Power Low Approach in a Modified Dual Priority Scheduling for Hard Real-Time Systems*

M.A. Moncusi, A. Arenas” and J. Labarta®
Departament d'Enginyeria Informatica i Matematiques
Universitat Rovira 1 Virgili
Campus Sescelades, Avinguda dels Paisos Catalans, 26
E-43007 Tarragona, Spain
*Departament d’ Arquitectura de Computadors
Universitat Politecnica de Catalunya
Jordi Girona, 1-3. D6 Campus Nord
08034 Barcelona, Spain

Abstract

In this paper, we present a modification of the
Dual Priority scheduling algorithm, for hard
real-time systems, that takes advantage of its
performance to efficiently improve energy
saving. The approach exploit the priority
scheme to lengthen the runtime of tasks
reducing the speed of the processor and the
voltage supply, thereby saving energy by
spreading run cycles up to the maximal time
constraints allowed. We show by simulation
that our approach improves the energy saving
obtained with a pre-emptive Fixed Priority
scheduling.

1. Introduction

The design of portable digital systems has a
major drawback in the constraint of low power
consumption [1] from the operability and
lifelong of the systems point of view. A lot of
efforts have been made during the last decade
to minimize this problem, but the high
performance of modern micro-processors and
micro-controllers jointly with the increasing
functionality of them obtained via software still
requires improvements in the power-efficiency
context.

In the use of scheduling strategies to
save energy there exist two main approaches,
to reduce power consumption of processors
are speed reduction of the processor and
power-down. The first approach consist in to

* This work has been partially supported by the Spanish
Ministry of Education (CICYT) under the TIC-511/98 contract.
’ Corresponding author: e-mail amoncusi @etse.urv.es

* Corresponding author: e-mail aarenas @etse.urv.es

turn low the clock frequency along with the
supply of voltage whenever the system does
not require its maximum performance. The
second approach simply turns off the power
when there are not tasks to execute in
prevision, apart from the minimal amount of
energy required by the idle processor state
(clock generation and timer circuits). Both
approaches are well suited for energy saving
but their applicability should be accurately
designed to obtain reliable operability,
especially in hard real-time systems [2,3].

Recently, Shin et al. [4] have proposed a
power-efficient version of the Fixed Priority
scheduling for hard real-time system that deal
with the two approaches presented before. The
main idea in their study is the use of a pre-
emptive Fixed Priority scheduling (Rate
Monotonic scheduling RMS [5] or Deadline
Monotonic scheduling DMS) to organise the
tasks according with the pre-emptive priority
scheduler into a run queue that is used to
exploit both, execution time variation and idle
time intervals, to save energy by reducing
speed and voltage or power down. The process
ensures that all tasks meet their deadlines.
However, the strategy of Shin et al. [4] can
only reduce the speed of the processor when
there is only one task in the run queue, or bring
the processor to power-down mode when there
is an idle interval, otherwise the processor
works at the maximum speed.

In this paper we present an improvement
of the strategy followed by Shin et al. [4] by

2-1

using a modification of the Dual Priority
scheduling, first proposed by Davis and
Wellings [6]. We harness the ability of the Dual
Priority to execute periodic tasks as late as
possible to save energy.

The Dual Priority scheme was designed
to execute aperiodic tasks without deadlines as
soon as possible while preserving the deadline
constraints of the periodic tasks. The
algorithm is implemented as a three queue
structure. The upper run queue, the aperiodic
run queue and the lower run queue. Whenever
a periodic task is ready to be executed enters
the lower run queue, eventually this task can be
pre-empted by an aperiodic task, and finally, if
the task can not be delayed more because
otherwise its deadline could be compromised
the task promotes to the upper run queue
where its execution is prioritised.

This scenario is interesting even when no
aperiodic tasks are present, as in our case of
study, in this particular case the algorithm
needs only two queues. The energy-reduction
is obtained mainly by means of speed and
voltage reduction and sometimes using power-
down. Our approach consist in to run the tasks
at the lowest speed that makes possible that the
active task and the rest of tasks meet their
timing constraints, without imposing the
constraint of Shin et al. [4] of only one task in
the run queue to save energy, and power-down
the processor when there is an idle interval.

This approach is especially interesting
because the quadratic dependency of the power
dissipation, in CMOS circuits, in the voltage
supply [1]. The power dissipation satisfies
approximately the formula

P=p,C.Vyfu

where p, is the probability of switching in
power transition, C. is the loading capacitance,
V4 the voltage supply and fg the clock
frequency. That means that it is always
energetically favorable to perform slowly and
at low voltage than quickly at high voltage.

The basic idea of the modified algorithm
we present is to organise the run tasks in two
levels of priorities. In the highest level there are
the periodic tasks that their execution can no
longer be delayed by tasks from the lower
priority level otherwise they can miss their
deadlines. The second level is occupied by

those periodic tasks whose execution time can
still be delayed without compromising the
meeting of their deadlines. In its turn, each of
the two levels is hierarchically organised
according to any static priority assignment. To
obtain an extra save in power another slight
modification is introduced, the lower run queue
is sorted by the promotional times instead of by
fixed priorities. This approach is simple enough
to be implemented in most of the kernels, in
comparison with Shin et al. [4], we only use an
extra run queue and a promotion time for each
periodic task in the system. Then, the amount
of extra complexity introduced by this new
algorithm is minimal.

The paper is organized as follows, in the
next section we describe the basics of the Dual
Priority scheduling. Section 3 is devoted to the
modification of the algorithm to reduce energy
consumption. Finally, in section 4 we present
the experimental results and the comparison
with Power Low Fixed Priority scheduling, and
in section 5 we draw the conclusions.

2. Dual Priority scheduling

We assume that the framework of the hard
real-time system we are going to deal with is
made up of periodic tasks'. These tasks —
numbered 1< 1 < n— are specified by their
periods, worst case execution times and
deadlines (Tj, Cj and Dj respectively).

The system is organized as concurrent
tasks ruled by a pre-emptive priority-based
scheduler whose details are described below.
The computation times for context switching
and for the scheduler are assumed to be
negligible, this enable us to perform the
analysis straightforward without danger of
loosing generality. The extent to which these
assumptions are realistic is discussed in the
analysis of the algorithm given in [6], and it
turns out to be practical if the switch is
subsumed to the worst case execution times of
the different tasks.

The mechanics of the algorithm is the
following: Let us assume that the tasks have
some initial priorities assigned according to a

' The results are not exclusive for periodic tasks. We
have considered only periodic tasks as a matter of
simplicity.

2-2

fixed priority criterion in such a way that two
different tasks have never the same priority.
This initial priorities are altered by the
scheduler according to the following scheme,
first, two levels of priorities are organised, the
highest level, or upper run queue (URQ) is for
tasks that can no longer be delayed by less
priority tasks otherwise they will miss their
deadlines. The second level, or lower run
queue (LRQ) is occupied by those periodic
tasks whose execution time can still be delayed
without compromising the meeting of their
deadlines.

The scheduling algorithm is driven by the
activation times of the tasks and the promotion
instants to the URQ, whenever one of this time
signals appears, in the following way, if:

a) The signal is the activation time (Ty) for
some periodic tasks. In this case for all
tasks with activation times less or equal to
the current time #, the relative promotion
time instant is pre-computed as Li=Dj — Rj
(Rj corresponds to the worst case response

time [8]), this value can be computed off
line and provides the maximum time a task
can be delayed so that it can still meet its
deadline. Those tasks with Lj=0 are
promoted to the URQ, and the rest remain
in the LRQ. After that we compute the
absolute promotion time instant for the kg,
activation of task in the LRQ as L*=Ta+L,,

and a timer is activated to this value.

b) The signal is a promotion time instant. In
this case, all tasks in the LRQ with Lf<t
are moved to the URQ. Now, LF*
corresponds to L* =D;* — Rj, where D" is
the absolute deadline for the kg, activation
of task i (to+ kTi+ Dj), where t, is the first

instant arrive time.

Finally, the next executing task 1is
selected by picking the highest priority task
from the highest non empty priority levels (i.e.
URQ or LRQ, in this order).

This algorithm was conceived to
schedule tasks with hard deadlines in a hard
real-time environment containing periodic,
sporadic and adaptive tasks coexisting. In this

complex scenario there appears spare time due
to tasks not consuming all its worst execution
time. The on-line solution that Dual Priority
scheduling presents is operative in the vast
majority of kernels and computationally
efficient [6,7]. Our goal is to take advantage of
this performance from the energy saving point
of view, the scheduling algorithm can be
modified to extract the maximum time
extension allowed by the real-time system, and
this lengthen of time execution will be
accompanied of a speed and voltage supply
reduction, and finally energy reduction, as we
explain in the next section.

3. Power-low modified Dual
scheduling

Priority

We have modified the Dual Priority scheduling
algorithm to help power saving in a hard real-
time system. The original Dual Priority
guarantees to meet the temporal constraints,
then our modification only needs to care about
when and how to reduce energy by slowing
speed and voltage jointly (we are assuming a
linear relation between speed and voltage
supply decreasing). Figure 1 shows the pseudo
code for the PLMDP (Power Low Modified
Dual Priority) that works as follows:

1.- If both queues URQ and LRQ are empty,
then the power-down mode is activated until
the arrival of the next task t,.

2.- If the queue URQ is empty but there are
tasks in LRQ then the task i with high priority
(ordered in terms of absolute promotion time
L* for the k™ activation) is activated (line L6).
Before execution we need to fix the ratio of
processor speed according with the maximum
spreading in time we are allowed. The speed
ratio is calculated following the heuristics
proposed by Shin et al. [4] that is built on the
assumption that the delay is negligible. The
safeness of the system under these conditions is
proved on theorem 1 of the cited work. We
calculate the time until the next signal for the
current active task to promote Tp; as the
difference between t, plus the deadline, and C;
(worst case execution time), see line L7. After
that we determine the time we dispose before

2-3

some other task will request the CPU I (see
L8-LL12) as the minimum between the
difference of Tp; and the next signal promotion
time of a more priority task j (still to arrive or
in the LRQ but with a promotion time further
than the promotion time of the current task),
and the time that active task needs to finishes
its execution assuming that it is going to use all
the C; (Worst case execution time). The set of
task j’s satisfying the condition mentioned
before will is referred in the pseudo code as
hp(i), and the complementary tasks m’s with
less priority than 1 as Ip(i). The speed is simply
the quotient between both quantities, I and
the total time available, (I'; + min(Tp;, Tpm +
C) (line L13).

3.- If the URQ has only one task to execute,
then this is the activate task and the processor
speed is calculated (line L20) again as the
quotient between I; and the total time
available, that now is the minimum between the

next signal promotion time and the current task
deadline.

4.- If they are more than one task in the URQ,
then we execute at maximum speed allowed by
the processor.

L1 if empty(URQ) then
L2 if empty(LRQ) then

L3 Set timer to (next t,; - wake up delay)

14 Enter power-down mode

L5 else

L6 Active task_i = LRQ.head

L7 Tpi=tai+ Di- G

1.8 if ij < Tpi + Ci then

L9 T'i = min(Tp; — Tp;, remaining C;);-- j € hp(i)
L10 else

L11 I'; = remaining C;

L12 endif

L13 Speed=I /(T'; + min(Tpj, Tpm + Ci);-- m € 1p(i)
L14 Execute task_i

L15 endif

L16 else

L17 Active Task = URQ.head;
L18 if URQ.head.next = NIL then

L19 T'; = min(Tpx, remaining C;)
L.20 Speed=I; /(T +min(Tpx, Ds))
121 Execute task_i

L22 else

L23 Speed=1.0

124 Execute task_i

L25 endif

L26 endif

Figure 1: Pseudo code PLMDP

At practice it is obvious that only
certain discrete values of the frequency of the
clock, and then speed, are available, in this case
the selection is always a frequency equal or
larger than the calculated one to ensure time
constraints. To see the difference between this
algorithm and the LPFPS we have include a
toy example in the annex.

4. Experimental results

To check the capabilities of the PLMDP
approach, we have simulated several examples
and compared the total energy (per hyper-
period) results obtained in front of the Low
Power Fixed Priority scheduling (LPFPS)
proposed by Shin et al. [4]. We collected some
of the experiments used by Shin et al: the
Avionics task set [9], an Inertial Navigation
System (INS) [10], and a Computerized
Control Machine (CCM) [11].

The two first sets represent critical
mission applications and the last one is an
automatic control for specific machinery. The
results are pictured in Figures 2 to 4,
respectively. The average factor of
improvement of our algorithm in front of
LPFPS is 1,12 times for the avionics data set,
1,05 times for the INS task set and 1,78 times
for the CCM data set. We observe that both
algorithms behave similar when the WCET is
exhausted, that is so because in that case there
is not any extra time to consume, and then no
more energy that could be saved using only a
scheduling strategy. In the opposite situation
when the execution is immediate it is difficult
to perceive the differences, but when the
utilization of the WCET is around its half the
differences are important.

We have also evaluated the
performance of both schemes in front of a
simple task set represented by table 1 (see
Annex). In this case the average improvement
is 1,56 times the energy efficiency obtained by
LPFPS, Figure 5.

All the experiments represent the
results of the normalized average energy
obtained, varying the consumed worst
execution time from 10% to 100%. We run the
simulation over one hyper-period (that is, the

24

minimum common multiple of the task’s
period).

BELPFPS
1@PLMDP

Figure 2: Avionics task set

HLPFPS
OPLMDP

Figure 3: INS task set

1 HLPFPS
0,8 1mpLmpP

0,6
0,4 -

100%

T 8 8 ¥ 8
(= (=} j=} (=3 (=3
o o~ 2] (= (=]

Figure S: Shin et al.[4] task set

5. Conclusions

We have presented a modification of the Dual
Priority scheduling to improve the Fixed
Priority scheduling power aware while

maintaining the low complexity of the
algorithmic. This approach has been shown to
over-perform the mentioned LPFPS power
saving by an average factor than range from
1,05 up to 1,78 depending on the application.
The algorithm does not increase the complexity
of the LPFPS and can be implemented in most
of the kernels.

This approach deserves a deep analysis
of trade-offs, as well as a more extensive
comparison of examples which is included in
our future work.

References

[1] A.P. Chandrakasan, S. Sheng and R.
W. Brodersen, “Low-power CMOS digital
design”, IEEE Journal of Solid-State circuits,
vol. 27, pp. 473-484, April 1992.

[2] D. Mosse, H. Aydin, B. Childers and R.
Melhem, “Compiler-assisted power-aware
scheduling for real-time applications”
Workshop on Compilers and Operating
systems for Low Power COLP 2000,
Philadelphia, Pennsylvania, October 2000.

[3] H. Aydin, R. Melhem, D. Mosse and P.
Mejia-Alvarez, “Determining optimal processor
speeds for periodic real-time tasks with
different power characteristics” 13" Euromicro

Conference on Real-Time Systems, Delft,
Netherlands, June 2001.

[4] Y. Shin and K. Choi, “Power conscious
Fixed Priority scheduling in hard real-time
systems” DAC 99, New Orleans, Louisiana,
ACM 1-58113-7/99/06, 1999.

[5] C. L Lwu and JW. Layland,
“Scheduling algorithms for multiprogramming
in a hard real-time environment”, JAMC 20,
pp. 46-61, 1973.

[6] R. Davis and A. Wellings, "Dual
Priority scheduling", Proceeding IEEE Real
Time Sistems Symposium, pp. 100-109, 1995.

[71 A. Burns and A.J. Wellings, “Dual

Priority Assignment: A practical method for
increasing processor utilization”, Proceedings

2-5

of 5" Euromicro Workshop on Real-Time
Systems, Oulu, IEEE Computer soc. Press, pp.
48-55, 1993.

[8] M. Joseph and P. Pandya, "Finding
response times in a real-time system", British
Computer Society Computer Journal, 29(5):
390-395, Cambridge University Press, 1986.

[9] C. Locke, D. Vogel and T. Mesler,
“Building a predictable avionics platform in
Ada: a case study", Proceedings IEEE Real-
Time Systems symposium, December 1991.

[10] A. Burns, K. Tindell and A. Wellings,
"Effective analysis for engineering real-time
fixed priority schedulers", IEEE Transactions
on Software Engineering, 21, pp. 475-480,
May 1995.

[11] N. Kim, M. Ryu, S. Hong, M. Saksena,
C. Choi and H. Shin, "Visual assessment of a
real-time system design: a case study on a CNC
controller", Proceedings IEEE Real-Time
Systems symposium, December 1996.

Annex

Here we present an example to better
appreciate the functioning of our algorithm
(PLMDP) in comparison with the LPFPS. The
benchmark used is the same presented by Shin
et al. [4], Table 1. In the draws (a) and (b) we
represent the execution of both algorithms,
when the tasks consume the 100% of its
WCET. In both graphs, the vertical up narrows
represent the arrival of the task to the system,
the vertical down arrows represent the
promotion time of the task, and finally the
horizontal arrow stands for the time we
lengthen the time execution of the task. Each
box represent five unit times, and each line
corresponds to task 1,2 and 3 respectively.

In graph (a) we have represented the
behavior of the LPFPS (Shin et al. [4]). The
behavior of our algorithm is the following, let
focus our attention in the graph (b): At t=0, all
three tasks arrive to the system and then they
are placed at the LRQ, the first task to
promote according with our scheme will be T3,
then it is activated. Its promotion time arrives

at t=20, and we can execute this task until t=40
(promotion time instant of T1) without any
problem. Executing T3 as late as possible
implies that the execution time of T3 should
start at its promotion time (t=20) and it would
be preempted at t=40, that means that we have
40 time units to execute 20 time units. At time
t=200 we have again all task in the LRQ, but
now the first promotion time corresponds to
T2. After that T3 promotes, but because has
less priority than T2, it can not take the CPU,
then T2 execution continues until the minimum
value of T1 promotion time and WCET of T2
plus the promotion time of T3. In this way the
algorithm uses the exceeding time to work at
slow processor speed and low voltage.

Task T D WCET R D-R P
Tl 50 50 10 10 40 1
T2 80 80 20 30 50 2
T3 100 100 40 80 20 3

Table 1: Benchmark task set used by Shin et
al.[4]
/\ [m I

N |\ e
0 50 100 150 200

(a) Execution time in LPFPS when all tasks use
100% WCET.

A)) AR
uRRE]

200 250 300 350 400

(b) Execution time in PLMDP when all tasks
use 100% WCET.

2-6

