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The study of complex networks sheds light on the relation between the structure and function of complex
systems. One remarkable result is the absence of an epidemicthreshold in infinite-size scale-free networks,
which implies that any infection will perpetually propagate regardless of the spreading rate. The vast majority
of current theoretical approaches assumes that infectionsare transmitted as a reaction process from nodes to
all neighbors. Here we adopt a different perspective and show that the epidemic incidence is shaped by traffic
flow conditions. Specifically, we consider the scenario in which epidemic pathways are defined and driven by
flows. Through extensive numerical simulations and theoretical predictions, it is shown that the value of the
epidemic threshold in scale-free networks depends directly on flow conditions, in particular on the first and
second moments of the betweenness distribution given a routing protocol. We consider the scenarios in which
the delivery capability of the nodes is bounded or unbounded. In both cases, the threshold values depend on
the traffic and decrease as flow increases. Bounded delivery provokes the emergence of congestion, slowing
down the spreading of the disease and setting a limit for the epidemic incidence. Our results provide a general
conceptual framework to understand spreading processes oncomplex networks.

PACS numbers: 02.50.Ga,89.75.Fb,89.75.Hc

I. INTRODUCTION

Scale-free networks [1, 2, 3] are characterized by the pres-
ence of hubs, which are responsible for several striking prop-
erties for the propagation of information, rumors or infections
[4, 5, 6, 7, 8, 9]. Theoretical modeling of how diseases spread
in complex networks is largely based on the assumption that
the propagation is driven by reaction processes, in the sense
that the transmission occurs from every infected through all
its neighbors at each time step, producing a diffusion of the
epidemics on the network. However, this approach overlooks
the notion that the network substrate is a fixed snapshot of all
the possible connections between nodes, which does not im-
ply that all nodes are concurrently active. Many networks ob-
served in nature [1, 2], including those in society, biologyand
technology, have nodes that temporally interact only with a
subset of its neighbors [10, 11]. For instance, hub proteinsdo
not always interact with all their neighbor proteins at the same
time [12], just as individuals in a social network [13] do not
interact simultaneously with all of their acquaintances. Like-
wise, Internet connections being utilized at a given time de-
pends on the specific traffic and routing protocols. Given that
transport is one of the most common functions of networked
systems, a proper consideration of this issue will irreparably
affect how a given dynamical process evolves.

Our knowledge of the mechanisms involved in disease
propagation has improved in the last several years [14, 15, 16].
Recent works have to some extend surmounted the problem of
link concurrency through agent-based modeling approaches
[14] or by explicitly implementing data-driven simulation
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tools [17]. These very detailed computer models have not
been yet analyzed in a general theoretical framework. Here
we introduce a theoretical approach to investigate the outcome
of an epidemic spreading process driven by transport instead
of reaction events. To this end, we analyze a paradigmatic
abstraction of epidemic contagion, the so-called Susceptible-
Infected-Susceptible (SIS) model [18] (seeMethods), which
assumes that contagion occurs through the eventual contactor
transmission between connected partners that are using their
connections at the time of propagation. This is achieved by
considering a quantized interaction at each time step. Mathe-
matically, we set up the model in a flow scenario where con-
tagion is carried by interaction packets traveling across the
network.

We consider two possible scenarios that encompass most
of real traffic situations: i) unbounded delivery rate, and ii)
bounded delivery rate, of packets per unit time. We derive the
equation governing the critical threshold for epidemic spread-
ing in SF networks, which embeds, as a particular case, pre-
vious theoretical findings. For unbounded delivery rate, it
is shown that the epidemic threshold decreases infinite SF
networks when traffic flow increases. In the bounded case,
nodes accumulate packets at their queues when traffic flow
overcomes the maximal delivery rate, i.e. when congestion
arises. From this moment on, the results show that both the
epidemic threshold and the infection prevalence are bounded
due to congestion.

II. RESULTS AND DISCUSSION

We first generate two different types of SF networks. On
one hand, we construct random SF networks where no corre-
lations are present using the configuration model [1, 2]. On
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the other hand, we also generate small-world, SF and highly
clustered networks− all properties found in many real-world
networks [1, 2] such as the Internet− using a class of re-
cently developed network models [19, 20], in which nearby
nodes in a hidden metric space are connected. This metric
space can represent social, geographical or any other rele-
vant distance between the nodes of the simulated networks.
Specifically, in the model we use, nodes are uniformly dis-
tributed in a one-dimensional circle and assigned an expected
degreek from a power law distributionP (k) ∼ k−γ . Pairs of
nodes separated by a distanced are linked with a probability
r(d; k; k′) = (1 + d/dc)

−α, whereα > 1 anddc ∼ kk′ (see
Methodsfor further details). In most of our simulations, we
fixed 〈k〉 = 3 andα = 2. Once the networks are built up, the
traffic process is implemented in the following way. At each
time step,p = λN new packets are created with randomly
chosen origins and destinations. The routing of information
is modeled through even a shortest path delivery strategy ora
greedy algorithm [20, 21]. In the latter, we make use of the
second class of SF networks and a nodei forwards a packet to
nodej in its neighborhood, which is the closest node (in the
hidden metric space) to the final packet destination.

To account for link concurrency, we consider that two nodes
do not interact at all timest, but only when they exchange
at least a packet. Therefore, we assume that the epidemic
can spread between nodes every time an interaction takes
place. This situation is reminiscent of disease transmission
on air transportation networks; if an infected individual did
not travel between two cities, then regardless of whether or
not those cities are connected by a direct flight, the epidemic
will not spread from one place to the other. In this way, al-
though a node can potentially interact with as many contacts
as it has and as many times as packets it exchanges with its
neighbors, the effective interactions are driven by a second dy-
namics (traffic). The more packets travel through a link, the
more likely the disease will spread through it. On the other
hand, once an interaction is at work, the epidemics spreads
from infected to susceptible nodes with probabilityβ. For ex-
ample, if at timet nodei is infected and a packet is traveling
from nodei to one of its neighbors nodej, then at the next
time step, nodej will be infected with probabilityβ. There-
fore, susceptible and infected states are associated with the
nodes, whereas the transport of packets is the mechanism re-
sponsible for the propagation of the disease at each time step.

A. Unbounded Delivery Rate

In this situation, congestion can not arise in the system. Fig.
1 shows the results for the stationary density of infected nodes
ρ as a function ofβ and the traffic generation rateλ for SF
networks.

The traffic level determines the value of both the epidemic
incidence and the critical thresholds. We observe the emer-
gence of an epidemic threshold under low traffic conditions.
This implies that for a fixed value ofλ, the epidemic dies out
if the spreading rate is below a certain critical valueβc(λ).
More intense packet flows yield lower epidemic thresholds.

The reason for the dependence of the critical spreading rates
on λ is rooted in the effective topological paths induced by
the flow of packets through the network. At low values of
λ, there are only a few packets traveling throughout the sys-
tem, so the epidemic simply dies out because many nodes do
not participate in the interaction via packets exchanges. As
λ grows, more paths appear between communicating nodes,
thus spreading the infection to a larger portion of the network.
Therefore, in traffic-driven epidemic processes the infection
is constrained to propagate only through links that transmit a
packet, and thus the number of attempts to transmit the infec-
tion depends on the flow conditions at a local level, namely,
on the number of active communication channels at each time
step. As a consequence, the effective network that spreads the
infection is no longer equivalent to the complete underlying
topology. Instead, it is a map of the dynamical process associ-
ated with packet traffic flow. The conclusion is that the disease
propagation process has two dynamical components: one in-
trinsic to the disease itself (β) and the other to the underlying
traffic dynamics (the flow).

To theorize about these effects we next formulate the ana-
lytical expression for the dependence of the epidemic thresh-
old on the amount of traffic injected into the system, follow-
ing a mean-field approach akin to the conventional analysis
of the reaction driven case. Mathematically, the fraction of
paths traversing a node given a certain routing protocol [22],
the so-called algorithmic betweenness,bk

alg, defines the flow
pathways. Let us consider the evolution of the relative den-
sity, ρk(t), of infected nodes with degreek. Following the
heterogeneous mean-field approximation [4], the dynamical
rate equations for the SIS model are

∂tρk(t) = −µρk(t) + βλbk
algN [1 − ρk(t)] Θ(t). (1)

The first term in Eq. (1) is the recovery rate of infected in-
dividuals (we set henceforthµ = 1). The second term takes
into account the probability that a node withk links belongs
to the susceptible class,[1 − ρk(t)], and gets the infection
via packets traveling from infected nodes. The latter process
is proportional to the spreading probabilityβ, the probability
Θ(t) that a packet travels through a link pointing to an infected
node and the number ofpacketsreceived by a node of degree
k. This, in turns, is proportional to the total number of packets
in the system,∼ λN , and the algorithmic betweenness of the
node,bk

alg. Note that the difference with the standard epidemic
spreading model is given by these factors, as now the number
of contacts per unit time of a node is not proportional to its
connectivity but to the number of packets that travel through
it. Finally, Θ(t) takes the form

Θ(t) =

∑

k bk
algP (k)ρk(t)

∑

k bk
algP (k)

. (2)

Eq. (1) has been obtained assuming: (i) that the network is
uncorrelatedP (k′|k) = k′P (k′)/〈k〉, and (ii) that the algo-
rithmic flow between the classes of nodes of degreek andk′

factorizesbkk′

alg ∼ bk
algb

k′

alg. Although no uncorrelated networks
exist, this approximation allows us to identify the governing
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parameters of the proposed dynamics. The second approxima-
tion is an upper bound to the actual value of thebkk′

alg , whose
mathematical expression is, in general, unknown. The valid-
ity of the theory even with these approximations is notable as
confirmed by the numerical simulations.

By imposing stationarity [∂tρk(t) = 0], Eq. (1) yields

ρk =
βλbk

algNΘ

1 + βλbk
algNΘ

, (3)

from which a self-consistent equation forΘ is obtained as

Θ =
1

∑

k bk
algP (k)

∑

k

(bk
alg)

2P (k)βλNΘ

1 + βλbk
algNΘ

. (4)

The valueΘ = 0 is always a solution. In order to have a
non-zero solution, the condition

1
∑

k bk
algP (k)

d

dΘ

(

∑

k

(bk
alg)

2P (k)βλNΘ

1 + βλbk
algNΘ

)∣

∣

∣

∣

∣

Θ=0

> 1 (5)

must be fulfilled, from which the epidemic threshold is ob-
tained as

βc =
〈balg〉

〈b2
alg〉

1

λN
, (6)

below which the epidemic dies out, and above which there is
an endemic state. In Fig. 2 a comparison between the theoret-
ical prediction and numerical observations is presented. Here,
we have explicitly calculated the algorithmic betweennessfor
the greedy routing as it only coincides with the topological
betweenness for shortest paths routing. The obtained curve
separates two regions: an absorbing phase in which the epi-
demic disappears, and an active phase where the infection is
endemic.

Equation (6) is notably simple but has profound implica-
tions: the epidemic threshold decreases with traffic and even-
tually vanishes in the limit of very large traffic flow in fi-
nite systems, in contrast to the expected result of a finite-
size reminiscent threshold in the classical reactive–diffusive
framework. Admittedly, this is a new feature with respect to
previous results on epidemic spreading in SF networks. It is
rooted in the increase of the effective epidemic spreading rate
due to the flow of packets. This is a genuine effect of traffic-
driven epidemic processes and generalizes the hypothesis put
forward in the framework of a reaction-diffusion process [15]
on SF networks. It implies that an epidemic will pervade the
(finite) network whatever the spreading rate is if the load onit
is high enough. Moreover, Eq. (6) reveals a new dependence.
The critical threshold depends on the topological featuresof
the graph, but at variance with the standard case, through the
first two moments of the algorithmic betweenness distribu-
tion. As noted above, the algorithmic betweenness of a node
is given by the number of packets traversing that node given
a routing protocol. In other words, it has two components: a
topological one which is given by the degree of the node and
a dynamical component defined by the routing protocol.

Within our formulation, the classical result [4]

βc =
〈k〉

〈k2〉
, (7)

can be obtained for a particular protocol and traffic conditions,
although we note that the microscopic dynamics of our model
is different from the classical SIS. To see this, assume a ran-
dom protocol. If packets of information are represented asw
random walkers traveling in a network with average degree
〈k〉, then under the assumption that the packets are not in-
teracting, it follows that the average number of walkers at a
nodei in the stationary regime (the algorithmic betweenness)
is given by [23, 24]bi

alg = ki

N〈k〉w. The effective critical value

is then(βλ)c =< k >2 /(< k2 > w), that recovers, when
ω = 〈k〉, the result in Eq. (7).

Our results are robust for other network models and differ-
ent routing algorithms. We have also made numerical simula-
tions of the traffic-driven epidemic process on top of Barab´asi-
Albert and random SF networks implementing a shortest paths
delivery scheme. In this case, packets are diverted follow-
ing the shortest path (in the actual topological space) fromthe
packets’ origins to their destinations. The rest of model pa-
rameters and rules for epidemic spreading remain the same.
Figure 3 shows the results obtained for random SF networks.
As can be seen, the phenomenology is the same: the epidemic
threshold depends on the amount of traffic in the network such
that the higher the flow is, the smaller the epidemic threshold
separating the absorbing and active phases. On the other hand,
for processes in which the delivery of packets follows a short-
est path algorithm, Eq. (6) looks like

βc =
〈btop〉

〈b2
top〉

1

λN
, (8)

wherebtop is the topological betweenness.

B. Bounded Delivery Rate

Equation (8) allows us to investigate also the equivalent sce-
nario in the presence of congestion. Let us consider the same
traffic process above but with nodes having queues that can
store as many packets as needed but can deliver, on average,
only a finite number of them at each time step. It is known
that there is a critical value ofλ above which the system starts
to congest[22]

λc =
(N − 1)

b∗alg
. (9)

Equation (9) gives the traffic threshold that defines the onset
of congestion, which is governed by the node with maximum
algorithmic betweennessb∗alg. Substituting (9) in (6) we obtain
a critical threshold for an epidemic spreading process bounded
by congestion. Increasing the traffic aboveλc will gradually
congest all the nodes in the network up to a limit in which the
traffic is stationary and the lengths of queues grow without
limit.
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To illustrate this point, let us assume that the capacities
for processing and delivering information are heterogeneously
distributed [25, 26, 27] so that the larger the number of paths
traversing a node, the larger its capability to deliver the pack-
ets. Specifically, each nodei of the network delivers at each
time step a maximum of⌈ci = 1 + kη

i ⌉ packets, whereη is a
parameter of the model. In this case, the critical value ofλ in
Eq.(9) is multiplied by the maximum delivery capacity [25].
Moreover, without loss of generality, we will explore the be-
havior of the model in random SF networks where the routing
is implemented by shortest pathsbalg = btop ∼ kν , beingν
usually between 1.1 and 1.3 [28]. The previous assumption
for the delivery capability thus allows to explore as a func-
tion of η the situations in which the delivery rate is smaller
or larger than the arrival rate (defined by the algorithmic be-
tweenness). Phenomenologically, these two scenarios corre-
spond to the cases in which the traffic is in a free flow regime
(if η > ν) or when the network will congest (ifη < ν). We
also note that the adopted approach is equivalent to assume a
finite length for the queues at the nodes.

Figure 4 shows the results for the evolution of the average
density of infected nodes,ρ, as a function of the spreading rate
β and the rate at which packets are generatedλ for two differ-
ent values ofη using a shortest path delivery scheme on top of
random SF networks. Forη = 0.8, the epidemic incidence is
significantly small for all values of the parametersλ andβ as
compared with the results obtained when the rate of packets
delivery is unbounded. On the contrary, whenη = 1.7 the
phase diagram is qualitatively the same as for the unbounded
case, including the result that the epidemic incidence vanishes
whenλ is large enough. A closer look at the dynamical evo-
lution unveils an interesting, previously unreported, feature−
when the rate at which packets are delivered is smaller than the
rate at which they arrive, the average value of infected nodes
saturates beyond a certain value of the traffic flow rateλ. This
effect is due to the emergence of traffic congestion. When the
flow of packets into the system is such that nodes are not able
to deliver at least as many packets as they receive, their queues
start growing and packets pile up. This in turns implies that
the spreading of the disease becomes less efficient, or in other
words, the spreading process slows down. The consequence
is that no matter whether more packets are injected into the
system, the average level of packets able to move from nodes
to nodes throughout the network is roughly constant and so is
the average level of infected individuals.

Figure 5 illustrates the phenomenological picture described
above. It shows the epidemic incidenceρ for a fixed value of
β = 0.15 as a function ofλ for different values ofη. The
figure clearly evidences that congestion is the ultimate reason
of the behavior described above. Therefore, the conclusion
is that in systems where a traffic process with finite delivery
capacity is coupled to the spreading of the disease theepi-
demic incidence is bounded. This is good news as most of the
spreading processes in real-world networks involves different
traffic flow conditions. Further evidence of this phenomenol-
ogy is given in Fig. 6, where we have depicted the epidemic
threshold as a function ofλ for two different values ofη, less
and greater thanν. Whenη < ν congestion arises, and the

contrary holds forη > ν where the diagram is equivalent to
that of unbounded traffic. The onset of congestion determines
the value ofβ above which congestion starts. It is clearly vi-
sualized as the point beyond which the power law dependence
in Eq. (6) breaks down. The plateau ofβc corresponds to the
stationary situation of global congestion.

III. CONCLUSIONS

In our study, we have computed both analytically and nu-
merically the conditions for the emergence of an epidemic
outbreak in SF networks when disease contagion is driven
by traffic or interaction flow. We demonstrate that epidemic
thresholds are determined by contact flows and that the epi-
demic incidence is strongly correlated to the emergence of
epidemic propagation pathways that are defined and driven
by traffic flow. Two general phenomenological scenarios are
identified. When the rate at which packets are delivered is
large enough or it is not bounded, the epidemic threshold
is inversely proportional to the traffic flow in the system.
This simple law, which also encompasses a dependency with
the topological properties of the graph as given by the algo-
rithmic betweenness has remarkable consequences. One of
them is that the epidemic threshold vanishes in the limit of
high traffic conditions, even forfinite SF networks and for
any routing algorithm. Moreover, within this scenario, the
new approach recovers previous results as a particular caseof
reaction-diffusion spreading. New phenomenological proper-
ties appear, in the unified framework, when the system has a
finite capability to deliver packets and congestion is possible.
In this case, what determines the epidemic incidence is the
capability of the network to avoid congestion. If congestion
arises, the number of contacts between the system elements
decreases, leading to a less efficient spreading of the disease
and therefore to a significant reduction of the average num-
ber of infected individuals. Additionally, the value of theepi-
demic threshold depends on the delivery rate− the smaller the
delivery rate, the larger the epidemic threshold. Interestingly,
our study points out that congestion appears to have a posi-
tive effect reducing the critical spreading rate for an epidemic
outbreak to occur and its size.

Finally, we point out that the new approach presented here
constitutes an interesting framework to address related prob-
lems. For instance, in the context of air-transportation net-
works [17, 29], traffic-driven mechanisms of disease propa-
gation could explain the observed differences in the impact
of a disease during a year [30]. One might even expect that,
due to seasonal fluctuations in flows, the same disease could
not provoke a system-wide outbreak if the flow were not high
enough during the initial states of the disease contagion. The
same reasoning implies that air traffic flow restrictions is an
efficient way to content a pandemic spreading. Incorporat-
ing the traffic-driven character of the spreading process into
current models has profound consequences for the way the
system functions. Also the theory could help designing new
immunization algorithms or robust protocols; one in particu-
lar being quarantining highly sensitive traffic nodes or equiv-
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alently control the onset of congestion in networks (control
of air traffic flow). Obviously our approximation lacks of the
level of detail required to assess more realistic epidemiologi-
cal models, however it provides a simple framework to antic-
ipate most of the general features to be observed in detailed
computational agent-based models.

IV. METHODS

A. Structure

Scale-free networks are generated by assigning all nodes
a random polar angleθ distributed uniformly in the interval
[0, 2π). The expected degrees of the nodes are then drawn
from some distributionx(k) and the network is completed
by connecting two nodes with hidden coordinates(θ, k) and

(θ′, k′) with probability r(θ, k, θ′, k′) =
(

1 + d(θ,θ′)
η′kk′

)−α

,

whereη′ = (α − 1)/2〈k〉, d(θ, θ′) is the geodesic distance
between the two nodes on the circle, and〈k〉 is the aver-
age degree. Finally, choosingx(k) = (γ − 1)kγ−1

0 k−γ ,
k > k0 ≡ (γ − 2)〈k〉/(γ − 1) generates random networks
with a power law distribution with exponentγ > 2 .

B. Routing Dynamics

At each time step,p = λN new packets are created with
randomly chosen origins and destinations. For the sake of
simplicity, packets are considered non-interacting so that no
queues are used. The greedy routing delivers packets such
that nodei, holding a packet whose destination isl, dispatches

it through nodej that is the closest tol in the hidden met-
ric space. Alternatively, one can implement a shortest path
algorithm in which packets are delivered through nodes that
are closer to their destinations in the network (i.e., not inthe
hidden metric space). Our results are insensitive to the two
routing protocols implemented.

C. Epidemic Dynamics

We have implemented the Susceptible-Infected-Susceptible
model in which each node can be in two possible states:
healthy (S) or infected (I). Starting from an initial fraction
of infected individualsρ0 = I0/N , the infection spreads in
the system through packet exchanges. A susceptible node has
a probabilityβ of becoming infected every time it receives a
packet from an infected neighbor. We also assume that in-
fected nodes are recovered at a rateµ, which we fix to 1 for
most of the simulations. After a transient time, we compute
the average density of infected individuals,ρ, which is the
prevalence of disease in the system.
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FIG. 1: Dependence of epidemic incidence on traffic conditions for unbounded delivery rate. The density of infected nodes, ρ, is shown as a
function of the spreading rateβ and the intensity of flowλ in SF networks. Flow conditions (controlled byλ) determine both the prevalence
level and the values of the epidemic thresholds. Increasingthe number of packets traveling through the system has a malicious effect: the
epidemic threshold decreases as the flow increases. Each curve is an average of 100 simulations starting from an initial density of infected
nodesρ0 = 0.05. The results corresponds to the greedy routing scheme and the network is made up of103 nodes using the model in [20]. The
remaining parameters areα = 2, γ = 2.6 and〈k〉 = 3.
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FIG. 2: Comparison between numerical and theoretical critical points. Log-log plot of the critical thresholds,βc, as a function of the rate at
which packets are injected into the system,λ. Two regions are differentiated: an active and an absorbingphase as indicated. The solid line

corresponds to Eq. (6) with
〈balg〉

〈b2alg〉
1

N
= 0.154. The agreement is remarkable even though Eq. (6) is derived using a mean field approach. The

underlying network, infection spreading mechanism and routing protocol are the same as in Fig. 1. Each curve is an average of102 simulations.
Remaining parameters are the same as in Fig. 1.
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FIG. 3: Density of infected nodes,ρ, as a function of traffic flow (determined byλ) and the epidemic spreading rateβ for random SF networks
and a shortest paths routing scheme for packets delivery. Each point is the result of 100 averages over different networks and initial conditions.
The network has a degree distribution with an exponentγ = 2.7.
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FIG. 4: Dependence of epidemic incidence on traffic conditions for the bounded delivery rate scenario. The figures show the density of
infected nodes,ρ, as a function of the spreading rateβ and the intensity of flowλ in random SF networks. The top panel corresponds to the
caseη = 0.8, for which the epidemic threshold is determined by congestion. When the whole network gets congested, no matter whetherthe
value ofλ is further increased,βc remains constant. In addition, the epidemic incidence saturates. The bottom panel shows the results for
η = 1.7. In this case, the epidemic threshold vanishes whenλ grows and Eq. (6) holds, thus resembling the case of unbounded delivery rate
(Fig. 1). Each curve is an average of 100 simulations starting from an initial density of infected nodesρ0 = 0.05. The network is a random SF
network made up of103 with γ = 2.7 and〈k〉 = 3.
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FIG. 5: Epidemic incidence in traffic-driven epidemic processes with bounded delivery rate. The figure represents the average fraction of
infected nodesρ as a function ofλ for different delivery rates at fixedβ = 0.15. The curves depart from each other when congestion arises
and the epidemic incidence saturates soon afterward. The rest of parameters are those of Fig. 4.
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FIG. 6: Epidemic thresholds as a function ofλ for two values ofη. The onset of congestion (the arrow in the figure) marks the point,
λc ≈ 0.150, at which the curve forη = 0.8 departs from Eq. (6), i.e., when the power law dependence breaks down. Soon afterwards
congestion extends to the whole network leading to a bounded(from below) epidemic threshold. On the contrary, when the delivery rate
is large enough (as in the case ofη = 1.7), Eq. (6) holds for all values ofλ, thus resembling the unbounded delivery rate case. Network
parameters are those of Fig. 4.


