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Abstract

We study a general and simple model for communication processes. In the model, agents
in a network (in particular, an organization) interchange information packets following sim-
ple rules that take into account the limited capability of the agents to deal with packets and
the cost associated with the existence of open communication channels. Due to the limitation in
the capability, the network collapses under certain conditions. We focus on when the collapse
occurs for hierarchical networks and also on the in2uence of the 2atness or steepness of the
structure. We 3nd that the need for hierarchy is related to the existence of costly connections.
c© 2001 Elsevier Science B.V. All rights reserved.
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Nowadays, a lot of attention is paid to the dynamics of complex social and economic
systems [1–3]. In particular, the in2uence of the topology of the underlying interactions
on the behavior of such systems [4–6] deserves special interest. We focus on the
behavior of hierarchical structures formed by agents (or elements, in general) that
interact with each other via communication processes. This framework is especially
adequate to study for instance packet 2ow in computer networks like the Internet
[7,8], traCc networks [9], river networks [10] and particularly information 2ows in
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Fig. 1. Typical hierarchical tree structure used for simulations and calculations. Dashed line: de3nition of
branch.

organizations [11–13]. Using Radner’s words [11]:

The typical U.S. company is so large that a substantial part of its workforce is
devoted to information-processing, rather than to “making” or “selling” things in
the narrow sense. Although precise de3nitions and data are not available, a reason-
able estimate is that more than one-half of U.S. workers (including managers) do
information-processing as their primary activity.

Thus, it is worth considering an organization as a system of information processors.
In this work, we extend a general and simple model for communication processes

that has been recently proposed [14]. The original model considers agents that deliver
information packets through well established channels. These agents have an in3nite
capacity to store packets and the only limitation comes from the fact that they do
not have an in3nite capacity to deliver. Despite its simplicity, the model reproduces
the main characteristics of the 2ow of information packets in a network and a con-
tinuous phase transition from a free to a congested regime is observed and properly
characterized by means of an order parameter [14].
In the present extension of the model, we introduce a cost associated with the

establishment of links so that the agents in the communication network cannot be
linked to an arbitrary number of neighbors or, at least, it has a negative in2uence on
their performance. In both cases, with and without cost associated with the links, the
optimal organizational structures are studied.
The organization is mapped into a hierarchical (Bethe) lattice (see Fig. 1), where

nodes represent the communicating agents (employees) and the links between them
represent communication lines. These tree like structures are characterized by two quan-
tities: the branching factor, z, and the number of levels, m.
The dynamics of the model is the following. At each time step t, an information

packet is created by every agent with probability p. When a new packet is created, a
destination agent, diMerent from the origin, is chosen at random in the network. Thus,
during the following time steps t; t + 1; : : : ; t + T , the packet is traveling toward its
destination: once the packet reaches this destination agent, it is delivered and disappears
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from the network. One can think in a problem solving scenario [13] and say that,
from time to time, problems arise in the organization; these problems need to be
solved somewhere in the network. When an agent receives a packet (problem), she
knows whether the destination (solution) is to be found somewhere below her. If so,
she directs the packet downwards in the right direction. Otherwise, she transmits it
upwards to the agent overseeing her. Thus, the information packets move toward their
destination following the shortest path. The time a packet remains in the network is
related not only to the distance between the origin and the destination agents, but also
to the amount of packets in the network. In particular, at each time step, all the agents
try to send each one of the packets they are handling. For each packet, there is a
probability qij to go from the present agent i to the next one j. We call qij the quality
of communication between agents i and j and it is de3ned as

qij =
√
kikj ; (1)

where k
 represents the capability of agent 
 to communicate at each time step. For
k
 we propose

k
=QL(c
)f(n
) ; (2)

where c
 is the number of links of agent 
, 0¡QL(c)6 1 is a cost factor related
to these links (note that, the higher the number of links, the smaller QL, so QL is
a monotonically decreasing function of its argument), L is the linking capability that
tunes the magnitude of this cost (higher values of L correspond to low linking cost and
viceversa), n
 is the total number of packets currently at agent 
, and 0¡f(n)6 1 is
the function that determines how the capability of a particular agent decreases when the
number of information packets to handle grows (again, f(n) is a decreasing function
of the argument).
A suitable election for f(n) seems to be

f(n)=

{
1 for n=0 ;

1=n for n=1; 2; 3; : : : ;
(3)

although other functional forms can be considered and one observes diMerent interesting
behaviors [14,15].
As the 3rst step, let us focus in the simpler case L→ ∞, i.e., cost-less connections.

The probability of generating a packet per agent and time unit, p, is an exogenous
parameter that controls the behavior of the system. For small values of p, all the
packets are delivered and so, after a transient, the system reaches a steady state in
which the total number of packets, N , 2uctuates around a constant value, i.e., the
number of delivered packets is equal, on average, to the number of generated packets.
However, for large values of p, not all the packets can be delivered, and N grows in
time without limit. The transition between one regime and the other is a continuous
phase transition and occurs for a well de3ned critical value of p, pc [14].
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It is possible to give an analytical estimation of pc. Within a mean 3eld approach,
it is if we do not consider 2uctuations and we assume that the behavior of all the
agents in the same level is statistically identical, one gets the following expression for
pc [14]

pc=
√
z

(z(zm−1 − 1)2)=(zm − 1) + 1
: (4)

For values of z and m such that zm−1�1 this expression can be approximated by

pc ≈ z3=2−m : (5)

Although strictly speaking (4) (and its approximation (5)) provides an upper bound to
pc, it is an excellent estimation for z¿ 4, as can be seen in Fig. 2 of Ref. [14].
More interesting to us is the maximum number of information packets that can be

generated in a time step without collapsing the organization, Nc=pcS, with S standing
for the size of the organization. It is given by

Nc=
√
z

(z(zm−1 − 1)2)=(zm − 1) + 1
zm − 1
z − 1

≈ z3=2

z − 1
(6)

again with the same approximation as in (5). Thus the total number of packets a net-
work can deal with does not depend on the number of hierarchical levels. Furthermore
Nc is a monotonically increasing function of z, suggesting that, 3xed the number of
agents in the organization, S, the optimal organizational structure, understood as the
structure with higher capacity to handle information, is the 2attest one, with m=2 and
z= S − 1.
However, from a practical point of view this structure is not possible: an organization

with 10,000 employees, for instance, cannot be organized in only two hierarchical
levels, since it is impossible to maintain such a enormous number of communication
lines. Thus, it is necessary to introduce the cost for establishing links in order to get
a more realistic picture of the problem. In this case, following arguments analogous to
that used in the case of cost-less connections, we can arrive at the following expression
for pc:

pc=

√
zQL(z)QL(z + 1)

(z(zm−1 − 1)2)=(zm − 1) + 1
: (7)

Again, for z and m such that zm−1�1, the maximum number of packets that can be
generated per time step without collapsing the system is independent of m, and is
given by

Nc ≈ z3=2(QL(z)QL(z − 1))1=2

z − 1
: (8)

To check the eMect of the cost factor, we propose the following form for QL(c)

QL(c)= 1− tanh
c
L
: (9)
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Fig. 2. Maximum number of packets that can be generated in an organization per time unit without collapsing
it, plotted as a function of z. DiMerent curves correspond to diMerent values of the linking capability, L.

Although the election of QL is completely arbitrary, (9) has two desirable properties:
(i) it is a monotonically decreasing strictly positive function and (ii) QL decreases
linearly for small values of c (compared to L). Also, QL decreases faster for small
values of L and viceversa.
As can be seen from Fig. 2, the scenario that arises with the introduction of the

cost factor is much more interesting. Now, the cost term compete with the behavior
we have found for the critical number of generated packets, Nc, in the case of costless
connections. Thus, there is a maximum in Nc related to an optimum value of z, z∗,
which de3nes an optimal organizational structure diMerent from the trivial m=2 and
z= S − 1.
Summarizing, we have studied a model of communication that includes cost for es-

tablishing communication channels. While in the absence of such cost the 2at structure
is the most eCcient, the need for hierarchy arises because of the existence of even
small costs. In both cases with and without costs, the capacity of the network to handle
information packets does not depend on the number of levels of the hierarchy but in
the branching factor of the structure.
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