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Abstract

We present an extended analysis, based on the dynamics towards synchronization of
a system of coupled oscillators, of the hierarchy of communities in complex networks.
In the synchronization process, different structures corresponding to well defined
communities of nodes appear in a hierarchical way. The analysis also provides a
useful connection between synchronization dynamics, complex networks topology
and spectral graph analysis.
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1 Introduction

In 1998 Watts and Strogatz presented a simple model of network’s structure
that was the seed of the modern theory of complex networks [1]. Beginning
with a regular lattice, they showed that the addition of a small number of
random links reduces the diameter drastically. This effect, know as small-world
effect, was detected in natural and artificial networks. The research was in
part originally inspired by Watts’ efforts to understand the synchronization of
cricket chirps, which show a high degree of coordination over long distances as
though the insects where “invisibly” connected. Since then complex networks
are being subject of attention of the physicists’ community [2–5].

Complex networks are found in fields as diverse as the Internet, the World-
Wide-Web, food-webs, and many forms of biological and social organizations
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(see [6] and references therein). The description of these networks, as it occurs
in many physical systems, can be performed at different scales. At the lower
level of description, the “microscale” is represented by single nodes. From the
static point of view the key point is to determine certain properties of indi-
vidual nodes (degree, centrality, clustering, etc.), while from the dynamics of
the network point of view, the important issue is to know about the dynami-
cal process each node is performing. This level of description is unfortunately
very precise and does not allow a generic analysis of the global properties of
the system. At the other extreme, we have the higher level of description,
the “macroscale”, represented by the statistical properties of the network as
a whole. This description has been the realm of statistical physics in complex
networks and has provided great insight in the universality of certain features
of many real world systems.

In the middle of these descriptions still remains a huge space for different
scales of descriptions that we like to name as “mesoscales”, or intermediate
scales. These scales are understood as substructures (eventually subgraphs)
that have topological entity compared to the whole network, e.g. motifs [7,8],
cliques [9], cores [10], loops [11] or, generally speaking, communities [12]. In
particular, the community detection problem concerning the determination of
mesoscopic structures that have functional, relational or even social entity is
still controversial, starting from the “a priori” definition of what a commu-
nity is [14]. The correct determination of the mesoscale in complex networks
is a major challenge. Under the name of the community detection problem,
consisting in finding a ’good’ partition of the network in sub-graphs that rep-
resent communities according to a given definition, physicists have provided
different methods that confront this challenge[13]. However, in many complex
networks the organization of nodes is not completely represented by a unique
partition but by a set of nested communities that appear at different topo-
logical scales. This evidence comes from indirect experimental data revealing
functionalities in complex networks that involve different subsets of nodes at
different hierarchical levels [15,16].

In a completely different scenario, physicists have largely studied the dynam-
ics of complex biological systems, and in particular the paradigmatic analysis
of large populations of coupled oscillators [18–20]. The connection between
the study of synchronization processes and complex networks is interesting
by itself. Indeed, the original inspiration of Watts and Strogatz in the devel-
opment of the Small-World network structure was, as mentioned before, to
understand the synchronization of cricket chirps. This synchronization phe-
nomena as many others e.g. asian fireflies flashing at unison, pacemaker cells
in the heart oscillating in harmony, etc. have been mainly described under
the mean field hypothesis that assumes that all oscillators behave identically
and interact with the rest of the population. Recently, the emergence of syn-
chronization phenomena in complex networks has been shown to be closely
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related to the underlying topology of interactions [17] beyond the macroscopic
description.

In this paper we study of the dynamics towards synchronization in complex
networks at the mesoscale description, extending previous results [21]. The pa-
per is structured as follows: in section II we present the synchronization model
studied. In section III we describe a method to construct synthetic networks
with a well prescribed hierarchical community structure. In section IV, we ex-
pose the analysis of the route towards synchronization and their relationship
with the topological structure. Finally, we conclude with a discussion about
the synchronization processes in complex networks.

2 Synchronization: Kuramoto’s model

One of the most successful attempts to understand synchronization phenom-
ena was due to Kuramoto [20], who analyzed a model of phase oscillators
coupled through the sine of their phase differences. The model is rich enough
to display a large variety of synchronization patterns and sufficiently flexible
to be adapted to many different contexts [22]. The Kuramoto model consists
of a population of N coupled phase oscillators where the phase of the i-th
unit, denoted by θi(t), evolves in time according to the following dynamics

dθi
dt

= ωi +
∑

j

Kij sin(θj − θi) i = 1, ..., N (1)

where ωi stands for its natural frequency and Kij describes the coupling be-
tween units. The original model studied by Kuramoto assumed mean-field
interactions Kij = K, ∀i, j. In absence of noise the long time properties of
the population are determined by analyzing the only two factors which play
a role in the dynamics: the strength of the coupling K whose effect tends to
synchronize the oscillators (same phase) versus the width of the distribution
of natural frequencies, the source of disorder which drives them to stay away
each other by running at different velocities. For unimodal distributions, there
is a critical coupling Kc above which synchronization emerges spontaneously.

Recently, due to the realization that many networks in nature have complex
topologies, these studies have been extended to systems where the pattern of
connections is local but not necessarily regular [23–32]. Usually, due to the
complexity of the analysis some further assumptions have been introduced.
For instance, it has been a normal practice to assume that the oscillators are
identical. Obviously, in absence of disorder, i.e. if (ωi = ω ∀i) there is only one
attractor of the dynamics: the fully synchronized regime where θi = θ, ∀i. In
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this context the interest concerns not the final locked state in itself but the
route to the attractor. In particular, it has been shown [33,34] that high densely
interconnected sets of oscillators (motifs) synchronize more easily that those
with sparse connections. This scenario suggests that for a complex network
with a non-trivial connectivity pattern, starting from random initial condi-
tions, those highly interconnected units forming local clusters will synchronize
first and then, in a sequential process, larger and larger spatial structures also
will do it up to the final state where the whole population should have the
same phase. We expect this process to occur at different time scales if a clear
community structure exists. Thus, the dynamical route towards the global
attractor will reveal different topological structures, presumably those which
represent communities. Therefore, it is the complete dynamical process what
unveils the whole organization at all scales, from the microscale at a very early
stages up to the macroscale at the end of the time evolution. On the contrary,
those systems endowed with a regular topological structure will usually dis-
play a trivial dynamics with a single time scale for synchronization, although
some recent studies indicate also other possibilities [35].

It is a normal practice to define, for the Kuramoto model, a global order
parameter to characterize the level of entrainment between oscillators. The
normal choice is to use the following complex-valued order-parameter

reiψ =
1

N

N
∑

j=1

eiθj . (2)

where r(t) with 0 ≤ r(t) ≤ 1 measures the coherence of the oscillator popula-
tion, and ψ(t) is the average phase. However, this definition, although suitable
for mean-field models is not efficient to identify local dynamic effects. In par-
ticular it does not give information about the route to the attractor (fully
synchronization) in terms of local clusters which is so important to identify
functional groups or communities. For this reason, instead of considering a
global observable, we define a local order parameter measuring the average of
the correlation between pairs of oscillators

ρij(t) =< cos(θi(t) − θj(t)) > (3)

where the brackets stand for the average over initial random phases. The
main advantage of this approach is that it allows to trace the time evolution
of pairs of oscillators and therefore to identify compact clusters reminiscent of
the existence of communities.
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3 Structured complex networks

To give evidence of the aforementioned facts we have analyzed the dynam-
ics towards synchronization –time evolution of ρij(t)– in computer-generated
graphs with community structure.

The paradigmatic model of network with a well defined community structure
that has been used as a benchmark for different community detection algo-
rithms [13], was proposed by Girvan and Newman [36]. In that model the
authors construct a network of 128 nodes as a set of 4 communities, each one
formed by 32 nodes. Fixing the mean number of links per node at a value of
16, the parameter describing the sharpness of the community distribution is
zin, the average number of links within the community. Here, we propose two
generalizations of this model:

• Including communities of different sizes. In [37] it is shown that the algo-
rithms for detecting the community structure are very sensitive to the size
of the communities themselves, and a model to construct networks with
inhomogeneous distributions of communities is proposed. In this case the
networks are parametrized by two quantities, the internal and the external
cohesion. As an example of such network see Fig.1a, with a clear distinction
between the communities of different sizes.

• Including several hierarchical levels of communities. We take a set of N
nodes and divide it into n1 groups of equal size; each of these groups is then
divided into n2 groups and so on up to a number of steps k which defines
the number of hierarchical levels of the network. Then we add links to the
networks in such a way that at each node we assign at random a number
of z1 neighbours within its group at the first level, z2 neighbours within the
group at the second level and so on. There is a remaining numbers of links
that each node has to the rest of the network, that we will call zout. In this
case it is easy to compute the modularity of the partition [36] at any level
l ≤ k

Qn1·n2·...·nl
=

zl + . . .+ zk
zout + z1 + . . .+ zk

−
1

n1 · n2 . . . · nl
(4)

and its numerical value tells us how good as partition into a given commu-
nity structure is. In [21] we considered networks with two hierarchical levels
with 256 nodes, and n1 = n2 = 4; this gives two possible partitions: one
with 4 communities and the other one with 16 communities. In that case one
can relate the more stable regions with larger values of modularity. Here we
consider a network with 3 levels with 64 nodes for which n1 = n2 = n3 = 2,
see Fig.2a.

In a different scenario, there is a set of deterministic networks that has been
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Fig. 1. Network with a inhomogeneous distribution of communities. a) the network
structure; b) eigenvalues spectra and number of detected communities as a function
of time; c) dendogram of the community merging. d) time needed for each pair of
oscillators to synchronize. Red for shorter times, blue for larger times.

used as an example of hierarchical scale-free networks, proposed by Ravasz
and Barabasi [38]. This type of networks, apart from its hierarchical structure
has some nodes with a special role in terms of number of connexions (hubs) in
contrast to the networks discussed previously that are essentially homogeneous
in degree. In Fig. 3a we present a very simple example of this class of networks
for the case of two hierarchical levels.

In a previous work [21] we represented the correlation matrix of the system
ρij(t) at the same time instant t for two slightly different two level hierar-
chical networks with structure 13-4 and 15-2. From that representation, we
could identify the two levels of the hierarchical distribution of communities.
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Fig. 2. Network with 3 levels of communities. a) the network structure; b)eigenvalues
spectra and number of detected communities as a function of time; c) dendogram of
the community merging; d) time needed for each pair of oscillators to synchronize.
Red for shorter times, blue for larger times.

The network 13-4 is very close to a state in which the four large groups are al-
most synchronized whereas the network 15-2 still presents some of the smaller
groups of synchronized oscillators, and the larger group starting to synchro-
nize, coherently with their topological structure. This picture that relates dy-
namics and topology, and distinguishes at a given time the two configurations,
was our starting point and we follow this formalism in the next section.
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Fig. 3. Deterministic network with 2 levels. a) the network structure; b) eigenvalues
spectra and number of detected communities as a function of time; c) dendogram of
the community merging; d) time needed for each pair of oscillators to synchronize.
Red for shorter times, blue for larger times.

4 The connection between synchronization and topology

The visualization of the correlation matrix of the system helps in elucidating
the topology of the network. To extract the quantitative information it is
useful to introduce some threshold T to convert the correlation matrix into a
binary matrix, that will be used to determine the borders between different
groups. We define a dynamic connectivity matrix

Dt(T )ij =











1 if ρij(t) > T

0 if ρij(t) < T
(5)
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that depends on both the underlying topology and the collective dynamics. For
a fixed time t, by moving the threshold T , we obtain different representations
of Dt(T ) that inform about the structure of the dynamic correlations. When
the threshold is large enough the representation of Dt(T ) becomes a set of
disconnected clumps or communities. Decreasing T a hierarchical structure of
communities is devised. Note that since the function ρij(t) is continuous and
monotonic (because the existence of a unique attractor of the dynamics), we
can redefine DT (t), i.e. fixing the threshold and evolving in time. We obtain
the same information about the structure of the dynamic connectivity matrix
at different time scales. These time scales unravel the topological structure of
the connectivity matrix at different topological scales [21].

For instance, the eigenvalue spectrum of DT (t), S(DT (t)), can help in tracing
the hierarchy of communities. In particular, the number of null eigenvalues
corresponds to the number of connected components of the dynamical (syn-
chronized) network. Thus, at short times, all units are uncorrelated and then
we have N disconnected sets, being N the number of nodes in the network.
As time goes on, nodes become synchronized in groups according to their
topological structure. In panel b) of Figs. 1-3 we have plotted the number of
non-connected components as a function of time for the three networks intro-
duced in the previous section. At early stages the number of components is
equal to the number of nodes whereas at final stages we have a single compo-
nent. One of the remarkable results is the slope in these curves. Plateau regions
indicate the relative stability of the dynamics at a given time scale whereas a
vertical drop is related to instability. In [21] we already linked the stabililty of
these regions with the eigenvalue spectrum of the Laplacian matrix, that we
will investigate in detail later on.

Another interesting link between dynamics and topology, related with the
discussion in the previous paragraph, comes from the analysis of the whole
spectrum of the Laplacian matrix of the network graph L [40]. The Lapla-
cian matrix is defined as Lij = kiδij − aij , where ki is the degree of node
i, δij is the Kronecker delta and aij is the element of the adjacency matrix
(1 if nodes i and j are connected and 0 otherwise). The spectral informa-
tion of the Laplacian matrix has been used to understand the structure of
complex networks [41], and in particular to detect the community structure
[42,43] (also the spectral analysis of the modularity matrix [44] can be used
to this end). Recent studies have also focused on the spectral information of
the Laplacian matrix and the synchronization dynamics [23–30]. The com-
mon approach is to take advantage of the master stability equation [45] to
determine the relation between the relative stability of the synchronized state
(via the ratio λN/λ2) and the heterogeneity of the topology, although some-
times some language abuse appears and authors talk about better or worse
synchonizability instead of stability of the synchronized state. Our approach
differs from these works in the following: we are interested in the transient
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towards synchronization because it is this whole process which will reveal the
topological structure at different scales. For this reason our analysis focus on
the whole eigenvalue spectrum of the Laplacian matrix S(L). To characterize
this spectrum, we rank the eigenvalues of L using an index i in ascending
order 0 = λ1 ≤ λ2 ≤ . . . λi . . . ≤ λN . Panel b) of Figs. 1-3 shows the order of
the eigenvalues in this ranking versus the inverse of its values, which closely
corresponds to the time scales of emergence of nested communities of nodes.
The structure of this sequence brings to light many aspects of the topological
structure: (i) the number of null eigenvalues gives trivially the number of dis-
connected components of the static network, (ii) the gaps between consecutive
eigenvalues tell us about the relative differences of time scales, and (iii) large
eigenvalues in the last part of the series stands for the existence of hubs in the
network (we will turn to these points later). In any case case the two curves
on each of the panels b) show an intriguing similarity. The time scale related
to a given eigenvalue corresponds roughly to the time scale at which a number
of groups of oscillators are synchronized (which is shown by the number of
connected components of the dynamical matrix).

In panel c) of Figs. 1-3 we have plotted the dendogram of the merging of the
groups along the time evolution as it can be deduced from the time evolution of
the correlation matrix. Groups merge as they get more correlated above some
threshold (synchronized). We can clearly identify here the different topological
scales, i.e. communities at different hierarchical levels.

Finally, in panel d) we plot the time that each pair of nodes need to synchro-
nize. This picture complements the previous one, since it did not preserve the
transitivity character of the merging. In the current picture transitivity plays
no role and we can observe how pairs of nodes synchronize by itself and not
by means of third parties.

5 Linear analysis

Finally we would like to shed some light about the intriguing relationship be-
tween the eigenvalues of the Laplacian and the dynamic structures that emerge
in the route towards synchronization as shown in panel b) of Figs. 1-3. To un-
derstand this correspondence let us analyze the linearized dynamics of the
Kuramoto model (i.e. the dynamics close to the attractor of synchronization)
in terms of the Laplacian matrix,

dθi
dt

= −k
∑

j

Lijθj i = 1, ..., N (6)
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whose solution in terms of the normal modes ϕi(t) reads

ϕi(t) =
∑

j

Bijθj = ϕi(0)e−λit i = 1, ..., N (7)

where λi are the eigenvalues of the Laplacian matrix, and B is the matrix
of eigenvectors. This set of equations has to be satisfied at any time t. If
we rank the system of equations in descending order of the eigenvalues (i.e.
starting from λN), the right hand side system of Eq.(7) will approach zero in
a hierarchical way. This fact is equivalent in the dynamics to group oscilla-
tors surpassing the synchronization threshold forming communities. The gaps
in the spectrum S(L) represent clearly different time scales between modes
revealing different topological scales. The collective modes, solution of the sys-
tem represented by Eq.(7), denote two types of behaviors. Some modes provide
information about reorganization of the phases in the whole network, while
the others inform about synchronization between pairs or groups of oscillators.
The presence of hubs in the topology gives rise to large eigenvalues that decay
very fast and are related to the first type of modes, those representing ”syn-
chronization” between the hub and the topological average of the phases of rest
of oscillators. The rest of modes relate oscillators that have similar projections
on the corresponding eigenvectors thus giving rise to communities at a given
topological scale. Indeed, this fact supports the success of the identification of
communities using spectral analysis [42].

To illustrate these ideas we have explicitly analyzed two different types of net-
works: the star, which is a simple example of isotropic, homogeneous network
without inner structure, and a simplified version of the Ravasz-Barabasi net-
work, where we can easily identify all the time scales of the dynamic process
and also to characterize and interpret the information provided by the spec-
trum of eigenvalues and eigenvectors of the laplacian matrix. The star consists
of a network formed by two types of nodes: a hub, located in the middle of
the network, connected to the rest of nodes and the peripherical nodes, not
connected between them, only to the hub. It has been studied frequently in
communication problems as a paradigm of system where all the traffic goes
through a single node and therefore it is easy to collapse. The laplacian matrix
of a n-node star (one hub and n-1 peripherical nodes) is





























−(n− 1) 1 · · · 1 1

1 −1 · · · 0 0
...

...
...

...
...

1 0 · · · −1 0

1 0 · · · 0 −1





























(8)
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whose spectrum of eigenvectors has a very simple and compact structure:

(0,−1, . . . ,−1,−n) (9)

two non-degenerate eigenvalues (0,−n) and a (n− 2) times degenerate eigen-
value (−1). The largest eigenvalue, in absolute value, gives information about
the dynamical properties of the hub, while the smallest characterizes the at-
tractor. To understand how the system of oscillators approaches the synchro-
nized final state it is convenient to analyze the spectrum of eigenvectors in a
hierarchical way starting again from the mode decaying first

λ = −n v1 = (−(n− 1), 1, 1, 1, . . . , 1, 1, 1)

λ = −1 v2 = (0,−1, 1, 0, . . . , 0, 0)

λ = −1 v3 = (0,−1, 0, 1, . . . , 0, 0)
... . . .

λ = −1 v(n−1) = (0,−1, 0, . . . , 0, 0, 1)

λ = 0 vn = (1, 1, 1, 1 . . . , 1, 1, 1)

(10)

The dynamical evolution of the system can be interpreted as follows. The
equation related to the largest eigenvalue reads

∑

j

B1jθj = e−nt (11)

It means that in a first stage, almost instantaneously, the phase of the hub
goes to

θ1 =
1

n− 1

∑

i>1

θi (12)

that is an arithmetic average over the peripherical units. In a second stage,
the rest of phases synchronize in pairs θi = θj ∀i, j 6= 1. Therefore, we can
identify two different types of collective modes, one tending to reorganize the
phases of some units while the rest describe the physical entrainment between
oscillators. Notice that the synchronization process takes place in a single time
scale which is reflected in the spectral properties of the laplacian matrix as
the set of eigenvalues is multiply degenerate.

A more complex situation is presented in the simplified Ravasz-Barabasi net-
work Fig.3a. In contrast to the uniform structure of the star, this network
displays an internal topological structure in two levels. Therefore, we expect
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a rich dynamical evolution which also should be reflected in the spectrum of
eigenvalues of the laplacian matrix. Now, the laplacian matrix reads

























































−8 1 1 1 1 1 1 1 1

1 −3 0 0 0 1 1 0 0

1 0 −3 0 0 0 0 1 1

1 0 0 −2 1 0 0 0 0

1 0 0 1 −2 0 0 0 0

1 1 0 0 0 −3 1 0 0

1 1 0 0 0 1 −3 0 0

1 0 1 0 0 0 0 −3 1

1 0 1 0 0 0 0 1 −3

























































(13)

whose spectrum of eigenvalues and eigenvectors is

λ = −9 v1 = (−8, 1, 1, 1, 1, 1, 1, 1, 1)

λ = −4 v2 = (0, 0,−1, 0, 0, 0, 0, 1, 0)

λ = −4 v3 = (0, 0,−1, 0, 0, 0, 0, 0, 1)

λ = −4 v4 = (0,−1, 0, 0, 0, 1, 0, 0, 0)

λ = −4 v5 = (0,−1, 0, 0, 0, 0, 1, 0, 0)

λ = −3 v6 = (0, 0, 0,−1, 1, 0, 0, 0, 0)

λ = −1 v7 = (0, 1, 0, −3
2
, −3

2
, 1, 1, 0, 0)

λ = −1 v8 = (0, 0, 1, −3
2
, −3

2
, 0, 0, 1, 1)

λ = 0 v9 = (1, 1, 1, 1, 1, 1, 1, 1, 1)

(14)

The analysis of the dynamical relaxation of the eigenmodes shows the following
aspects. First, a reorganization process takes place involving the phases of the
hub with the rest of oscillators. This stage is similar to that observed in the star
because the hub is again is a fully connected unit. The four-fold degenerate
eigenvalue λ = −4 describes the entrainment process between 6 nodes. This
behavior is quite appealing because although they are not directly connected
they are topologically equivalent and belong to the same structural level. These
results show that one has to consider other elements more important than
physical connectivity when defining the concept of community in complex
networks. Later, at a slightly larger time scale units 4 and 5 synchronize.
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Finally these nodes synchronize with the two equivalent functional groups as
can be stated from the two modes associated to the eigenvalue λ = −1. The
results are in perfect agreement with the synchronization times of the full
non-linear dynamics as we can see in the dendrogram of Fig. 3.

In general, as a rule of thumb, those networks whose structure is random and
where all the nodes play the same statistical role from a topological standpoint
are characterized by a continuum spectrum of eigenvalues. In contrast, when
the network has a specific internal structure, which for social or biological net-
works might be the fingerprint of different functional groups, then we expect
a Laplacian spectrum with different gaps stressing the existence of different
time scales in the dynamic process towards the attractor.

6 Summary

We have analyzed the synchronization dynamics in complex networks and
show how this process unravels its different topological scales. We have also
reported a connection between the spectral information of the Laplacian ma-
trix and the hierarchical process of emergence of communities at different time
scales. We show for a set of structured networks that the gaps in the spec-
trum are related to the stability of the hierarchical structures (communities)
of the networks. We propose additional graphical tools to understand how
the synchronization process takes place: a dendogram of the merging of the
synchronized groups and a visualtization of the time needed for each pair of
oscillators to synchronize.
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