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The simulation and interpretation of free turbulence with a cognitive
neural system
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An artificial neural network, based on fuzzy ARTMAP, that is capable of learning the basic
nonlinear dynamics of a turbulent velocity field is presented. The neural system is capable of
generating a detailed multipoint time record with the same structural characteristics and basic
statistics as those of the original instantaneous velocity field used for training. The good
performance of the proposed architecture is demonstrated by the generation of synthetic
two-dimensional velocity data at eight different positions along the homogeneous~spanwise!
direction in the far region (x/D5420) of a turbulent wake flow generated behind a cylinder at
Re51 200. The analysis of the synthetic velocity field, carried out with spectral techniques, POD
and pattern recognition, reveals that the proposed neural system is capable of capturing the highly
nonlinear dynamics of free turbulence and of reproducing the sequence of individual classes of
relevant events present in turbulent wake flows. The trained neural system also yields patterns of the
coherent structures embedded in the flow when presented with input data containing partial
information of the instantaneous velocity maps of these events. In this way, the neural network is
used as an expert system that helps in the structural interpretation of turbulence in a wake flow.
© 2000 American Institute of Physics.@S1070-6631~00!00407-4#
nt
fo
an
e

sc
a
at

s
o

on
ry
he

na

n

rbu-
d

o-
as

o
he
in a

co-
ea-
tive
k
atic
of

ons
to

. In
erns
a-
d
ch
to

he
m.

:

E
9

I. INTRODUCTION

Turbulence is a fluid flow phenomenon of significa
fundamental interest as well as of commercial importance
its impact on the operational performance and costs of m
industrial processes, transportation systems and engine
structures~e.g., long-span bridges!. It is characterized by an
irregular space and time dependence of the velocity and
lar fields which is the result of vortical three-dimension
motions that occur at high Reynolds numbers, when the r
of inertial to viscous forces is high.1,2 Turbulence is an un-
solved classical problem3 so that the study of turbulent flow
relies heavily on experimental data and, more recently,
the direct numerical solution of the Navier–Stokes equati
of fluid motion. The interpretation and control of the ve
large range of excited space and time scales present in t
flows, and of the associated mixing that they cause,4 requires
the application of analytical, experimental and computatio
techniques.5

It is now well known that there are large-scale, recurre
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Canada.
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coherent eddies among the vortical motions present in tu
lent flows. The flow visualizations carried out by Brown an
Roshko6 and Falco7 were among the first to show these m
tions. A large number of quantitative techniques, such
spatial correlation functions and POD,8–10 pattern recogni-
tion and conditional averaging,11–15 etc., have been used t
determine or identify the structure of turbulent fields. T
dynamic significance of these structures has been shown
variety of turbulent flows.16–19

The techniques described above use features of the
herent motions to identify and educe them from the m
sured or numerical data sets, in a closed, noninterac
mode. Ferre-Gine´ et al.14 developed a fuzzy-neural networ
pattern recognition technique which operates as an autom
classification technique, free from operator bias, capable
categorizing all types of coherent and disordered moti
present in the data. This capability could be exploited
generate turbulent signals if the method were reversed
other words, it could predict a sequence of classes of patt
from an initial velocity condition. Of course, such a simul
tion would only succeed if the artificial neural network ha
learned the nonlinear dynamics of the turbulent flow. If su
a simulation did succeed, then it could also be possible
apply the system openly and interactively to identify t
structure present in any turbulent flow as an expert syste

n-
,

6 © 2000 American Institute of Physics
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Here we report a cognitive neural network architectu
based on fuzzy ARTMAP20 that is capable of learning th
basic nonlinear dynamics of a turbulent velocity field and
generate, afterwards, a detailed multipoint time record,
detailed as can be measured in a laboratory experiment.
problem dealt with in the present study at the simulat
stage is not that of exactly forecasting the measured field
that of generating the turbulent field after learning the ba
statistics and structural characteristics from historic exam
of the original.21,22 At the interpretation or expert system
stage, the trained neural system is used to determine the
istence and topology of coherent structures that could
present in the flow field investigated. This is done by gen
ating sequences of data from inputs containing partial in
mation of the velocity field of the hypothesized structu
The flow analyzed is a fully developed turbulent wake ge
erated by a circular cylinder.

II. THE NEURAL SYSTEM

A. Background and network requirements

An artificial neural network is a modeling and comput
tional technique based on the observed behavior of biol
cal neurons which is used to mimic the performance or sim
late the dynamics of a system from examples. In some c
these networks are used in combination with the theory
fuzzy logic so that in addition to learning from experienc
they can carry out tasks faster with less computer space
quirements by accepting both numerical data and fuzzy c
mands as inputs. Fuzzy and neural systems, or a combin
of the corresponding logic and network architectures, h
been applied to identify, classify, control, forecast, pred
diagnose, model, design and analyze events in several fl
base systems of interest to medicine, vehicle and transp
tion systems, aerospace, manufacturing, meteorology
mining.23 Examples of fluid-base applications in engineeri
include the reduction of drag, the minimization of ener
consumption or losses, the prediction of transport rates
industrial equipment, the reduction of noise, and phenom
related to pressure dynamics.

A significant portion of the above mentioned applic
tions are related to flow turbulence and arise from the nee
control some aspects of this highly nonlinear phenomen
Thus, the performance of a neural system in these app
tions could be evaluated by its ability to learn the dynam
of turbulence in some pre-selected regions of the flow fie
Feedforward, feedback, and other standard architectures
capable of capturing some aspects of the dynamics of tu
lent flows. For example, Leeet al.24 have established th
correlation between some near-wall turbulence parame
and the wall actuation needed to reduce drag. Howeve
remains to be determined whether these or other arch
tures are capable of first learning and then simulating, i
global sense, flow turbulence.

One indispensable requirement for attempting the sim
lation of a synthetic turbulent velocity field~i.e., of simulta-
neous multipoint turbulent velocity time-records! with a neu-
ral network is that the architecture should be capable
learning the irregular time sequences of velocity patterns
Downloaded 27 Feb 2007 to 193.147.222.244. Redistribution subject to A
e

s
he
n
ut
ic
s

ex-
e

r-
r-
.
-

i-
-
es
f

,
e-
-

ion
e

t,
id-
ta-
nd

in
a

to
n.
a-
s
.

are
u-

rs
it
c-
a

-

f
s-

sociated with turbulence. This requires that the artificial n
ral system should be able to select, in an automated wa
path in this complex sequence of real events or patterns
the basis of past experience. Therefore, it should:

~i! Be able to accurately classify patterns in difficult cla
sification situations.

~ii ! Be capable of generalizing incoming information wi
an efficient mechanism for resetting patterns and c
ating new categories. This will ensure avoidance
the stability-plasticity dilemma20,25–27 of either hin-
dering stability by endlessly activating new categor
in competitive learning or by losing the plasticity o
ability of the network to react to any new data b
cause the learning rate is gradually reduced to ze
This characteristic of the Adaptive Resonance The
~ART! is important in the real time learning of sys
tems that are continuously adapting in a nonstation
situation. The more popular feedforward and feedba
architectures present the difficulty of establishing t
dimension of the system or number of neurons t
are required for the network to exhibit long-tim
memory capabilities. A pertinent discussion on t
long-time memory requirements to resolve ambig
ities in forecasting problems can be found in Ku¨hn
et al.28

~iii ! Have associative memory or memory organization
cessed by its content, with a sufficiently long span
resolve the ambiguities in the succession states
characterize the dynamics of highly nonlinear sy
tems. The architecture should remember by retriev
previously stored information in response to asso
ated data.

~iv! Use fuzzy rules in the learning algorithm since th
are especially useful in the treatment of real data.29

One reasonable choice which has the above characterist
the Fuzzy ARTMAP neural system.

B. Architecture

The Fuzzy ARTMAP neural network is formed by a pa
of fuzzy ART modules, Art–a and Art–b, linked by an as-
sociative memory and an internal controller.20 This is
sketched in Fig. 1 with the output disconnected.

The Fuzzy ART architecture was designed by Carpen
et al.27 for multidimensional data clustering based on a se
features. The elements of the set ofn-dimensional data vec
tors $j1,...,jp%, wherep is the number of vectors to be clas
sified, must be interpreted as a pattern of values showing
extent to which each feature is present.

Every pattern must be normalized to satisfy the follo
ing conditions:

j iP@0,1#n

~1!

(
j 51

n

j j
i 5k ; i 51,..,p.

The classification procedure of fuzzy ART is based
Fuzzy Set Theory.30 The similarity between two vectors ca
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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be established by the grade of the membership funct
which for two generic vectors~l, m! can be easily calculate
as

grade~j l,jm!5
uj l∧jmu

uj l u
. ~2!

In Eq. ~2! the fuzzy AND operator∧ is defined by

∧:@0,1#n3@0,1#n→@0,1#n

while the components of the image vector that result fr
this application are

j j
i 5min~j j

l ,j j
m! ; j 51,...,n. ~3!

The normu•u in Eq. ~2! is the sum of the components of th
vector defined by Eq.~3!.

The classification algorithm clusters the data that hav
value of ~2! greater than thevigilance parameterr into
groups or classes. The value ofr controls the granularity of
the classes and allows the implementation of a desired a
racy criteria in the classification procedure. Each classm is
represented by a vectorvm, the weight vector. The proce
dure starts by creating the first class from the first patt
presented to the network

v15j1. ~4!

The rest of input patternsj i ( i 52,...,p) are presented to
the network and if the similarity ofj i with any established
classm is greater thanr thenj i is classified into this class
and the representative of this class is updated according

vnew
m 5vold

m ∧j i . ~5!

Otherwise a new class represented byj i is created. Equation
~5! is the learning rule of the net. The mechanisms to sp
up the process and to conduct the classification properly
be found elsewhere.27

The dynamics of Fuzzy ARTMAP are essentially t
same as two separate Fuzzy ART networks, each one w
ing with a part of the training vector; the first part could
interpreted as the input pattern and the second one as
desired classification output~supervisor!. The associative
memory records the link between the classes correspon
to the input pattern and the desired classification. The in
nal controller is responsible for supervising if a new link is

FIG. 1. Individual neural network architecture.
Downloaded 27 Feb 2007 to 193.147.222.244. Redistribution subject to A
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contradiction with any other previously recorded. If no co
tradiction is found, the link is recorded, but in the case o
contradiction, the pattern is re-classified with a larger vi
lance parameter. Once the network has been trained it ca
used to classify input vectors without any additional info
mation.

The Fuzzy ARTMAP architecture was designed to cla
sify data and, thus, cannot generate an output pattern
the training stage. To implement this new mode of operat
the categories educed by the system from the learned in
mation are linked to the desired outputs, as depicted in
1. This is mathematically equivalent to defining a mappi
from the space of categories to that of output patterns,
image of the mapping being defined by examples of patte
provided to the neural system in a supervised manner.
accuracy of the procedure increases asymptotically towar
constant value with the number of examples used for tra
ing, i.e., when the space of outputs is accurately mapped
the predictive mode, only the category layer of Art–b in Fig.
1 is active and linked to Art–a to provide an output for eac
input vector presented to this module.

C. Experimental data and training sets

The performance of the proposed neural system has b
evaluated by simulating the two-dimensional velocity fie
measured at eight different positions (k51,2,...,8) along the
homogeneous~spanwise! direction of a turbulent wake flow
generated behind a cylinder at Re51200 andx/D5420. The
freestream velocity of this flow wasU056.7 m/s and the
cylinder diameterD52.67 mm. The structural characteri
tics of these fully developed turbulent wake data, provid
by R. A. Antonia~University of Newcastle!, have been pre-
viously examined by Koppet al.15 using pattern recognition
and proper orthogonal decomposition~POD!. Figure 2 illus-
trates the experimental flow configuration for the case wh
the ~u, w! velocity data were measured with eightX-wire
probes located along the homogeneous spanwise directio
the half width of the wake (l 0512.3 mm). Here,l 0 is the
lateral~y! location where the mean velocity defect is half t
maximum value. The eight sensors spanned approxima
2.87l 0 in thez direction. The voltage signals were sampled
2717 Hz for 30 s. Taylor’s hypothesis was used to conv
the time measurements into the spatial coordinatex52U0t
in all plots.

The neural system proposed was formed by eight Fu
ARTMAP networks like the one shown in Fig. 1. Thes

FIG. 2. Sketch of the flow configuration.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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networks were working in parallel and synchronously, o
for each experimental device measuring simultaneously
two-component velocity signalsu andw at a givenk-location
in the wake flow. Each individual network was first traine
with the output in Fig. 1 disconnected. The training data
each individual network consisted of vectors with 12 e
ments for the Art–a module, four temporal or historical ve
locity components~u and w! for the probe under consider
ation, plus the two componts of the two spatially adjac
probes. Vectors with two elements, the following value
each velocity component in the time sequence, were used
the Art–b module. Thus, simultaneous space–time inform
tion was provided to the neural system in terms of the in
to each Art–a module, with the corresponding future info
mation for~u, w! given to each Art–b module, with no other
association between individual networks. At the two extre
locations~k51 and 8! the spatial information was provide
from the one-sided contiguous locations~k11, k12! and
(k21, k22!, respectively.

The dimension of the input vectors to the eight neu
networks and the type of simultaneous space–time infor
tion that they contained was decided after examination of
space–time correlation of the experimental data, so that
evant structural characteristics of the flow were provided
the system during training. The choice of four temporal d
for each velocity component in the training input vector
consistent with Takens theorem.31 This theorem states tha
good accuracy can be achieved in point-to-point forecas
in a system with attractors of dimensiond when a function
that depends at most on (2d11) past measurements is use
For the wake flow this implies using between four and fi
historical data in the training sets.

The system was trained using the first 2000 instants
the experimental velocity field~u, w!. This was sufficient to
match the local fractal dimension of 1.7560.02 and 1.78
60.02 of the simulatedu and w signals, respectively, with
the values 1.7660.02 and 1.7860.02 of the experimenta
data. The local fractal dimension was calculated by the b
counting dimension procedure described by Scottet al.32

Additional training tests with up to 40 000 samples yield
comparable statistics but improved structural character
tion, as is discussed in the next section. A nonoptimiz
version of the code required less than 1 h of total CPU time
for training in a Sun Ultra22/300 workstation.

After training, instants~2001–2004! of measuredu and
w at each location were used together with the two spa
data of the instant 2004 as the initial input vector to t
Art–a module of each net. The output~u, w! for the instant
2005 was generated by each Art–b module with only the
categories layer and the output activated. The output ca
lated by each network was added to the corresponding
sequence and a new input pattern was formed with hist
cals ~2002–2005! and with the two spatial data predicte
simultaneously by the two neighboring networks also at
stant 2005. Such operation of the neural system produc
two-component velocity field of eight velocity data pairs~u,
w! every 0.14 s of CPU with the two processors of the wo
station working in parallel.
Downloaded 27 Feb 2007 to 193.147.222.244. Redistribution subject to A
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III. SIMULATION OF FREE TURBULENCE

A. Statistics from the simulation

To evaluate the performance of the proposed netw
architecture 81 600 time instants~29.4 s! of ~u, w! velocity
signals were generated at time intervals ofDt50.368 ms. No
repetitions in the predicted velocity field were observed o
this time-period. The~u, w! results obtained in the homoge
neousx-z plane of the wake are evaluated in detail in th
section using basic statistics, spectral and correlation an
sis, POD and pattern recognition. The preliminary evaluat
of the performance of the proposed neural system for n
homogeneous turbulence~x-y plane! is also reported. All
space variables are normalized with respect tol 0 as

x* 5
DX

l 0
>

2U0Dt

l 0
, y* 5

Dy

l 0
, z* 5

Dz

l 0
.

The flow in all vector maps is from left to right. Th
statistics of the two-dimensional instantaneous turbulent
locity field ~u, w! measured and simulated by the prese
architecture with training sets of 2000 and 24 000 samp
labeled ANN-2000 and ANN-24 000, respectively, are giv
in Table I.

The comparison of the statistics of the two predict
time records shows that training with 2000 instants of dat
sufficient to capture the irregularity of the time sequence
is also the case for the local fractal dimension. Thus,
results analyzed in this section correspond mostly to AN
2000. The mean of the predicted velocity field reported
Table I deviates a maximum of 0.2%, in terms of the fr
stream velocity, from the~zero mean! experimental fluctuat-
ing field. The rms~root-mean-square! values of the fluctuat-
ing field generated foru and w are also in agreement with
experimental data, with a maximum deviation of 9.2%. T
Reynolds shear stress field is equal to zero, within the lim
of the experimental error of the data, as should be the cas
the homogeneous spanwise direction of the wake.

The auto-spectra of the simulated data is in good acc
dance with the experiments for both velocity components
all spanwise locations, as illustrated by the spectra ofu and
w, shown in Fig. 3 at one of the eight spanwise locatio
studied. These spectral results indicate that the neural sy
captures the energy distribution of both signals up to f
quencies of 1 kHz, i.e., in the frequency range where alias
errors are negligible.

The spatial correlation for the experimental and sim
latedu velocity component is depicted in Fig. 4. Comparis
between the correlation contours in both cases shows tha
neural system resolves the flow field well up to a spanw
locationz* 520.2, i.e., up to an extent of approximately fiv
probes. The auto-correlation functions for the experimen
and simulated data, observed along thex* -direction at the
top of Figs. 4~a! and 4~b! for the extreme probe at locatio
z* 51.2, are also in good agreement down to correlations
0.10. The 0.05 level occurs atx* >62.5 in the simulated
data, slightly shortening the streamwise correlation. Sim
accordance is found between the spatial correlation of
experimental and simulatedw velocity fields~not shown here
for brevity!.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Downloaded 27 Feb
TABLE I. Statistics of the experimental and simulated data with velocities in m/s.

Experimental ANN-2000 ANN-24000

mean rms uw mean rms uw mean rms uw

u1 0.000 0.118 0.010 0.119 0.008 0.114
w1 0.000 0.087 0.001 20.002 0.083 0.001 20.001 0.081 0.001
u2 0.000 0.117 0.012 0.109 0.004 0.108
w2 0.000 0.087 0.002 0.000 0.087 0.001 0.001 0.079 0.0
u3 0.000 0.118 0.012 0.113 0.003 0.110
w3 0.000 0.087 0.000 0.001 0.080 0.000 20.001 0.079 0.000
u4 0.000 0.117 0.016 0.109 0.006 0.110
w4 0.000 0.087 0.000 20.003 0.082 0.000 20.000 0.078 0.000
u5 0.000 0.120 0.009 0.109 0.004 0.113
w5 0.000 0.088 0.001 0.003 0.086 0.001 0.002 0.081 0.0
u6 0.000 0.117 0.011 0.110 0.007 0.115
w6 0.000 0.088 0.000 0.011 0.085 0.000 0.003 0.077 0.0
u7 0.000 0.120 0.010 0.120 0.005 0.117
w7 0.000 0.087 20.001 0.007 0.082 20.001 0.001 0.080 0.000
u8 0.000 0.111 20.007 0.108 0.002 0.106
w8 0.000 0.084 20.002 20.005 0.083 20.002 20.002 0.079 20.001
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B. Structure of the simulated data

An estimate of the overall flow structure for the expe
mental and simulated velocity flow fields is given in Figs.
and 6, via the first and second eigenvectors obtained f
POD. The neural system adequately describes the flow s
ture of the turbulent wake flow as indicated by the go
agreement observed in these plots between the measure
the simulated fields. The first eigenvector obtained from
simulated two-dimensional velocity field@Fig. 5~b!# projects
to the one of the real data@Fig. 5~a!# with a correlation co-
efficient of 0.97. The neural system identifies the nega
fluctuating velocity motions that dominate the wa
flow,14,15 as illustrated by the first eigenvector. This satisfa
tory description of structure is also observed in the sec
eigenvector@Figs. 6~a! and 6~b!#. In this case the neural sys
tem also captures the presence of saddle points in the w
flow. In both Figs. 5 and 6 there is a progressive random
tion of the structure for negativez* , consistent with the ran
domization of the correlation contours presented in Fig.

A pattern recognition analysis, carried out to determ
the large-scale structural characteristics of the simula
flow, shows that 765 windows of 44 instantaneous veloc
 2007 to 193.147.222.244. Redistribution subject to A
m
c-

and
e

e

-
d

ke
-

e
d

y

data with double rollers and 714 windows with saddle poi
are contained in a simulated time-record of 81 600 insta
This compares favourably to the 922 and 895 windows of
respective structures present in the experimental data.
11% reduction in the number of structures present in
simulated data may be due to the inability of the neural s
tem to learn continuity or the three-dimensional structu
characteristics from two-dimensional information or it m
be due to the loss of correlation as discussed regarding
4. It should be mentioned that the proposed neural archi
ture learned mass conservation when it was applied to a t
dimensional isotropic turbulent velocity field.

The corresponding prototypical patterns or ensemb
averages of the double rollers and saddle points identified
pattern recognition are depicted in Figs. 7 and 8 for both
simulated and experimental velocity fields. The agreemen
topology between both vector maps is reasonable, with
saddle point appearing upstream of the double roller in b
cases. The correlation between the patterns in Figs. 7~a! and
7~b! and between those in Figs. 8~a! and 8~b! are 0.80 and
0.86, respectively. This performance is remarkable when
considered that the 2000 instants of velocity informati
-
FIG. 3. Autospectra of the experimen
tal and simulated~a! streamwise and
~b! spanwise velocity components.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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used for training contain only about 22 structures. Note t
the observed correlations increase to 0.94 when 40 000
stants are used for training, i.e., when the ANN-40000
used to generate the time-record of 81 600 instants.

A similar performance of the neural system was obtain
for data measured along the nonhomogeneous vertical p

FIG. 4. Correlation of the streamwise velocity field from the~a! experimen-
tal and~b! simulated velocities.

FIG. 5. First eigenvector from the POD analyses of the~a! experimental and
~b! simulated data.
Downloaded 27 Feb 2007 to 193.147.222.244. Redistribution subject to A
t
n-
s

d
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of the wake (x* 2y* ). The rake of probes was centered
the wake centerplaney* 50 and spanned vertically th
whole wake. In this case, the number of classes containe
the signals measured at the eight different vertical positi
depends on the different number of turbulent events sen
by the hot-wires located near the centerplane or near
outer edges of the wake. As a consequence of this de

FIG. 6. Second eigenvector from the POD analyses of the~a! experimental
and ~b! simulated data.

FIG. 7. Pattern recognition analyses of double rollers:~a! Experimental and
~b! simulated data.
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1832 Phys. Fluids, Vol. 12, No. 7, July 2000 Giralt et al.
dency on intermittency, at least 6000 instants of the r
velocity field ~u, v! were needed to train the eight network
and to capture enough information from the different velo
ity records so that the generated nonhomogeneous turb
field reproduces the experimental one. It should be noted
the information contained in the vertical plane data is m
difficult to learn by the neural system because the cohe
structures and associated velocity patterns occurring at
outer edge are different from those at the center region of
wake. In the horizontal plane, homogeneity implies that
same type of information is ultimately presented to each
dividual network.

To assess the capability of the trained neural system
interpret the large-scale structure of a turbulent velocity fi
as an expert system it is necessary to first study whethe
not the system is capable of generating instantaneous ve
ity patterns with the correct structural features of the fl
analyzed. To investigate this, the 922 data windows cont
uting to the double roller ensemble-average of Fig. 7~a! were
utilized. In particular, for each of these 922 windows, t
four temporal points for each sensor at positions 0.4<x*
<1.0 in Fig. 7~a! were used as the historical input to th
neural system. The following 10 points of the time ser
~i.e., the positions21.5<x* <0.4 in Fig. 7~a! were gener-
ated for each sensor in exactly the same way as the sim
tion described above was performed. Figure 9 shows the
semble average of these 922 simulated events. Note
these input data were not included in the training sets
ANN-2000. Clearly, the structure in Fig. 9 corresponds
the class of large-scale motions represented by the do
roller in Fig. 7~a!. This result indicates that with the sam
input information as that occurring instantaneously in a la
ratory experiment, the neural system generates a grou
instantaneous events that yield an ensemble average or

FIG. 8. Pattern recognition analyses of saddle points:~a! Experimental and
~b! simulated data.
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totypical pattern~Fig. 9! that also belongs to the class co
sidered as the input@Fig. 7~a!#.

The architecture proposed is, thus, well suited to int
pret free turbulence, as illustrated in the next section, and
real time applications involving turbulent flows. It can als
be used to complete time sequences of important data
are limited in size due to difficulties in their acquisition o
prediction. For example, the accurate direct numerical sim
lation of a turbulent flow requires intensive use of CP
time,33 which for some flow situations or Reynolds numbe
of interest may not be sufficiently available at prese
Therefore, the synthetic generation of turbulent velocity
scalar signals or fields with a neural system may be a us
and complementary tool for computational fluid dynam
~CFD!. It should be noted that the application of the pr
posed fuzzy ARTMAP architecture to DNS data would r
quire different training and analysis due to the different s
tial and time resolution of numerical calculations.

IV. INTERPRETATION OF TURBULENCE

The next step in the evaluation of the neural system is
an interactive expert system to help with the identification
the structural characteristics of turbulence in a flow not p
viously studied. To simplify this problem it will be assume
here that the unknown turbulent flow is the turbulent wa
flow analyzed in the previous section.

A. Known characteristics

The challenge considered is to determine whether
presence of the double roller structure postulated more t
forty years ago from correlation data8,34 exists instanta-
neously in the flow learned by the neural system. Two int
pretation experiments are considered:

~i! Education of a double roller with point-to-point fore
casting from an sketch of an idealized or assum
template of this structure.~In point-to-point forecast-
ing, the template ‘‘data’’ are always used for the fo
temporal or historical inputs.!

~ii ! Testing for double rollers from a single input vect
containing the initial portion of the above idealize
template.

FIG. 9. Ensemble average of vectors maps predicted by the neural sy
when fed with input vectors of experimental data extracted from the ins
taneous events that contribute to the double roller of Fig. 7 at posit
0.4<x* <1.0.
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Figure 10 shows the point to point forecasting from
template of the double roller depicted in Fig. 7~a!, properly
scaled to match the rms values of the fluctuating field c
sidered. This is necessary because the neural system
learned from real examples containing both large-scale
small-scale motions, i.e., from signals of a given amplitu
The predicted velocity map given in Fig. 10 corresponds t
double roller structure centered atx* 50 and with an up-
stream saddle point at approximatelyx* 521.2. The ob-
served randomness is due to the fact that the neural sy
was trained with turbulent flow data and has learned
randomness~see Fig. 3 of the auto-spectra!.

To support the significance of this finding, several te
of point-to-point forecasting were carried out with input tem
plates of unrealistic or highly improbable vector maps. T
results showed that the neural system did not yield any p
sible coherent topology or yield vector maps consistent w
the space–time correlation of the data. Note that the velo
vector map of the double roller in Fig. 7~a! which has been
used to generate Fig. 10 does not belong to the training

The final test for double rollers is the prediction of a
instantaneous vector map of 10 velocity vectors from a pr
erly scaled input vector containing the four instants of inf
mation located at 0.8<x* <1.4 in Fig. 7~a!. In this case, the
neural system predicts the double roller vector map of F
11. There is agreement between the experimental and
dicted structures, with the predicted one being sligh
smaller in the streamwise direction of the flow. This is pro
ably caused by the difficulty of learning and predicting
three-dimensional phenomena related with the occurrenc
ring-shaped vortices19 from only two-dimensional informa-
tion and the fact that the neural system produces a slig
shorter auto-correlation than the experiments~see, e.g., Fig.
4!. Nevertheless, the remarkable agreement between
double roller structure present in the laboratory data and
the vector map produced by the eight neural, indicates
potential of the proposed cognitive system to capture
dynamics of turbulent flows and be utilized as an exp
system. Note that differences in the modulus of the vec
plots in both figures are caused by the scaling of the in
signal.

B. New observed structural features in the far wake

One of the things that has puzzled us is the lack of sy
metry around the saddle points in Figs. 8~a! and 8~b!. Figure

FIG. 10. Point-to-point forecasting of a vector map from an idealized
scaled double roller template.
Downloaded 27 Feb 2007 to 193.147.222.244. Redistribution subject to A
-
has
d
.
a

em
is

s

e
u-
h
ty

et.

-
-

.
re-
y
-

of

ly

he
in
e
e
rt
r
t

-

8~a! shows a double roller just downstream of the sad
point and a large roller~which hints at being a large doubl
roller!. There appears to be flow directly from the center
the double roller to the top of the upstream counterclockw
roller. Large single rollers were first found by Mumford12

and later by Ferre´ and Giralt.13 Ferréand Giralt found that
when a large single roller~i.e., larger than either roller mak
ing up the double roller structure! was identified there was
also evidence that it was simply a portion of a larger dou
roller structure. Since then, no one has investigated the
namics of these large single rollers, although the dou
roller structure has been extensively investigated, most
cently by Vernetet al.19

The first step in this process was to determine whet
the neural system had learned of the existence of the la
single rollers. To do this, the type of simulation we pe
formed to generate Fig. 11 was repeated. The results
shown in Fig. 12. However, in Fig. 12 the four right-mo

d

FIG. 11. Prediction of an instantaneous vector map from an idealized
scaled double roller template.

FIG. 12. Prediction of an instantaneous vector map from an indealized l
scale roller template for two different initial conditions of the velocity fiel
The initial condition is shown by the four rightmost vectors in~a! and ~b!.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp



te
ac

-

te

is
l

a
s
e
13
a
n

ed
al
ck
st

r
ed
su

a
lt
-
a-
o
gl
ta
w

to

-

sys-
of
the
e
sis,
the
nce.
ter-
of

sig-
nt
ws
ted.
b-

es,

r
lly

ce

in

ary

and

ent

,’’

ed

ld

r-
ral

nd
ly-

all

n
h.

al
uid

rg

1834 Phys. Fluids, Vol. 12, No. 7, July 2000 Giralt et al.
data points are the historical data given to the neural sys
as input. The given historical time data in Fig. 12 is char
terized by the upstream portion of a saddle point@such as
that given in Fig. 12~a!# in the lower four probes and nega
tive spanwise velocity fluctuations in the probes 0<z* <1.
A large scale counterclockwise motion can be seen to ex
an additional eight time points~for a total of 12, which is
approximately 2l 0!. Beginning with a slightly different pat-
tern, more like a vortex, a large single roller structure
clearly observed in Fig. 12~b!. Thus, it is clear that the neura
system has learned about these large single rollers.

The pattern recognition technique of Ferre´ and Giralt13

also finds this configuration in the experimental data,
shown in Fig. 13. However, finding such a pattern require
detailed knowledge about the ordering of the structur
which one cannot normally infer in advance. Figure
shows a large counterclockwise roller immediately upstre
of the double roller structure. About 1/3 of the events co
tributing to the double roller structure of Fig. 7~a! are imme-
diately followed by a large single roller like the one depict
in Fig. 13. A similar proportion is found for the symmetric
configuration, i.e., when the large single roller rotates clo
wise. Interestingly, the upstream saddle point still exi
without the symmetry of two adjacent double rollers~of op-
posite sense!. Actually, this is not unlike a vertical shea
plane in the near region of a two-dimensional vortex sh
ding object. In this latter case, saddle points are also
rounded by three adjacent foci~or rollers!. To see this in the
present work, the plot needs to be rotated about 45°.

When Fig. 13 is added to the opposite symmetric p
tern, i.e., that with an upstream clockwise vortex, the resu
the double roller pattern of Fig. 7~a!. Thus, the pattern rec
ognition technique13 could not educe these additional fe
tures of the data because the adjacent structures are rand
aligned in different orientations. However, these larger sin
roller patterns, with clockwise and counterclockwise ro
tion, are a significant feature of the flow since they follo
the individual double roller events in 2/3 of the cases.

The origins of this ordering of patterns is likely due
the arrangement of adjacent Ka´rmán vortices and rib struc-
tures as they bend and kink in the near region~e.g., Kiya and
Matsumura35!. This will be the subject of a future investiga
tion.

FIG. 13. A pattern recognition analysis of the double roller—saddle—la
single roller configuration present in the experimental velocity data.
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V. CONCLUSIONS

The present results indicate that the proposed neural
tem is capable of capturing the highly nonlinear dynamics
free turbulence. Synthetic signals were generated with
fuzzy ARTMAP network at eight different positions in th
homogeneous plane of cylinder wake. Spectral analy
POD, and pattern recognition were used to show that
simulated signals capture the main features of the turbule

The present neural network was also applied as an in
active expert system to recognize the individual classes
events present in complex shear flows. Idealized velocity
nals ~patterns! are input to the network and a point-to-poi
forecast of the resulting velocities is performed. This allo
hypotheses about the turbulence structure to be investiga
With this approach, large single roller structures are o
served upstream of the well-known double roller structur
with a saddle point between them.
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