%
60% 65% 0% 75% 80% 85% 0% 95%
b) % Processor Utilization

Figure 4: Critical line showing the transition performance between
EPLDP and PLMDP. Above the line EPLDP is energetically
favorable, below the line the PLMDP is energetically favorable. The
line is obtained by simulation of 100 tasks sets (formed by 8 tasks
each one) for each value of the processor utilization, varying the
processor utilization in 5% each step. Harmonic periods from 1024
to 65536 are considered. The maximum task workload is set to 20%.

5. Moving average estimation of the
empirical utilization of the processor

The WCET of a task depends on both the program flow
and architectural factors like pipelines and caches. It must
guarantee and not underestimate the real execution time,
but often provides an overestimation of it. To reach
maximum effectiveness of the use of the processor, the
overestimation of the empirical execution time should be

as small as possible. But note that as the processors have
more complex features like for example out-of-order
execution, the overestimation becomes usually large.

We want to point out that a dynamic estimation of the
real utilization (EU) is possible by using the history of past
executions (U,,) where m refers to different hyper-periods.

Here we present a moving average process that takes
advantage of this information to determine the correct
average frequency reduction that adapts to the real
calculation consumption of tasks (U)).

We modified our algorithm introducing a moving
average of the utilization that reduces the overestimation of
the WCET of tasks in the following manner (Figure 5):

1. Initially the estimated utilization (EU) is set to the
total workload with the WCET provided by the
application designers (Uy).

2. The hyper-period is executed using the current EU. At
the same time the real workload of each task is
updated after its real execution.

3. At the end of the hyper-period the EU is updated
according to the available history (U) and the recent
hyper-period execution (U)), using a moving average.

Ll
Up=Y.C; EU=Uj
vt
L2 =1,
L3 whilereal time application not finished do
L3 execute hyper-period i with EU and update U;;
L4 U = w EU=U; - U
i+1
Ls enddo

Figure 5: Moving average estimation of the empirical utilization of
the processor.

In Figure 6 we present the evolution of the EPLDP
using this estimation over different hyper-periods (EPLDP-
m). The maximum utilization of the system is set to 80 %
with a maximum workload for tasks of 20%. All tasks
consumption is obtained from a Gaussian distribution with
an average of 50% of its WCET and with a standard
deviation of 10%. The results are obtained averaging over
100 different task sets. Note that a lower bound for the
frequency reduction is provided by this estimation while
the low power algorithm fixes the upper bound (Figure 3).
The energy consumption obtained by EPLDP-m tends to
be the same as the energy consumption obtained by the
theoretical EPLDP-f, which is the EPLDP behavior
assuming that the real utilization is known and fixed to
50% of the WCET (note that this information is unknown
in real applications). The small divergence between
EPLDP-m and EPLDP-f are consequence of the variations
of the real use of the WCET that has been set to 10%.

It is important to note that this moving average strategy
does not interfere with the hard real time because the
determination of the operating frequency is conservative
with respect to deadlines i.e. we use the highest frequency

between the calculated EU and the operating frequency
calculated by the PLMDP algorithm. (see equation 3), to
do not compromise any deadline.

0,7

0,2
0,1
0,0

g ——EPLDP
.4:-‘;_ 0,6 EPLDP-f
£ 05 = EPLDP-m
2 04

o

S o3 V\WM\W
>

o

S

w

c

w

20 40 60 80 100 120 140 160 180

Hyper-periods

Figure 6: Evolution of EPLDP-m compared with EPLDP and with
EPLDP-f.

The improvement in energy consumption provided by
EPLDP-m is contrastable, and it should be more evident as
the overestimation of the WCET is larger. In figure 7, we
show this improvement as a function of the percentage of
the WCET really consumed for a harmonic task sets
(Figure 7a), and for a non-harmonic task sets (Figure 7b).

07
c
Sos

=3
£05
5
@ 04
2

S o3

> —
02 S
g ’/' —x— EPLDP
c 01
w —s— EPLDP-m|
0,0
20% 30% 40% 50% 60% 70% 80%
a) WCET consumed

0,7

S 06
2 I

o5y
3 04
e
Sos
>
Bozf ——o— 7
2 s« EPLDP
S oa
—o— EPLDP-m|
00 - - T T

20% 30% 40% 50% 60% 70% 80%

b) WCET consumed

Figure 7: Performance of EPLDP and EPLDP-m with different
percentage of WCET consumption. The total utilization of the
system is U=80% and the maximum task workload is set to 20. The
results are obtained averaging over 100 task sets. In a) the task sets
are harmonic, and in b) there are non-harmonic task sets.

6. Results and discussion

In this section we test the energy saving efficiency of
the proposed EPLDP-m algorithm versus the original
Power Low Modified Dual Priority (PLMDP) [3,12] for
real and synthetic task sets.

The first test (Figure 8) corresponds to the energy
consumption for different fixed workloads of the system
(U=60%, 75% and 95%) (Figure 8). We observe that the
average energy consumption is energetically favorable to
EPLDP. The average energy consumption is 59%, 61%
and 68% for PLMDP and 17%, 28% and 49% for EPLDP-
m (U=60%, 75% and 95% respectively) compared to the
execution at maximum operating frequency.

We have also checked the dependence of energy

consumption on the workload of the system (U). We
calculate the average energy consumption of schedulable

tasks sets composed by 100 synthetic task sets. The
workloads range from 60% to 95%, in steps of 5%. The
maximum task workload was fixed to 20%. There are 8
tasks in each task set. The periods range from 1024 to
65536 (harmonic task sets). (Figure 9). The experiment
represents the results of the normalized average energy
obtained with respect to the execution at maximum
operating frequency. We run the simulation over 200
hyper-periods.

1.0
c 09
£ os —
£07 —
E -
06 e
2 0 ,
«
505 .
L; 041 «
B031"
2o2 —— —&— PLMDP.
Yoty , — —e—EPLDP-m
0,0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%|
a) WCET consumed
1,0
c 09 e -
208 -
.
gor «
306 =
505 =
O 04 A
> d
3031
202 —&— PLMDP
W
g —e— EPLDP-m
0,0
10% 20% 30% 40% 50% 60% 70% B80% 90% 100%
b) WCET consumed

Figure 8: Normalized average energy consumption for different
values of WCET consumption. We simulate 100 task sets, of 8 tasks
each one, with a maximum task workload of 20%, in a) U=75%, and

in b) U=95%.
1o —a—PLMDP
c 09
Sos ——EPLDP-m
2

w1 e —

c 09
208

Figure 9 Normalized energy consumption versus processor
utilization (U). Each dot corresponds to the average energy
consumption of 100 different harmonic task sets. The consumed
WCET is in a) 20% and in b) 90% .

To conclude the present analysis, we have also
collected some real time applications: the avionics task set
reported in [17], an Inertial Navigation System (INS) [18]
and a Computerized Numerical Control Machine (CNC)
[19]. The two first sets represent critical mission
applications and the last one is an automatic control for
specific machinery.

The results of energy consumption for each application
varying the percentage of WCET consumed are drawn in

Figures 10 to 12. The average energy consumption referred
to the execution at maximum frequency are 76% for
PLMDP and 35% for the EPLDP-m in the avionics task
set; 36% for PLMDP and 9% for the EPLDP-m in the INS
task set; and 56% for PLMDP and 26% for the EPLDP-m
in the CNC task set.

We have also performed simulations considering
variations of the task sets specifications: doubling the
number of tasks to 16 instead of 8, varying the maximum
workload per task from 20% to 10%, and considering non-
harmonic periods ranging from 1000 to 70000. The results
obtained in these different experiments do not differ
qualitatively from the results presented, although the
precise values vary. In particular, non-harmonic periods
introduce a shift on the energy consumption performance
of all the algorithms we have studied. The main reason is
that schedulability becomes more complex, and the
breakdown utilization decreases.

1,0
c 09 —

go7
2 06
€os{
Qo4d /
Bos)/

g o2 —a— PLMDP
wory o— ——EPLDPm
0,0 F—

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
WCET consumed

Figure 10:Comparison of the algorithms for the Avionics set [17]

0
—e— PLMDP
2 0,8 < EPLDP-m

X o

Energy Consumption
cococoococoooo =
civLrOOI® O

1S
1S
&
L

WCET consumed

Figure 11: Comparison of the algorithms for the INS set [18]

1.0
< 09 PvOP
8 08 {—<—EPLOPM
o7
3 08 S
5§05 -
5 o
O 04 e
o3 L
2027 e /677/4—”'/
w14 ——

00
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

WCET consumed

e

P
= ©

Figure 12:Comparison of the algorithms for the CNC set [19]

7. Conclusions

We have proposed a new version of the PLMDP
algorithm that enhances energy saving based on the
dynamic calculation of an average operating frequency
EPLDP-m. The advantage of this energy reduction policy,
consisting on giving the opportunity to the processor to
reduce the operating frequency of every task, has been
demonstrated to improve energy saving substantially
without missing any deadline. The current performance
could be extended to other dynamic power aware
scheduling algorithms.

8.
(1]

[2]

(3]

[4]

[3]

(6]
(7]

(8]

[]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

References

A.P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-power
CMOS digital design”, IEEE Journal of Solid-State circuits, vol.
27, pp. 473-484, April 1992.

C. M. Krishna, Y.H. Lee, “Voltage-clock-scaling adaptive
scheduling techniques for low power in hard real-time systems”, in
Real-Time Technology and Applications Symposium, pp. 156-165,
2000.

M.A. Moncusi, A. Arenas and J. Labarta, "A modified dual
priority scheduling in hard real time systems to improve energy
saving.” in Compilers and Operating systems for Low Power pp
17-36. Kluwer academic/Plenum publishers 2003.

S. Saewong and R. Rajkumar, “Practical voltage-scaling for fixed-
priority RT-systems.” The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp106-115, May 2003

U. Kimiyoshi, M. Horowitz, “Clustered voltage scaling technique
for low-power design”, in International Symposium on Low Power

Electronics and Design, pp. 3-8, 1995.

J. Rabaecy and M Pedram (Editors). "Low power design
methodologies". Kluwer Academic Publishers, May 1996.

S.T. Cheng, S.M. Chen and J.W. Hwang, "Low-power design for
real-time systems", Real-Time Systems, 15, pp 131-148, 1998.

P. Pillai and K.G. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems” 1/8th ACM Symposium
on Operating Systems Principles, October 2001.

H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez,
“Determining optimal processor speeds for periodic real-time tasks
with different power characteristics” /3th Euromicro Conference
on Real-Time Systems, June 2001.

H. Aydin, R. Melham, D. Mosse, P. Mejia-Alvarez. “Dynamic and
Aggressive scheduling techniques for power-aware real-time
systems.” Proc. Real-Time Systems Symposium, pp. 95-105, 2001.

Y. Shin and K. Choi, “Power conscious fixed priority scheduling
in hard real-time systems” DAC 99, ACM 1-58113-7/99/06, 1999.

M.A.Moncusi, A.Arenas, J.Labarta, “Improving energy saving in
hard real time systems via a modified Dual Priority scheduling”,
ACM SigArch Computer Architecture Newsletter, Vol 29, 19-24
(2001)

R. Davis and A.J. Wellings, "Dual Priority scheduling",
Proceeding IEEE Real Time Systems Symposium, pp. 100-109,
December 1995.

A. Miyoshi, C.Lefurgy, E.V. Hensbergen, R.Rajamony, and R.
Rajkumar. “Critical power slope: Understanding the runtime
effects of frequency scaling.” In Proceedings of the 16" Annual
ACM International Conference on supercomputing, June 2002.

J. Lehoczky, L. Sha, and Y. Ding. “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior”. In
Proceedings of IEEE Real-Time Systems Symposium, pages 166—
171. IEEE Computer Society Press, December 1989.

Katcher, D.I.; Arakawa, H.; Strosnider, J.K.; ”Engineering and
analysis of fixed priority schedulers” Sofiware Engineering, IEEE
Transactions on, Volume: 19, Issue: 9, Sept. 1993 Pages: 920-934
C. Locke, D. Vogel and T. Mesler, “Building a predictable
avionics platform in Ada: a case study", Proceedings IEEE Real-
Time Systems symposium, December 1991.

A. Burns, K. Tindell and A. Wellings, "Effective analysis for
engineering real-time fixed priority schedulers", IEEE
Transactions on Software Engineering, 21, pp. 475-480, 1995.

N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi and H. Shin,
"Visual assessment of a real-time system design: a case study on a
CNC controller", Proceedings IEEE Real-Time Systems
symposium, December 1996.

