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An artificial neural network, based on fuzzy ARTMAP, that is capable of learning the basic
nonlinear dynamics of a turbulent velocity field is presented. The neural system is capable of
generating a detailed multipoint time record with the same structural characteristics and basic
statistics as those of the original instantaneous velocity field used for training. The good
performance of the proposed architecture is demonstrated by the generation of synthetic
two-dimensional velocity data at eight different positions along the homogen@pasiwisg
direction in the far region¥/D=420) of a turbulent wake flow generated behind a cylinder at
Re=1200. The analysis of the synthetic velocity field, carried out with spectral techniques, POD
and pattern recognition, reveals that the proposed neural system is capable of capturing the highly
nonlinear dynamics of free turbulence and of reproducing the sequence of individual classes of
relevant events present in turbulent wake flows. The trained neural system also yields patterns of the
coherent structures embedded in the flow when presented with input data containing partial
information of the instantaneous velocity maps of these events. In this way, the neural network is
used as an expert system that helps in the structural interpretation of turbulence in a wake flow.
© 2000 American Institute of Physid$51070-663100)00407-4

I. INTRODUCTION coherent eddies among the vortical motions present in turbu-

lent flows. The flow visualizations carried out by Brown and

Turbulence is a fluid flow phenomenon of significant goshk§ and Falcd were among the first to show these mo-
fundamental interest as well as of commercial importance fofions A large number of quantitative techniques, such as

its impact on the operational performance and costs of man¥patial correlation functions and POD pattern recogni-
industrial processes, transportation systems and engineerﬁgn and conditional averagirid: 5 etc., have been used to

structures(e.g., long-span bridgesit is characterized by an determine or identify the structure of turbulent fields. The

|rreg_ular space a_nd time dependence. of the VEIO_C'ty aqd SCEi'fynamic significance of these structures has been shown in a
lar fields which is the result of vortical three-dimensional

fons that thidh R » b hen th t_variety of turbulent flowg%-1°
motions that occur at high REynoids numbers, when the ratio r,q techniques described above use features of the co-

of inertial to viscous forces is high Turbulence is an un- | "~ identify and educe them from the mea-
solved classical probletrso that the study of turbulent flows sured or numerical data sets. in a closed. noninteractive
reIies_ heavily on experimental data an_d, more recently: %Mhode. Ferre-Ginet al* develop')ed a fuzzy-néural network
the direct numerical solution of the Navier—Stokes equat'on?)attern recognition technique which operates as an automatic

of fluid motion. The interpretation and control of the very classification technique, free from operator bias, capable of

Lla:)r\?vi r:rr:g%f{hzxggggc‘?;aezen?&?nt'Theatsfﬁéescpﬂresezitr:anstheégtegorizing all types of coherent and disordered motions
' g y Present in the data. This capability could be exploited to

:Zihil?gﬂgaémn of analytical, experimental and Computat'Onagenerate turbulent signals if the method were reversed. In

. other words, it could predict a sequence of classes of patterns
It is now well known that there are large-scale, recurrent o . o ,
from an initial velocity condition. Of course, such a simula-
tion would only succeed if the artificial neural network had
3Telephone: +34-977559638; Fax:+34-977559621. Electronic mail: |earned the nonlinear dynamics of the turbulent flow. If such

fgiralt@etseq.urv.es . . . . .
bPresent address: Boundary Layer Wind Tunnel Laboratory, Faculty of En simulation did succeed, then it could also be possible to

gineering Science, University of Western Ontario, London, ON, N6A 589, 8PPly the system. openly and interactively to identify the
Canada. structure present in any turbulent flow as an expert system.
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Here we report a cognitive neural network architecturesociated with turbulence. This requires that the artificial neu-
based on fuzzy ARTMAP that is capable of learning the ral system should be able to select, in an automated way, a
basic nonlinear dynamics of a turbulent velocity field and topath in this complex sequence of real events or patterns on
generate, afterwards, a detailed multipoint time record, athe basis of past experience. Therefore, it should:
detailed as can be measured in a laboratory experiment. TQS
problem dealt with in the present study at the simulation
stage is not that of exactly forecasting the measured field but.

. ) ! .chl)
that of generating the turbulent field after learning the basi
statistics and structural characteristics from historic examples
of the original?’?2 At the interpretation or expert system
stage, the trained neural system is used to determine the ex-
istence and topology of coherent structures that could be
present in the flow field investigated. This is done by gener-
ating sequences of data from inputs containing partial infor-
mation of the velocity field of the hypothesized structure.
The flow analyzed is a fully developed turbulent wake gen-
erated by a circular cylinder.

Be able to accurately classify patterns in difficult clas-
sification situations.

Be capable of generalizing incoming information with
an efficient mechanism for resetting patterns and cre-
ating new categories. This will ensure avoidance of
the stability-plasticity dilemnf®2°~2" of either hin-
dering stability by endlessly activating new categories
in competitive learning or by losing the plasticity or
ability of the network to react to any new data be-
cause the learning rate is gradually reduced to zero.
This characteristic of the Adaptive Resonance Theory
(ART) is important in the real time learning of sys-
tems that are continuously adapting in a nonstationary
situation. The more popular feedforward and feedback
Il. THE NEURAL SYSTEM architectures present the difficulty of establishing the
A. Background and network requirements dimension of the system or number of neurons that
are required for the network to exhibit long-time
memory capabilities. A pertinent discussion on the
long-time memory requirements to resolve ambigu-
ities in forecasting problems can be found inhfu

et al?®

Have associative memory or memory organization ac-
cessed by its content, with a sufficiently long span to
resolve the ambiguities in the succession states that
characterize the dynamics of highly nonlinear sys-
tems. The architecture should remember by retrieving
previously stored information in response to associ-
ated data.

Use fuzzy rules in the learning algorithm since they
are especially useful in the treatment of real data.

An artificial neural network is a modeling and computa-
tional technigue based on the observed behavior of biologi-
cal neurons which is used to mimic the performance or simu-
late the dynamics of a system from examples. In some cases
these networks are used in combination with the theory Ofiii)
fuzzy logic so that in addition to learning from experience,
they can carry out tasks faster with less computer space re-
quirements by accepting both numerical data and fuzzy com-
mands as inputs. Fuzzy and neural systems, or a combination
of the corresponding logic and network architectures, have
been applied to identify, classify, control, forecast, predict,
diagnose, model, design and analyze events in several flui )
base systems of interest to medicine, vehicle and transporta-
tion systems, aerospace, manufacturing, meteorology and
mining ** Examples of fluid-base applications in engineeringone reasonable choice which has the above characteristics is
include the reduction of drag, the minimization of energytnhe Fuzzy ARTMAP neural system.
consumption or losses, the prediction of transport rates in
industrial equipment, the reduction of noise, and phenomeng_ architecture
related to pressure dynamics. ) )

A significant portion of the above mentioned applica-  1he Fuzzy ARTMAP neural network is formed by a pair
tions are related to flow turbulence and arise from the need t8f fuzzy ART modules, Arta and ArLb, linked by an as-
control some aspects of this highly nonlinear phenomenorsociative memory and an internal controffér.This is
Thus, the performance of a neural system in these applicak€iched in Fig. 1 with the output disconnected.
tions could be evaluated by its ability to learn the dynamics T2r71e Fuzzy ART architecture was designed by Carpenter
of turbulence in some pre-selected regions of the flow field€t @~ for multidimensional data clustering based on a set of
Feedforward, feedback, and other standard architectures aﬁ%aturels. The elements of the setrefiimensional data vec-
capable of capturing some aspects of the dynamics of turbd@rS{&"-.£"}, wherep is the number of vectors to be clas-
lent flows. For example, Leet al?* have established the sified, must pe interpreted as a pattern of values showing the
correlation between some near-wall turbulence parametef@Xt€nt to which each feature is present.
and the wall actuation needed to reduce drag. However, it EVery pattern must be normalized to satisfy the follow-
remains to be determined whether these or other archited?d conditions:
tures are capable of first learning and then simulating, in a ge[o,"

global sense, flow turbulence. 1)
One indispensable requirement for attempting the simu- " : _
lation of a synthetic turbulent velocity field.e., of simulta- 121 &=k Vi=1,.p.

neous multipoint turbulent velocity time-recojdgith a neu-
ral network is that the architecture should be capable of The classification procedure of fuzzy ART is based on
learning the irregular time sequences of velocity patterns asuzzy Set Theory° The similarity between two vectors can
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contradiction with any other previously recorded. If no con-
tradiction is found, the link is recorded, but in the case of a
contradiction, the pattern is re-classified with a larger vigi-
Aance parameter. Once the network has been trained it can be
used to classify input vectors without any additional infor-

FIG. 1. Individual neural network architecture.

be established by the grade of the membership functio
which for two generic vectord, m) can be easily calculated

mation.
as . .
The Fuzzy ARTMAP architecture was designed to clas-
P |£'0gm) 2 sify data and, thus, cannot generate an output pattern after
gradg£ C &)= & 2) the training stage. To implement this new mode of operation

. ' the categories educed by the system from the learned infor-
In Eq. (2) the fuzzy AND operatoflis defined by mation are linked to the desired outputs, as depicted in Fig.

0:[0,2]"x[0,1]"—[0,1]" 1. This is mathematically equivalent to defining a mapping
from the space of categories to that of output patterns, the
image of the mapping being defined by examples of patterns
' provided to the neural system in a supervised manner. The
g} =min( g} ,g}“) Vji=1,..n. 3 accuracy of the procedure increases asymptotically towards a
constant value with the number of examples used for train-
ing, i.e., when the space of outputs is accurately mapped. In
the predictive mode, only the category layer of Astin Fig.

is active and linked to Arta to provide an output for each

input vector presented to this module.

while the components of the image vector that result from
this application are

The norm|s| in Eq. (2) is the sum of the components of the .
vector defined by Eq(3).

The classification algorithm clusters the data that have
value of (2) greater than thevigilance parameterp into
groups or classes. The value mtontrols the granularity of
the classes and allows the implementation of a desired acc

o e . lé Experimental data and training sets
racy criteria in the classification procedure. Each class P 9

represented by a vectes”, the weight vector. The proce- The performance of the proposed neural system has been
dure starts by creating the first class from the first patterrevaluated by simulating the two-dimensional velocity field
presented to the network measured at eight different positioris<1,2,...,8) along the
1.1 homogeneousgspanwisg direction of a turbulent wake flow
W =& ) generated behind a cylinder at R&200 andx/D =420. The

The rest of input patterng (i=2,...p) are presented to freestream velocity of this flow wabl,=6.7 m/s and the
the network and if the similarity of' with any established cylinder diameterD=2.67 mm. The structural characteris-
classu is greater tham then ¢' is classified into this class, tics of these fully developed turbulent wake data, provided
and the representative of this class is updated according tdoy R. A. Antonia(University of Newcastlg have been pre-

- 115 using pattern recognition
Whew= 0fE . (5) gb g

viously examined by Koppet al.
and proper orthogonal decompositidOD). Figure 2 illus-

Otherwise a new class representedébis created. Equation trates the experimental flow configuration for the case where
(5) is the learning rule of the net. The mechanisms to speethe (u, w) velocity data were measured with eigktwire
up the process and to conduct the classification properly caprobes located along the homogeneous spanwise direction at
be found elsewher€. the half width of the wakelg=12.3 mm). Herel, is the

The dynamics of Fuzzy ARTMAP are essentially the lateral(y) location where the mean velocity defect is half the
same as two separate Fuzzy ART networks, each one worknaximum value. The eight sensors spanned approximately
ing with a part of the training vector; the first part could be 2.87, in thez direction. The voltage signals were sampled at
interpreted as the input pattern and the second one as t2¥17 Hz for 30 s. Taylor's hypothesis was used to convert
desired classification outpuisupervisoy. The associative the time measurements into the spatial coordinate- Uyt
memory records the link between the classes correspondirig all plots.
to the input pattern and the desired classification. The inter- The neural system proposed was formed by eight Fuzzy
nal controller is responsible for supervising if a new link is in ARTMAP networks like the one shown in Fig. 1. These

Downloaded 27 Feb 2007 to 193.147.222.244. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 12, No. 7, July 2000 The simulation and interpretation of free turbulence . . . 1829

networks were working in parallel and synchronously, onell. SIMULATION OF FREE TURBULENCE

for each experlmentgl deyme measuring §|multaneogsly thR  statistics from the simulation

two-component velocity signalsandw at a givenk-location

in the wake flow. Each individual network was first trained ~ 10 evaluate the performance of the proposed network
with the output in Fig. 1 disconnected. The training data forarchitecture 81600 time instant&9.4 9 of (u, w) velocity
each individual network consisted of vectors with 12 ele-Signals were generated at time intervals\of=0.368 ms. No
ments for the Arta module, four temporal or historical ve- repetitions in the predicted velocity field were observed over

locity componentgu andw) for the probe under consider- thiS time-period. Theu, w) results obtained in the homoge-
ation, plus the two componts of the two spatially adjacen{’€0USX-Z plane of the wake are evaluated in detail in this
probes. Vectors with two elements, the following value Ofsectlon using basic statistics, spectral and correlation analy-

each velocity component in the time sequence, were used iSis: POD and pattern recognition. The preliminary evaluation

the Art_b module. Thus, simultaneous space—time informa-Of the performance of the proposed neural system for non-

tion was provided to the neural system in terms of the inpupomogengous turbuleno(e(—)_/ plane? is also reported. Al
to each Art.a module, with the corresponding future infor- space variables are normalized with respediptas

mation for(u, w) given to each Artb module, with no other . AX  —UpAt . Ay . Az

association between individual networks. At the two extreme X"~ =T, z= K'
locations(k=1 and 8 the spatial information was provided

from the one-sided contiguous locatiofist+ 1, k+2) and o g ' ;
(k—1, k—2), respectively. statistics of the two-dimensional instantaneous turbulent ve-

The dimension of the input vectors to the eight neurall°City field (u, w) measured and simulated by the present
networks and the type of simultaneous space—time inform architecture with training sets of 2000 and 24 000 samples

tion that they contained was decided after examination of th beled ANN-2000 and ANN-24 000, respectively, are given

space—time correlation of the experimental data, so that rel! Table I. . - .
The comparison of the statistics of the two predicted

evant structural characteristics of the flow were provided to. S : . .
the system during training. The choice of four temporal datzitsI umfﬁcrig?rt?)sczhmz ttf;]aet itrr?emE}gr}/;/'tzfz&(;ot;;séasnés5;:;261;58
for each velocity component in the training input vector is; P 9 y q '

consistent with Takens theoréthThis theorem states that ' also the case .for t'he Iocg | fractal dimension. Thus, the
: . . . ._results analyzed in this section correspond mostly to ANN-
good accuracy can be achieved in point-to-point forecastin

in a system with attractors of dimensignwhen a function 2000. The mean of the predicted velocity field reported in

that depends at most ond2 1) past measurements is used Table | deviates a maximum of 0.2%, in terms of the free
P onda 1) pa - stream velocity, from thézero meajpexperimental fluctuat-
For the wake flow this implies using between four and five

historical data in the traini ; ing field. The rmgroot-mean-squajevalues of the fluctuat-
Istorical data In the training Sets. ing field generated fou andw are also in agreement with

. . _ . i
The system was trained using the first 2000 instants ogxperimental data, with a maximum deviation of 9.2%. The

the experimental velocity 'fleI(U,'w). This was sufficient to Reynolds shear stress field is equal to zero, within the limits
match the local fractal dimension of 1.¥8.02 and 1.78 ¢ e experimental error of the data, as should be the case in
+0.02 of the simulatedi and w signals, respectlve!y, with the homogeneous spanwise direction of the wake.
the values 1.760.02 ar_1d 1.7_& 0.02 of the experimental The auto-spectra of the simulated data is in good accor-
data. The local fractal dimension was calculated by th362 boXgance with the experiments for both velocity components at
counting dimension procedure described by Setal: all spanwise locations, as illustrated by the spectra ahd
Additional tralnln_g .tests WIFh up to 40000 samples yleldgdwl shown in Fig. 3 at one of the eight spanwise locations
comparable statistics but improved structural characterizasy,died. These spectral results indicate that the neural system
tlon,_ as is discussed in the next section. A nonop_tlmlzec&jmtureS the energy distribution of both signals up to fre-
version of the code required less tha h oftotal CPU time  quencies of 1 kHz, i.e., in the frequency range where aliasing
for training in a Sun Ultra-2/300 workstation. errors are negligible.

After training, instant{2001-2004 of measuredi and The spatial correlation for the experimental and simu-
w at each location were used together with the two spatigjatedu velocity component is depicted in Fig. 4. Comparison
data of the instant 2004 as the initial input vector to thepetween the correlation contours in both cases shows that the
Art_a module of each net. The outplut, w) for the instant  neural system resolves the flow field well up to a spanwise
2005 was generated by each At module with only the |ocationz* = —0.2, i.e., up to an extent of approximately five
categories layer and the output activated. The output calcirobes. The auto-correlation functions for the experimental
lated by each network was added to the corresponding datgnd simulated data, observed along #fedirection at the
sequence and a new input pattern was formed with historitop of Figs. 4a) and 4b) for the extreme probe at location
cals (2002—-200% and with the two spatial data predicted z*=1.2, are also in good agreement down to correlations of
simultaneously by the two neighboring networks also at in-0.10. The 0.05 level occurs at*=+2.5 in the simulated
stant 2005. Such operation of the neural system produceddata, slightly shortening the streamwise correlation. Similar
two-component velocity field of eight velocity data pajts  accordance is found between the spatial correlation of the
w) every 0.14 s of CPU with the two processors of the work-experimental and simulatedvelocity fields(not shown here
station working in parallel. for brevity).

lo o 77 o

The flow in all vector maps is from left to right. The
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TABLE |. Statistics of the experimental and simulated data with velocities in m/s.

Giralt et al.

Experimental ANN-2000 ANN-24000

mean rms uw mean rms uw mean rms uw
Uy 0.000 0.118 0.010 0.119 0.008 0.114
A 0.000 0.087 0.001 —0.002 0.083 0.001 —0.001 0.081 0.001
u, 0.000 0.117 0.012 0.109 0.004 0.108
Wy 0.000 0.087 0.002 0.000 0.087 0.001 0.001 0.079 0.001
Uz 0.000 0.118 0.012 0.113 0.003 0.110
W3 0.000 0.087 0.000 0.001 0.080 0.000 —0.001 0.079 0.000
Uy 0.000 0.117 0.016 0.109 0.006 0.110
A 0.000 0.087 0.000 —0.003 0.082 0.000 —0.000 0.078 0.000
Us 0.000 0.120 0.009 0.109 0.004 0.113
Wsg 0.000 0.088 0.001 0.003 0.086 0.001 0.002 0.081 0.001
Ug 0.000 0.117 0.011 0.110 0.007 0.115
Weg 0.000 0.088 0.000 0.011 0.085 0.000 0.003 0.077 0.001
u; 0.000 0.120 0.010 0.120 0.005 0.117
Wy 0.000 0.087 —0.001 0.007 0.082 —0.001 0.001 0.080 0.000
Ug 0.000 0.111 —0.007 0.108 0.002 0.106
Wg 0.000 0.084 —0.002 —0.005 0.083 —0.002 —0.002 0.079  —0.001

data with double rollers and 714 windows with saddle points
An estimate of the overall flow structure for the experi- are contained in a simulated time-record of 81 600 instants.
mental and simulated velocity flow fields is given in Figs. 5 1S compares favourably to the 922 and 895 windows of the

and 6, via the first and second eigenvectors obtained froffESPECtive structures present in the experimental data. The
POD. The neural system adequately describes the flow strud1% reduction in the number of structures present in the
ture of the turbulent wake flow as indicated by the goodsimulated data may be due to the inability of the neural sys-
agreement observed in these plots between the measured 48 t0 learn continuity or the three-dimensional structural
the simulated fields. The first eigenvector obtained from thé&haracteristics from two-dimensional information or it may

simulated two-dimensional velocity fie[&Fig. 5(b)] projects e due to the loss of correlation as discussed regarding Fig.
to the one of the real daf&ig. 5a)] with a correlation co- 4. It should be mentioned that the proposed neural architec-

efficient of 0.97. The neural system identifies the negativdure learned mass conservation when it was applied to a two-
fluctuating velocity motions that dominate the wake dimensional isotropic turbulent velocity field.
flow,'**® as illustrated by the first eigenvector. This satisfac-  The corresponding prototypical patterns or ensemble-
tory description of structure is also observed in the secon@verages of the double rollers and saddle points identified by
eigenvectofFigs. 6a) and @b)]. In this case the neural sys- pattern recognition are depicted in Figs. 7 and 8 for both the
tem also captures the presence of saddle points in the walgémulated and experimental velocity fields. The agreement in
flow. In both Figs. 5 and 6 there is a progressive randomizatopology between both vector maps is reasonable, with the
tion of the structure for negative®, consistent with the ran- saddle point appearing upstream of the double roller in both
domization of the correlation contours presented in Fig. 4. cases. The correlation between the patterns in Figs.and

A pattern recognition analysis, carried out to determine7(b) and between those in Figs(a and 8b) are 0.80 and
the large-scale structural characteristics of the simulate@.86, respectively. This performance is remarkable when it is
flow, shows that 765 windows of 44 instantaneous velocityconsidered that the 2000 instants of velocity information

B. Structure of the simulated data

1e-1
(@) (b)

FIG. 3. Autospectra of the experimen-
tal and simulateda) streamwise and
(b) spanwise velocity components.

Energy
Energy
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the observed correlations increase to 0.94 when 40000 in-
stants are used for training, i.e., when the ANN-40000 is
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A similar performance of the neural system was obtainedhe wake centerplang=0 and spanned vertically the
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the signals measured at the eight different vertical positions
depends on the different number of turbulent events sensed
by the hot-wires located near the centerplane or near the
outer edges of the wake. As a consequence of this depen-
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TP RV TR B W sidered as the inpuFig. 7(a)].
-2 -1 0 1 2 The architecture proposed is, thus, well suited to inter-
< pret free turbulence, as illustrated in the next section, and for

N _ _ real time applications involving turbulent flows. It can also
FIG. 8. Pattern recognition analyses of saddle poi@sExperimental and be used to complete time sequences of important data that
(b) simulated data. .. . . e . . . .
are limited in size due to difficulties in their acquisition or
prediction. For example, the accurate direct numerical simu-

ation of a turbulent flow requires intensive use of CPU

selnqi/t ofri1 llgt(errT/;ttvc\eln;:y,nat (;eistt Ei(r)olg tlr?Staimit cr)]f ttvr\‘/erieaiime??’ which for some flow situations or Reynolds numbers
elocily field (u, ere needed fo tra € EIgNL NEIWOTKS, ¢ interest may not be sufficiently available at present.

gnd to capture enough information from the different VeIOC'T erefore, the synthetic generation of turbulent velocity or
ity records so that the generated honhomogeneous turbuleg

. ) alar signals or fields with a neural system may be a useful
field reproduces the experimental one. It should be noted th% d complementary tool for computational fluid dynamics

the information contained in the vertical plane data is morEéCFD)' It should be noted that the application of the pro-

gtn;ﬂilt"trctez l:r?(;nabsigc]i\tgzurillszftemat?eeﬁ]iucs)icthﬁ'r?Oh:tr? osed fuzzy ARTMAP architecture to DNS data would re-
uct ! v "y p urnng uire different training and analysis due to the different spa-

outer edge are d!fferent from those at the penter region of th al and time resolution of numerical calculations.
wake. In the horizontal plane, homogeneity implies that the
same type of information is ultimately presented to each in-
dividual network. IV. INTERPRETATION OF TURBULENCE

To assess the capability of the trained neural system to  The next step in the evaluation of the neural system is as
interpret the large-scale structure of a turbulent velocity fieldan interactive expert system to help with the identification of
as an expert system it is necessary to first study whether ahe structural characteristics of turbulence in a flow not pre-
not the system is capable of generating instantaneous velogiously studied. To simplify this problem it will be assumed
ity patterns with the correct structural features of the flowhere that the unknown turbulent flow is the turbulent wake
analyzed. To investigate this, the 922 data windows contribflow analyzed in the previous section.
uting to the double roller ensemble-average of Fig) Were
utilized. In particular, for each of these 922 windows, theA. Known characteristics

four temporal points for each sensor at positions<x# . . .
<1.0 in Fig. Ta) were used as the historical input to the The challenge considered is to determine whether the

neural system. The following 10 points of the time seriesPresence of the double roller structure postulated more than

(i.e., the positions— 1.5<x*<0.4 in Fig. 1a) were gener- forty years ago from correlation ddt¥ exists instanta-

ated for each sensor in exactly the same way as the simul(g-e ously in the flow learned by the neural system. Two inter-

tion described above was performed. Figure 9 shows the er[?_retatlon experiments are considered:
semble average of these 922 simulated events. Note théb Education of a double roller with point-to-point fore-

these input data were not included in the training sets of casting from an sketch of an idealized or assumed
ANN-2000. Clearly, the structure in Fig. 9 corresponds to template of this structuréln point-to-point forecast-
the class of large-scale motions represented by the double ing, the template “data” are always used for the four
roller in Fig. 7@). This result indicates that with the same temporal or historical inputs.

input information as that occurring instantaneously in a labo{ii)  Testing for double rollers from a single input vector
ratory experiment, the neural system generates a group of containing the initial portion of the above idealized
instantaneous events that yield an ensemble average or pro-  template.
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FIG. 10. Point-to-point forecasting of a vector map from an idealized and x*

scaled double roller template.

FIG. 11. Prediction of an instantaneous vector map from an idealized and
scaled double roller template.

Figure 10 shows the point to point forecasting from a

template of the double roller depicted in Figali properly g shows a double roller just downstream of the saddle
scaled to match the rms values of the fluctuating field CONnoint and a large rollefwhich hints at being a large double

sidered. This is necessary because the neural system Nage) There appears to be flow directly from the center of
learned from real examples containing both large-scale anghe gouble roller to the top of the upstream counterclockwise
small-scale motions, i.e., from signals of a given amplitude,jqr. Large single rollers were first found by Mumfdfd
The predicted velocity map given in Fig. 10 corresponds t0 & |ater by Fefrand Giralt® Ferfeand Giralt found that
double roller structure centered &t =0 and with an up- \yhen a large single rolldi.e., larger than either roller mak-
stream saddle point at approximatety =—1.2. The ob- 4 5 the double roller structurevas identified there was
served randomness is due to the fact that the neural systggpso evidence that it was simply a portion of a larger double
was trained with turbulent flow data and has learned thigg)ier structure. Since then, no one has investigated the dy-
randomnesgsee Fig. 3 of the auto-spectra namics of these large single rollers, although the double

To support the significance of this finding, several testg|ier structure has been extensively investigated, most re-
of point-to-point forecasting were carried out with input tem- .oy by vernetet al®

plates of unrealistic or highly improbable vector maps. The 11 first step in this process was to determine whether
results showed that the neural system did not yield any playne neyral system had learned of the existence of the large
sible coherent topology or yield vector maps consistent Withsingle rollers. To do this, the type of simulation we per-

the space—time correlation of the data. Note that the velocity, med to generate Fig. 11 was repeated. The results are

vector map of the double roller in Fig(& which has been  ghown in Fig. 12. However, in Fig. 12 the four right-most
used to generate Fig. 10 does not belong to the training set.

The final test for double rollers is the prediction of an
instantaneous vector map of 10 velocity vectors from a prop- L B R B L I L B
erly scaled input vector containing the four instants of infor- I, N
mation located at 08x* <1.4 in Fig. 4a). In this case, the R iy e
neural system predicts the double roller vector map of Fig. '

11. There is agreement between the experimental and pre- Z ©
dicted structures, with the predicted one being slightly
smaller in the streamwise direction of the flow. This is prob- -1
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ably caused by the difficulty of learning and predicting a L

three-dimensional phenomena related with the occurrence of 5 1 0 1 2

ring-shaped vorticé$ from only two-dimensional informa- x

tion and the fact that the neural system produces a slightly X

shorter auto-correlation than the experime(sise, e.g., Fig. L L L B PO

4). Nevertheless, the remarkable agreement between the R R e

double roller structure present in the laboratory data and in T f Y DD

the vector map produced by the eight neural, indicates the RSSO AN
e N N N el

potential of the proposed cognitive system to capture the
dynamics of turbulent flows and be utilized as an expert

e Tttt

******** NN \\\__)__,/v,r,v_»_-

system. Note that differences in the modulus of the vector -1 B T R

plots in both figures are caused by the scaling of the input I

signal. -2 -1 0 1 2
X*

B. New observed structural features in the far wake

. . FIG. 12. Prediction of an instantaneous vector map from an indealized large
One of the things that has puzzled us is the lack of SYMzcale roller template for two different initial conditions of the velocity field.

metry around the saddle points in Figga)8and 8b). Figure  The initial condition is shown by the four rightmost vectors(é and (b).
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L ARARE AR V. CONCLUSIONS

e e A e ey

N R The present results indicate that the proposed neural sys-
: tem is capable of capturing the highly nonlinear dynamics of
free turbulence. Synthetic signals were generated with the
fuzzy ARTMAP network at eight different positions in the
homogeneous plane of cylinder wake. Spectral analysis,
e POD, and pattern recognition were used to show that the
-3 -2 -1 0 1 2 3 simulated signals capture the main features of the turbulence.
N The present neural network was also applied as an inter-
active expert system to recognize the individual classes of
FIG. 13. A pattern recognition analysis of the double roller—saddle—largegvents present in complex shear flows. Idealized velocity sig-
single roller configuration present in the experimental velocity data. nals (pattern$ are input to the network and a point-to-point
forecast of the resulting velocities is performed. This allows
hypotheses about the turbulence structure to be investigated.
With this approach, large single roller structures are ob-

data points are the historical data given to the neural syste$frved upstream of the well-known double roller structures,
as input. The given historical time data in Fig. 12 is characWith & saddle point between them.

terized by the upstream portion of a saddle pdmich as
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