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The study of complex networks sheds light on the relationvben the structure and function of complex
systems. One remarkable result is the absence of an epidieraghold in infinite-size scale-free networks,
which implies that any infection will perpetually propagatgardless of the spreading rate. The vast majority
of current theoretical approaches assumes that infectiomsransmitted as a reaction process from nodes to
all neighbors. Here we adopt a different perspective and/shat the epidemic incidence is shaped by traffic
flow conditions. Specifically, we consider the scenario inclepidemic pathways are defined and driven by
flows. Through extensive numerical simulations and thémakpredictions, it is shown that the value of the
epidemic threshold in scale-free networks depends dyrectiflow conditions, in particular on the first and
second moments of the betweenness distribution given agpptotocol. We consider the scenarios in which
the delivery capability of the nodes is bounded or unboundedoth cases, the threshold values depend on
the traffic and decrease as flow increases. Bounded delivexples the emergence of congestion, slowing
down the spreading of the disease and setting a limit for pigeenic incidence. Our results provide a general
conceptual framework to understand spreading processesnaplex networks.

PACS numbers: 02.50.Ga,89.75.Fb,89.75.Hc

I. INTRODUCTION tools [17]. These very detailed computer models have not
been yet analyzed in a general theoretical framework. Here
we introduce a theoretical approach to investigate theoooéc

Sf an epidemic spreading process driven by transport idstea
of reaction events. To this end, we analyze a paradigmatic

Scale-free networks$|[L] 2| 3] are characterized by the pre
ence of hubs, which are responsible for several strikingpro

erties for the propagation of information, rumors or infeas abstraction of epi : : :
. : ; pidemic contagion, the so-called Sudolepti
.[@*BBD[BEB]- Theoretical modeling of how diseases sprea, o te4.-susceptible (SIS) modél [18] (SEethods, which

in complex networks is largely based on the assumption thalqq,mes that contagion occurs through the eventual cantact

the propagation |s_dr|ven by reaction ProCESSEs, In theesen?.’ransmission between connected partners that are usiitg the
that the transmission occurs from every infected through a'connections at the time of propagation. This is achieved by

. ; ) G‘considering a quantized interaction at each time step. &ath
epidemics on the network. However, this approach overlook atically, we set up the model in a flow scenario where con-

the notion that the network substrate is a fixed snapshot of agion is carried by interaction packets traveling acros t
the possible connections between nodes, which does not inﬁ'etwork

ply that all nodes are concurrently active. Many networks ob We consider two possible scenarios that encompass most

served in natur 2], including those in society, biol L LU . N
technology, hagir{oc]ies that tgmporally intera)ét onlggvu\?ith of real traﬁlc_ situations: i) unbounded o_IeI_lvery rate, a_r)d i
subset of its neighbors [110,111]. For instance, hub protins ounded delivery rate, of packets per unit time. We derree th
not always interact with all their neighbor proteins at tams equation governing the _cr|t|cal threshold for epldemmsqni—
time [12], just as individuals in a social netwofk [13] do not "9 " ShF networlkfs, éVh'Ch embeds,bas adpgrtclchlar case, pre-
. . ) . . . vious theoretical findings. For unbounded delivery rate, it
interact simultaneously with all of their acquaintanceiek is shown that the epidemic threshold decreaseinite SF

wise, Internet connections being utilized at a given time denetworks when traffic flow increases. In the bounded case,

pends on the specific traffic and routing protocols. Giveh tha . )
. . odes accumulate packets at their queues when traffic flow
transport is one of the most common functions of networked'

. ) g - overcomes the maximal delivery rate, i.e. when congestion
systems, a proper consideration of this issue will irreplgra . .
) : arises. From this moment on, the results show that both the
affect how a given dynamical process evolves.

epidemic threshold and the infection prevalence are balinde
Our knowledge of the mechanisms involved in diseaseiue to congestion.

propagation has improved in the last several yéars [14.6]5, 1
Recent works have to some extend surmounted the problem of
link concurrency through agent-based modeling approaches

[14] or by explicitly implementing data-driven simulation Il. - RESULTS AND DISCUSSION

We first generate two different types of SF networks. On
one hand, we construct random SF networks where no corre-
*Electronic addres$: yamir.moreno@gmail.com lations are present using the configuration model[1, 2]. On
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the other hand, we also generate small-world, SF and highlyhe reason for the dependence of the critical spreading rate
clustered networks- all properties found in many real-world on X is rooted in the effective topological paths induced by
networks [1, P] such as the Internet using a class of re- the flow of packets through the network. At low values of
cently developed network models [19] 20], in which nearby), there are only a few packets traveling throughout the sys-
nodes in a hidden metric space are connected. This metriem, so the epidemic simply dies out because many nodes do
space can represent social, geographical or any other relaot participate in the interaction via packets exchanges. A
vant distance between the nodes of the simulated networks. grows, more paths appear between communicating nodes,
Specifically, in the model we use, nodes are uniformly dis-thus spreading the infection to a larger portion of the netwo
tributed in a one-dimensional circle and assigned an erpect Therefore, in traffic-driven epidemic processes the indect
degreek from a power law distributio®(k) ~ k~7. Pairs of  is constrained to propagate only through links that trahami
nodes separated by a distantare linked with a probability packet, and thus the number of attempts to transmit the-infec
r(d;k; k') = (1 +d/d.)~®, wherea > 1 andd, ~ kk’ (see  tion depends on the flow conditions at a local level, namely,
Methodsfor further details). In most of our simulations, we on the number of active communication channels at each time
fixed (k) = 3 anda = 2. Once the networks are built up, the step. As a consequence, the effective network that spreads t
traffic process is implemented in the following way. At eachinfection is no longer equivalent to the complete undedyin
time step,p = AN new packets are created with randomly topology. Instead, it is a map of the dynamical process &ssoc
chosen origins and destinations. The routing of informmatio ated with packet traffic flow. The conclusion is that the dégea
is modeled through even a shortest path delivery strategy orpropagation process has two dynamical components: one in-
greedy algorithm[2d, 21]. In the latter, we make use of thetrinsic to the disease itselfff and the other to the underlying
second class of SF networks and a nottewards a packetto traffic dynamics (the flow).
nodej in its neighborhood, which is the closest node (in the To theorize about these effects we next formulate the ana-
hidden metric space) to the final packet destination. lytical expression for the dependence of the epidemic thres
To accountfor link concurrency, we consider that two nodeld on the amount of traffic injected into the system, follow-
do not interact at all times, but only when they exchange ing a mean-field approach akin to the conventional analysis
at least a packet. Therefore, we assume that the epidemid the reaction driven case. Mathematically, the fractidbn o
can spread between nodes every time an interaction takgmths traversing a node given a certain routing protdcdl [22
place. This situation is reminiscent of disease transwomssi the so-called algorithmic betweennes§g, defines the flow
on air transportation networks; if an infected individua d pathways. Let us consider the evolution of the relative den-
not travel between two cities, then regardless of whether osity, px(¢), of infected nodes with degrde Following the
not those cities are connected by a direct flight, the epidemiheterogeneous mean-field approximatidn [4], the dynamical
will not spread from one place to the other. In this way, al-rate equations for the SIS model are
though a node can potentially interact with as many contacts
as it has and as many times as packets it exchanges with its ~ 0;px(t) = —ppr(t) + ﬁ/\b’;gN [1—pr(®)]OF). (1)
neighbors, the effective interactions are driven by a seécyn
namics (traffic). The more packets travel through a link, theThe first term in Eq.[{1) is the recovery rate of infected in-
more likely the disease will spread through it. On the otherividuals (we set henceforfta = 1). The second term takes
hand, once an interaction is at work, the epidemics spreadsto account the probability that a node witHinks belongs
from infected to susceptible nodes with probabilityFor ex-  to the susceptible clas§l — pi(t)], and gets the infection
ample, if at timet nodes is infected and a packet is traveling via packets traveling from infected nodes. The latter psece
from nodei to one of its neighbors nodg then at the next is proportional to the spreading probabiliy the probability
time step, nodg will be infected with probability3. There-  ©(t) that a packet travels through a link pointing to an infected
fore, susceptible and infected states are associated dth t node and the number paicketseceived by a node of degree
nodes, whereas the transport of packets is the mechanism ree- This, in turns, is proportional to the total number of paske
sponsible for the propagation of the disease at each tirpe stein the systemy~ AN, and the algorithmic betweenness of the
node,b’glg. Note that the difference with the standard epidemic
spreading model is given by these factors, as now the number
A. Unbounded Delivery Rate of contacts per unit time of a node is not proportional to its
connectivity but to the number of packets that travel thioug

In this situation, congestion can not arise in the systei. Fi it. Finally, ©(t) takes the form

[I shows the results for the stationary density of infectetbsso be P(k) o (4
p as a function of? and the traffic generation ratefor SF ot) = 22 baigP (k) i (1) )
networks. > Vb P (K)

The traffic level determines the value of both the epidemic
incidence and the critical thresholds. We observe the emeEq. (1) has been obtained assuming: (i) that the network is
gence of an epidemic threshold under low traffic conditionsuncorrelated?(k'|k) = k'P(k’)/(k), and (i) that the algo-
This implies that for a fixed value of, the epidemic dies out rithmic flow between the classes of nodes of degre@d %’
if the spreading rate is below a certain critical vajgig\). factorizeia’;(g ~ b’aﬂgb’;@. Although no uncorrelated networks
More intense packet flows yield lower epidemic thresholdsexist, this approximation allows us to identify the goveri




parameters of the proposed dynamics. The second approxima-Within our formulation, the classical result [4]

tion is an upper bound to the actual value of t}j ' whose

mathematical expression is, in general, unknown. The valid B, = <_k>’ (7)
ity of the theory even with these approximations is notable a (k?)

confirmed by the numerical simulations.

By imposing stationarityd,px (£) — 0], Eq. (1) yields can be obtained for a particular protocol and traffic condii

although we note that the microscopic dynamics of our model

BAVE NO is different from the classical SIS. To see this, assume a ran
P = #gk, (3)  dom protocol. If packets of information are represented as
1+ fAbzN O random walkers traveling in a network with average degree

(k), then under the assumption that the packets are not in-
teracting, it follows that the average number of walkers at a
b N2 nodei in the stationary regime (the algorithmic betweenness)
o— kl 3 (baig) P(kgﬁ)‘N@_ 4)  isgiven by [28[ 24}, = iz w. The effective critical value
k “alg alg is then c =<k > /(< > w), that recovers, when
>, bk P(k) 1+ B NO is then(BA) k>2 /(< k2 ), th h
) . w = (k), the result in Eq[{7).
The value® = 0 is always a solution. In order to have a = o results are robust for other network models and differ-
non-zero solution, the condition ent routing algorithms. We have also made numerical simula-
tions of the traffic-driven epidemic process on top of Barsb”
k \2
1 4 Z (ba'g) P(k)BAN® >1 (5) Albert and random SF networks implementing a shortest paths
>k bagP (k) d© 1+ BAbgNO oo delivery scheme. In this case, packets are diverted follow-
ing the shortest path (in the actual topological space) fitzan
must be fulfilled, from which the epidemic threshold is ob- packets’ origins to their destinations. The rest of model pa

from which a self-consistent equation f®ris obtained as

tained as rameters and rules for epidemic spreading remain the same.
Figure[3 shows the results obtained for random SF networks.

B. = (baig) L7 (6 As can be seen, the phenomenology is the same: the epidemic
<b§|g> AN threshold depends on the amount of traffic in the network such

) ] o ) _that the higher the flow is, the smaller the epidemic thrashol

an endemic state. In Figl 2 a comparison between the theoregr processes in which the delivery of packets follows a shor
ical prediction and numerical observations is presentetleH gt path algorithm, EqL]6) looks like

we have explicitly calculated the algorithmic betweenrfess
the greedy routing as it only coincides with the topological (brop) 1
betweenness for shortest paths routing. The obtained curve fe = <bt20p> AN’ (8)
separates two regions: an absorbing phase in which the epi-
demic disappears, and an active phase where the infection ighereb, is the topological betweenness.
endemic.
Equation [[6) is notably simple but has profound implica-
tions: the epidemic threshold decreases with traffic and-eve B. Bounded Delivery Rate
tually vanishes in the limit of very large traffic flow in fi-

nite systems, in contrast to the expected result of a finite- Equation[(B) allows us to investigate also the equivales sc
size reminiscent threshold in the classical reactiveasife  nario in the presence of congestion. Let us consider the same
framework. Admittedly, this is a new feature with respect totraffic process above but with nodes having gueues that can
previous results on epidemic spreading in SF networks. It istore as many packets as needed but can deliver, on average,
rooted in the increase of the effective epidemic spreadit&y r only a finite number of them at each time step. It is known

due to the flow of packets. This is a genuine effect of traffic-that there is a critical value of above which the system starts
driven epidemic processes and generalizes the hypothésis po congest[22]

forward in the framework of a reaction-diffusion process][1

on SF networks. It implies that an epidemic will pervade the
(finite) network whatever the spreading rate is if the load on

is high enough. Moreover, Eq.](6) reveals a new dependence.
The critical threshold depends on the topological featofes Equation[(®) gives the traffic threshold that defines the onse
the graph, but at variance with the standard case, throwgh ttof congestion, which is governed by the node with maximum
first two moments of the algorithmic betweenness distribu-algorithmic betweennesg,. Substituting[(P) in[{b) we obtain
tion. As noted above, the algorithmic betweenness of a noda critical threshold for an epidemic spreading process dedn

is given by the number of packets traversing that node giveiby congestion. Increasing the traffic abovewill gradually

a routing protocol. In other words, it has two components: acongest all the nodes in the network up to a limit in which the
topological one which is given by the degree of the node andraffic is stationary and the lengths of queues grow without
a dynamical component defined by the routing protocol. limit.
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To illustrate this point, let us assume that the capacitiegontrary holds fom > v where the diagram is equivalent to
for processing and delivering information are heterogesbo  that of unbounded traffic. The onset of congestion detersnine
distributed [25| 26, 27] so that the larger the number of paththe value of3 above which congestion starts. It is clearly vi-
traversing a node, the larger its capability to deliver thekp  sualized as the point beyond which the power law dependence
ets. Specifically, each nodeof the network delivers at each in Eq. [8) breaks down. The plateau@f corresponds to the
time step a maximum ofc; = 1 + k'] packets, whergisa  stationary situation of global congestion.
parameter of the model. In this case, the critical valug of
Eq.[@) is multiplied by the maximum delivery capacity|[25].

Moreover, without loss of generality, we will explore the-be . CONCLUSIONS
havior of the model in random SF networks where the routing
fsﬂﬁ;egneetwsgnbﬁh;%e? a;[;?g Thgmpprevi(l;u,sgeslggr;ption In our study, we have computed both analytically and nu-

X - merically the conditions for the emergence of an epidemic
for the delivery capability thus allows to explore as a func- . . S .
. A . . : . outbreak in SF networks when disease contagion is driven
tion of ) the situations in which the delivery rate is smaller

or larger than the arrival rate (defined by the algorithmie be by traffic or interaction flow. We demonstrate that epidemic

. : thresholds are determined by contact flows and that the epi-
tweenness). Phenomenologically, these two scenarios-corr

spond to the cases in which the traffic is in a free flow regimeOIemIC incidence is strongly correlated to the emergence of

(if 7 > ) or when the network will congest (if < ). We Eplderfpmﬂpropagatmn patr;wiys that arle d_efllned and_ driven
also note that the adopted approach is equivalent to assumeqx traffic flow. Two general p enomeno‘ogical scenarlos are
entified. When the rate at which packets are delivered is

. |
finite length for the queues at the nodes. large enough or it is not bounded, the epidemic threshold

Figure[4 shows the results for the evolution of the averages inversely proportional to the traffic flow in the system.
density of infected nodesp, as a function of the spreading rate This simple law, which also encompasses a dependency with
f and the rate at which packets are generatéat two differ-  the topological properties of the graph as given by the algo-
ent values of) using a shortest path delivery scheme on top ofrithmic betweenness has remarkable consequences. One of
random SF networks. Far= 0.8, the epidemic incidence is  them is that the epidemic threshold vanishes in the limit of
significantly small for all values of the parametérandf as  high traffic conditions, even fofinite SF networks and for
compared with the results obtained when the rate of packetgny routing algorithm. Moreover, within this scenario, the
delivery is unbounded. On the contrary, when= 1.7 the  new approach recovers previous results as a particulaotase
phase diagram is qualitatively the same as for the unboundegaction-diffusion spreading. New phenomenological prep
case, including the result that the epidemic incidencesl®@s  ties appear, in the unified framework, when the system has a
when is large enough. A closer look at the dynamical evo-finite capability to deliver packets and congestion is fuesi
lution unveils an interesting, previously unreportedidea—  |n this case, what determines the epidemic incidence is the
when the rate at which paCketS are delivered is smaller tlan t Capab”lty of the network to avoid Congestion' If Congestio
rate at which they arrive, the average value of infected sodegrises, the number of contacts between the system elements
saturates beyond a certain value of the traffic flow fatéhis  gecreases, leading to a less efficient spreading of thesgisea
effectis due to the emergence of traffic congestion. When thgng therefore to a significant reduction of the average num-
flow of packets into the system is such that nodes are not abiger of infected individuals. Additionally, the value of tapi-
to deliver at least as many packets as they receive, theiregue demic threshold depends on the delivery ratihe smaller the
start growing and packets pile up. This in turns implies thaljelivery rate, the larger the epidemic threshold. Intémgst,
the Spreading of the disease becomes less effiCient, orem Othour Study points out that Congestion appears to have a posi_
words, the spreading process slows down. The consequengge effect reducing the critical spreading rate for an epiit
is that no matter whether more packets are injected into thgytpreak to occur and its size.
system, the average level of pack_ets able to move from nodgs Finally, we point out that the new approach presented here
to nodes throughout the network is roughly constant and so iggnstitutes an interesting framework to address relateld-pr
the average level of infected individuals. lems. For instance, in the context of air-transportatiot ne

Figurd® illustrates the phenomenological picture describ works [17,[29], traffic-driven mechanisms of disease propa-
above. It shows the epidemic incidencéor a fixed value of  gation could explain the observed differences in the impact
B = 0.15 as a function of\ for different values of). The  of a disease during a year [30]. One might even expect that,
figure clearly evidences that congestion is the ultimateaea due to seasonal fluctuations in flows, the same disease could
of the behavior described above. Therefore, the conclusionot provoke a system-wide outbreak if the flow were not high
is that in systems where a traffic process with finite deliveryenough during the initial states of the disease contagite. T
capacity is coupled to the spreading of the diseaseeffie = same reasoning implies that air traffic flow restrictionsris a
demic incidence is boundedhis is good news as most of the efficient way to content a pandemic spreading. Incorporat-
spreading processes in real-world networks involvesdifie  ing the traffic-driven character of the spreading process in
traffic flow conditions. Further evidence of this phenomenol current models has profound consequences for the way the
ogy is given in Fig[b, where we have depicted the epidemisystem functions. Also the theory could help designing new
threshold as a function of for two different values of), less  immunization algorithms or robust protocols; one in partic
and greater than. Whenn < v congestion arises, and the lar being quarantining highly sensitive traffic nodes oriequ
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alently control the onset of congestion in networks (cdntroit through node; that is the closest té in the hidden met-

of air traffic flow). Obviously our approximation lacks of the ric space. Alternatively, one can implement a shortest path
level of detail required to assess more realistic epidesgiel algorithm in which packets are delivered through nodes that
cal models, however it provides a simple framework to antic-are closer to their destinations in the network (i.e., nahim
ipate most of the general features to be observed in detailddidden metric space). Our results are insensitive to the two
computational agent-based models. routing protocols implemented.

IV. METHODS

C. Epidemic Dynamics
A. Structure

Scale-free networks are generated by assigning all nodes we hgve implemented the Susceptillale-lnfected-.Susceptibl
a random polar anglé distributed uniformly in the interval model in Wh'ch each node can be in two po.s.smle states:
[0,27). The expected degrees of the nodes are then draV\}F?althy (S) or infected (I). Starting from an initial framt

from some distributionz(k) and the network is completed of infected individualspy = Io/N, the infection spreads in
by connecting two nodes with hidden coordinatést) and the system through packet exchanges. A susceptible node has

o a probabilitys of becoming infected every time it receives a
(0", k') with probability »(0,k,0", k') = (1 + dqg,e,;z,) , packet from an infected neighbor. We also assume that in-
wheren’ = (a — 1)/2(k), d(6,0') is the geodesic distance fected nodes are recovered at a ratevhich we fix to 1 for
between the two nodes on the circle, afid is the aver- Most of the simulations. After a transient time, we compute
age degree. Finally, choosingk) — (v — l)kquﬂ' the average de_nsny of infected individuals, which is the
k> ko = (v — 2)(k)/(y — 1) generates random networks prevalence of disease in the system.
with a power law distribution with exponent> 2 . Acknowledgments
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FIG. 1: Dependence of epidemic incidence on traffic condgtifor unbounded delivery rate. The density of infected spgeis shown as a
function of the spreading rafe and the intensity of flow\ in SF networks. Flow conditions (controlled By determine both the prevalence
level and the values of the epidemic thresholds. Increasiagiumber of packets traveling through the system has aimadi effect: the
epidemic threshold decreases as the flow increases. Eaghiswan average of 100 simulations starting from an initedgity of infected
nodespo = 0.05. The results corresponds to the greedy routing scheme amttvork is made up afo® nodes using the model in [20]. The
remaining parameters ate= 2, v = 2.6 and(k) = 3.
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FIG. 2: Comparison between numerical and theoreticalcatipoints. Log-log plot of the critical thresholds,, as a function of the rate at
which packets are injected into the systexn,Two regions are differentiated: an active and an absorphage as indicated. The solid line

corresponds to EqLX6) witléig'—g; % = 0.154. The agreement is remarkable even though [Hg. (6) is derisied) @ mean field approach. The
alg

underlying network, infection spreading mechanism andéimgyprotocol are the same as in Hify. 1. Each curve is an agefdg? simulations.
Remaining parameters are the same as infig. 1.
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FIG. 3: Density of infected nodep, as a function of traffic flow (determined By and the epidemic spreading rgtdor random SF networks
and a shortest paths routing scheme for packets delivech j@int is the result of 100 averages over different netearkd initial conditions.
The network has a degree distribution with an exporeat2.7.
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FIG. 4: Dependence of epidemic incidence on traffic condgifor the bounded delivery rate scenario. The figures shendémsity of
infected nodesyp, as a function of the spreading rateand the intensity of flow\ in random SF networks. The top panel corresponds to the
casen = 0.8, for which the epidemic threshold is determined by congestiVhen the whole network gets congested, no matter whetber
value of \ is further increasedj. remains constant. In addition, the epidemic incidenceratds. The bottom panel shows the results for
n = 1.7. In this case, the epidemic threshold vanishes whgnows and Eq[{6) holds, thus resembling the case of unbaudelé/ery rate
(Fig.[). Each curve is an average of 100 simulations staftam an initial density of infected nodeg = 0.05. The network is a random SF
network made up of0® with v = 2.7 and (k) = 3.
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FIG. 5: Epidemic incidence in traffic-driven epidemic prsses with bounded delivery rate. The figure represents thage fraction of
infected node9 as a function of\ for different delivery rates at fixed = 0.15. The curves depart from each other when congestion arises
and the epidemic incidence saturates soon afterward. Bhefrparameters are those of Hij. 4.
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FIG. 6: Epidemic thresholds as a function bffor two values ofy. The onset of congestion (the arrow in the figure) marks thatpo

Ae & 0.150, at which the curve for;, = 0.8 departs from Eq[{6), i.e., when the power law dependencakbrdown. Soon afterwards
congestion extends to the whole network leading to a bouif@eth below) epidemic threshold. On the contrary, when thbvdry rate

is large enough (as in the casepf= 1.7), Eq. [@) holds for all values ok, thus resembling the unbounded delivery rate case. Network
parameters are those of Hig. 4.



