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We have Studied 4 inﬁnit&range Planar xy model in tpe Presence gf 4 random fie}q. We
have analyzed the dynamics of the syster through » Fokker‘PIanck formalism, focussing our
atention in the long time bebaviaur, This technique allows 1 compute exactly the phase
diagram of the mode].

1. Introg uction






A. Arenas, C.J. Péres Vicente / Planar Xv model with random field 015

other formalisms that allows to tompuie, in terms of correlation and response
functions, the dynamic evolution of the system for all time. Instead of this, we
have analyzed the dynamics of the system through g Fokker-Planck formalism,

the model for an arbitrary distribution of fields.

The paper is structured as follows: section 2 is devoted to the description of
the model discussing their analogies with other physical systems, In section 3
we solve the dynamics in the stationary state leading to analytical results which
are discussed and compared with simulations in section 4. Finally two
appendixes will give information about technical details,

2. The mode]

We have considered g planar XY model described by the Hamiltonian

H=-3> T5€08(6,~6) + 2 b, cos g, (1)
L i

where J.=J/N is a mean-field ferromagnetic interaction between afl the N
spins and £, is the random field distributed over the population of spins with an
arbitrary probability density g(h). It describes the effect of a quenched random
distribution of impurities. In our study we have considered gz simplified
situation in which al] the %, have the same orientation and only change in
modulus. The case where 7; is a random p-fold symmetry breaking field is

technically more complex and will not be analyzed in this paper although it can

W, ol
Bt T g ), 2)

where %, is a Gaussian white random process with zero mean and correlation
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(n:() nj(£')> = 2D8£j8(t —t'), D=0. (3)

After these considerations eq. (2) reads

%‘% = —;;; 2 sin(6, — 6,) + A sin 6, + m;(£) - (4)
7

Notice that the model described by (4) is a particular case (a ‘static’ version) of

a more general dynamic system made of active plane rotators. In this new

situation each spin rotates with a natural frequency o, randomly distributed

with f(»). Now, the phase evolves in time following

af, J . .
'é?:“’i“'_ﬁ}} sin(g, — 6,) + i, s g, +n,(t) - (3
This evolution equation appears also in a different context. It has been used to
study effects of synchronization [9] in the temporal activity of members
(modelled as phase oscillators) of a population. This phenomenon has been
observed frequently in biological systems. In absence of external fields it is
known that for weak couplings the oscillators run at its own frequency whercas
beyond a critical J.iD synchronization appears spontaneously. Shinomoto et
al. [10,11] and Sakaguchi [12] have also studied this model in presence of a
constant external force. However, their approach do not consider any kind of
disorder, is essentially pumerical and far from the analytical exact mean-field
solution presented in this paper. We have remarked this analogy because the
long time behaviour of the planar XY model will be analyzed with the same
technique usually applied to the study of the dynamic properties of systems of
phase oscillators. In this sense, the methodology discussed in this paper is an
alternative to standard methods of equilibrium statistical mechanics.

In order to describe mathematically the collective behaviour of the system it
is convenient to introduce the following order parameters:

) 1 .
id lﬁj .
me'” =7 ; e, (6)

m gives information about the degree of coherence (magnetization) of the
population and ¢ is a mean phase (mean orientation). In terms of these
parameters the dynamic evolution of each element (for the most general case)
is given by the following Langevin equation:

a8,

5 @ + Jmsin(¢p — 6) + h;siné, + n,(t) - (7
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In the limit of N> it is possible to derive a nonlinear Fokker—Planck
equation for the one oscillator probability density. p(0,t,w,h)dO gives the
fraction of spins (rotators) of natural frequency w that ‘feel’ a field % lie
between 4 and € + d6. The resulting expression for p is shown to obey [13]

2

ap p 4
9~ P 5 (), (8)

where the drift velocity v is given by
vt t, 0, h)=w + Jm sin(fp — @)+ hsing . (%)
Eq. (8) describes the evolution of the whole system for all time. However, we

overlook transient effects and focus our interest on the long time behaviour,
which is studied in the next section.

3. Analysis of the stationary state
Since our goal is (o analyze the stationary behaviour of the system we

consider solutions of the Fokker—Planck equation (8) with dp/dr = 0. Normali-
zation and periodicity conditions lead to

_ exp[(Jm/D) cos(¢p ~ 0) — (h/D) cos 8] [2" dy H(8,n)

P8, w, k) o . (10)
where
Ji h
H(@,?’]}Zexp(*%?l—DniCOS(é*B‘T})'FECOS(@ +n)) , (11)
and
2w 2
J h
¥ = f exp(—g-cos(d) —~4) 7 cos 9) de fH(G,n, h)ydn . (12)
4] 3]

A detailed mathematical derivation of these equations can be found in
appendix A. Now let turn back to the static planar XY model, by considering
no frequencies in (11). A complete study of the more general system will be
presented elsewhere, The magnetization m and the mean orientation ¢ can be
computed from p as
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2

m = f el®=® (b, k) g(h) do dn (13)

0

by equating real and imaginary parts of both sides and solving the respective
integral equations simultaneously. This task is not easy from a technical point
of view because we have to compute normalized integrals that form part of the
integrand of other integrals. Fortunately there is another way to compute these
quantities in a much simpler and clever manner. Due to the normalized
structure of p(8, &) it is convenient to define a generating functional & as

2@ 2w
h
G = ( — ——
= df exp(ar cos(ifr — @) o cos 6) J[ H(6,7n)dn . (14)
0 0

Taking into account that the magnetization must be real, it is straightforward
to show that the order parameters can be derived from % as

m= f m(h) g(h) dh = <<% 1n£z|c,:m,n,¢:¢>> , (15)

0= <<5%ln$|pl!¢,_¢_>> , (16)

where ¢ --+) is an average over the distribution g(h). This approach has
several advantages since it allows to find algebraic equations for m(#h), what
simplifies notably the numerical resolution of the resultant expressions and
allows a more detailed analytical analysis of them. Integrals in (14) can be
performed by developing the argument of the exponential in series of Bessel
functions {14], leading to (see appendix B)

i (=1)"L(h!D)1,_(Jm/D)cos(ng)
m= | = gh)dh , (17)
> (~1y'1(/D)1,(Jm/D) cos(nd)

=

0= =" g(h)dh, (18)

i (—1)'L,(h! D) I,(Jm/D) cos(nd)

p=—o

J i (—1)*L,(k/D) I,(Jm/D) sin(nd)

where I (x) is the modified Bessel function of order n. This is main result of
our approach. Although these expressions seem to be cumbersome due to the
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existence of a quotient of infinite series of products of Bessel functions, in
practice they are rather simple to deal with because of their excellent
properties of convergence. Indeed, less than ten terms of the series are
sufficient to compute m and ¢ with very good accuracy. Additionaily, it is
interesting to notice that 4 and Jm never appear in the same argument of the
Bessel functions, what is appropriate to study the effect of each separately,
mainly near the critical point.

4. Discussion and resuits

distributions of random feld no transition occurs. There is always a net
magnetization (except for D — o} in the direction given by the field, However,
if the distribution g(h} is even and of zero mean there is a competition between
the ferromagnetic interaction and the field which tends to scparate the
population in two different groups, spatially disordered, each pointing in
Opposite orientations. Above critical ratio J./D a phase transition occurs and
4 net magnetization appears Spontancously for ¢ = /2, i.c perpendicular to
the direction fixed by the field.

Let us analyze these situations more carefully, We have considered two
different types of distributions: gaussian and uniform. Fig. 1 shows, for an even
uniform distribution of zero mean, the variation of the critical point in function
of the variance of the distribution. In absence of an external field there is
second order transition in J =2 As the variance increases the interaction
must be larger in order to get a net magnetization. This effect can be observed
easily from a linear analysis of the solutions close to the critical point. The
expansion of expression (17) up to first order in m, gives

2D
J=— . 1
l—f[lz(h/D)/Io(k/D)]g(h) di (19)
Moreover, when the field is weak, i.e., if the dispersion of the distribution
around zero is sufficiently small as to consider 2 > o" for any n >2, then the
expansion of the modified Bessel functions in h/D up to second order, gives
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]
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Fig. 1. Phase diagram of a planar XY model for an even, zero-mean uniform distribution of
random fieids. The solid line represents the critical J/D above which a net magnetization appears
spontancously. ¢ = a/2, i.e. perpendicular to the direction given by g(h).

i6D?

8D o 0

J=
observing that under these conditions J depends exclusively on the variance.
This means that for a given o the system behaves identically for any type of
even distribution g(h).

In order to verify the reliability of the theoretical results given by expressions
(17)-(18) we have compared them with simulations. Simulations have been
performed by integrating eq. (4) with the Euler method with a time step
At = 0.002. We have considered a population of 20000 spins, large enough to
neglect finite size effects. Fig. 2 shows the variation of the magnetization m in
function of the ratio J/D for both distributions: Gaussian and uniform. Each
point in the simulation has been achieved by averaging over one thousand time
steps in the stationary state. Notice the excellent agreement between both
approaches, what confirms that our results are exact. This is something
expected since we have applied a mean-field formalism in a system with infinite
range interactions.

For positive (negative) definite distributions there is always a net magnetiza-
tion. In this case the field favours the alignment of the spins, so that ¢ =0
which means that the mean orientation coincides with the direction of the field.
In fig. 3 we have plot m versus 71D for a lateral (positive semidefinite} uniform
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Fig. 2. Magnetization versus J1D for both distributions considered in the paper. Solid and dashed
lines represent the theoretical curves given by expressions (17), {18} for a Gaussian and an uniform
distribution, respectively. In both cases the variance has been fixed to %= 0.2, Circles (Gaussian)
and squares (uniform) indicate the resuits obtained from simulations. Far from the transition point
the error bars are of the same order of magnitude of the size of the symbols,
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distribution. Again, a linear expansion of (17) for small m, it gives the slope of
the growth of the magnetization, which turns out to be

h
m=5p_J: (1)
where /1 is the mean value of the considered distribution. Notice also that small
m implies D = J.

In conclusion, we have found the phase diagram of a mean-field planar XY
model with relaxational dynamics in presence of quenched disorder induced by
4 random field. We have applied a Fokker—Planck formalism to analyze the
long-time behaviour of the systerm. We have shown that this technigue allows to

average over the disorder at the end of the calculation and is appropriate to
analyze problems with continuous symmetry.
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Appendix A

In this appendix we provide a solution of the Fokker—Planck equation (8) in
the stationary state. By taking aplor =10,

2

<

d d
(—ag[erJmsin(ciJB)Jrhsir]f)]p)—Da > =0. {22)

>

This equation can be easily solved by using the integrating factor

p = k(8) epr L(9) dﬂ_J . 23)
Defining
M(B):J’L(H)d9:9§+%cos(¢—6)—%c058 (24)

and substituting in (22) we have
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[}

p=Ae" 4 geM®) fe‘““’"’ do” (25)
[

where A and B are two integration constants which can be determined by
imposing normalization and periodicity conditions. Periodicity p(6) =p(6 +
2m) leads to

exp(2mw/ D)
1—exp(2ww/D)

B f MM g (26)

0

Therefore, we can write p as

]

— B M(8)—M(g’) '
P exp(2ral D) f e de’. (27)
827
Finally, normalization
2
fp(ﬂ, ®,h)do =1 (28)

0

and the following change of variables: 8’ — (¢ — 27} =7, leads to the stationary
solution for the one-oscillator probability density,

p(0} = exp[(Jm/D) cos(¢ — 0) — (h/D) cos /]
X f expl~(wn/D) — (Jm/D) cos(p — 8 —m) + (h/D)cos(8 + 1)) dy

0
27

/U‘ exp[(Jm/D) cos(¢p —8) — (h/D) cos #]de
0

27

X fexp[ﬁ(wn/D)* (Jm/D)cos(p—06 —q) + (h/D) cos(d + )] dn).

(29)

Appendix B

Appendix B is devoted to the derivation of expressions (173-(18} from the
generating functional & defined as
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%—Tdeﬂm¢ﬂ)Tmeﬁm, (30)
o o
where
ETJ,w,B)=exp(acoﬂ¢'fﬂ)——%%cosﬁ) (31)
and
H{p,m) = exp(— %ncos(d) —8 =)+ % cos(# + »q)) . (32)

The first step is to find an algebraic expression for Z. To perform the integrals
in % and @ it is convenient to expand the exponential according to

ex cos 8 . IU(JC) +2 i (#1)'? COS(HB) [”(JC) s (33)

where f (x) are the spherical modified Bessel functions of order n. Since the
argument of the Bessel functions do not depend on neither ¢ nor 7 the
calculation of & involves exclusively trigonometric integrals which can be
readily solved through

2w

j cos(ax + b) cos(cx + d) dx = mwcos(h — d) 8(a — ¢}, (34)
o
2
f sinfax + b} sin(ex + d) dx = w cos(b —d) 8{a — ¢) , (35)
f sin(ax + b) cos(cx + d) dx = wsin(b —d) 8(a — ¢) , (36)

0

where 8(x — y) is the Kronecker delta. By using the symmetry properties of the
modified Bessel functions (7 (x) =1_,(x)) and after some algebra the final
expression for the generating functional is

¥ =dm ,,El (—1y'I, (%) In(%) cos(nd)

chﬂmﬁguﬁmmm_ (37)

m=—w



A. Arenas, C.J. Pérez Vicente / Planar XY model with random field G625

Now, it is straightforward to derive the selfconsistent equations for the order
parameters through expressions (15), ( 16).
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