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Mechanisms of synchronization and pattern formation in a lattice of pulse-coupled oscillators
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We analyze the physical mechanisms leading either to synchronization or to the formation of spatiotemporal
patterns in a lattice model of pulse-coupled oscillators. In order to make the system tractable from a math-
ematical point of view we study a one-dimensional ring with unidirectional coupling. In such a situation, exact
results concerning the stability of the fixed of the dynamic evolution of the lattice can be obtained. Further-
more, we show that this stability is the responsible for the different behay®1663-651%98)11803-2

PACS numbdrs): 05.90+m, 87.10+e, 05.50+q, 87.22.As

[. INTRODUCTION that a low dimensional system of pulse-coupled oscillators
may display. Some examples are self-organized criticality,
Among the collective phenomena that are currently atchaos, quasiperiodicity, etf10].
tracting the interest of the scientific community one of the Unfortunately, a rigorous mathematical description of
most relevant concerns the synchronization of the tempordghese systems is still missing. Some of the theoretical papers
activity of populations of interacting nonlinear oscillators, @Ppearing in the scientific literature prove the stability of
due to its ubiquity in many different fields of science. Ex- Some behaviorl1,12 but they do not explore the mecha-
perimental evidences of this phenomenon have been reporté#sms leading to them. The goal of this paper is twofold: the
for centuries[1] but in the last decades the advance in theahalysis of the mechanisms that are responsible for synchro-
Comprehension of its nature has allowed the deve|opment d‘fization and formation of Spatiotemporal structures, and, as a
a theoretical description. In this context, several successfiiomplement, a proof of the conditions under which they are
ideas has been suggested. An interesting approach propos@éb'e ;olutions of the dynamical equations. Since our moti-
in [2—4] has been shown to be useful to describe the dynami¥ation is to analyze the essence of the problem we have
evolution of the population. The idea consists in modelingconsidered a one-dimension@dD) model that will allow us
the system as an assembly of phase oscillators interactiri§ illustrate the ideas in a very clear way. In spite of this
through continuous-time couplings. For sufficiently large@pparent simplicity, this system displays a rich set of behav-
coupling strength the system may undergo a phase transitidrs that depends on the specific values of the parameters of
from incoherence to spontaneous mutual synchronizatiorfhe model, which has been observed in lattices with higher
More challenging from a theoretical and realistic point of coordination numbergl2,13. Notice that populations of 1D
view is to consider networks of pulse-coupled oscillators thaPulse coupled oscillators are currently of great interest in
may account for the behavior of heart pacemaker cells, inteSOme areas of science. As an example let us mention that for
grate and fire neurons, and other systems made of excitabfecertain type of cardiac arrhythmia there is an abnormally
units. The intrinsic nonlinearities associated with these modrapid heartbeat whose period is set by the time that an exci-
els make their dynamical evolution more difficult to describetation takes to travel a circuit. This observation can be ex-
and only in the last years have real advances occjifred].  Plained by modeling appropriately the circulation of a wave
Up to now, almost all the theoretical approaches haveéf excitation on a one-dimensional ririg4]. In a different

been centered around mean-field models or populations &ontext, synchronization and periodic states of 1D popula-
just a few oscillators. From these studies it is possible tdions of phase-locked loops have been recently investigated
investigate the mechanisms relevant for the formation of as-11,15.
semblies of synchronized elements as well as other spa- The structure of this paper is as follows. In Sec. Il we
tiotemporal structures. However, these mean-field descripdescribe the system as well as the notation used throughout
tions are, in many cases, far from reality and other method#e paper. Sections Ill and IV are devoted to analyzing the
where the specific topology or geometry of the system, asimplest cases of three and four oscillators,. respectively. !n
well as the precise connectivity between units, must be conS€c. V we study the general case, whereas in the last section
sidered because their effects may be crucial. In such a neWe present our conclusions.
world many points remain open. In particular the majority of

works rely on simulations showing the outstanding richness Il. THE MODEL
Let us consider a system formed by a populatiomNef1
*Electronic address: albert@ffn.ub.es oscillators distributed on a ring. The state of each oscillator
"Electronic address: conrad@ffn.ub.es is described by its phase, which increases linearly in time,
*Electronic address: aarenas@etse.urv.es until one of them reaches a threshold value that, without loss
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of generality, we have considered equatfig=1. When this  ¢,=1 —0 —1— ¢, =dN-ni1
happens the oscillator fires and changes the state of its right; /
bp 9 9 1 —pudr —l=—dptudr =dy_ni2

most neighbor according to
&2 — ¢ —1=-¢yt+ ¢, = Pl-n+3

¢i—0, )
#i=1= i1 i1t edi i =pudiig, & — o bt o = Onensina

b1 —Pn1 —l-dpt by :d’l,\l
n — —1 =¢6
b1 —Pni1 —1l-dnt dnya :(bi

Y i=0,...N (1)

subjected to periodic boundary conditions, i+ 1=0,and
wheree denotes the strength of the coupling. From an effec- ,
tive point of view, the pulse interaction between oscillators, ®j —¢; —=l-dntd =9,
as well as the state of each unit of the system, can be de- : :
scribed in terms of changes in the phase, or in other words Y

in terms of the so-called phase response c4RRO), ue in N —én 7l gntéy = én-n

our case. Behind this fact one assumes that the phase sr\%ere(b, describe the new phases after the FD process. The

elicited by an impulse affects the period of a given unitin thegiagram describes the situation just when the leader fires

current time interval but not in future intervals. In this Paper (first column, the change in phases as a consequence of the

we have also considered a linear PR@]. In practice, how-  emitted pulse(second, and finally the evolution of the sys-

ever, this condition can be relaxed since a nonlinear PR%m due to the linear driving up to the next f|r|(tg"rd) We

does not change the qualitative behavior of the model propelieve that this is the simplest and most compact way to

vided the number of fixed points of the dynamics is notdepict the process since we get rid of rotations that should be

altered. Moreover, a linear PRC has the advantage of makingken into account after the linear driving for any other rela-

the system tractable from an analytical point of view. beling method. Thus the transformation that describes this
Let us describe the notation used in the paper. The popwrocess reads

lation is ordered according to the following criterion: The

oscillator that fires will be always labeled as unit 0 and the &' =To(d)=1+M,d,

rest of the population will be ordered from this unit clock-

wise. After the firing, the system is driven until another os-where (Z’ is a vector withN components since the zeroth

cillator reaches the threshold. Then, we relabel the units SUC&bmponent does not play any role in the description. In the

that the oscillator atp=1 is now unit number 0, and so on. above expressiofil,, is anNx N matrix that can be written
The whole process can be described through a suitable trangs

formation. This fact will enable us to study the origin of

different structures in a very simple way. Our strategy has (Mp)ij=08i41;—(1+¢€)dj1, 2
been to trace the phases of the oscillators after each firing
and then to construct return maps either of a complete cycle, (Mp)ij=8i4nj— Ojntedjibiiny ¥V n>1 (3

in which all the oscillators fire exactly once, or after a single

firing + driving procesgFD). Let us clarify this point math-  In these expressiond; ; is the usual Kronecker delta. The

ematically. The first step is to construct the matrix of thesums should be interpreted modulié+ 1) and none of the

transformation for a FD. To illustrate the situation let ussubscripts can be either O b+ 1.

consider the general transformation for a “jump”between Since we are interested in emphasizing the mechanisms

two successive firings, distinguishing between 1, leading either to synchronization or to pattern formation, we
have considered it very convenient to start our discussion
with two illustrative situations where everything can be com-

$o=1 —0 —1-udq =y puted analytically and whose perfect understanding will help
, us to tackle the general case.
b1 —pd —1 =g

b —¢; —l-uditd, =¢; lIl. THREE OSCILLATORS

This is the simplest case that is worth analyzing, since the
P — —1l—pd+édi =¢i_, system formed by two units has been widely analyzed in the
) literature; see, for instancg§,12,17. If we define a simple
cycle as a sequence of firings in which each oscillator fires
N —¢n  —l-pditédn =d-g once and only once, there are only two possibilities for this
system:
(A) 01,2
andn>1, (B) 02,1
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provided oscillator O is always at the threshold at the starting —(p=3)pl=i(u—D)u¥a—pn

point of the dynamic evolution. Here, the numbering corre- 5 (12
sponds to the firing sequence according to the initial spatial

order in the lattice. Let us study both situations in detail.

whose moduli are.®?. Depending on the sign afthe fixed
point is either stablé—) or unstablg+).
A. Order (A): 0,1,2
In this case, the sequence starts when oscillator O fires, B. Order (B): 0,2,1
sending a pulse that changes the state of oscillator 1. After-
wards, the system is driven until oscillator 1 arrives at the
threshold. According to our notation this process can bé

Now, oscillator 1 receives the pulse but it is oscillator 2
hat leads the driving and arrives first to the threshold

viewed as 1 —0 11— ¢2,
1 -0 —l1-up=d¢s, b1— pd1—1ltpudi—é,, (13
h1— upy—1, (4) br— ¢ —L
by — ¢y —1+ =y Therefore, the new phases are
Then, we have transformed a state characterized by two
phases$, and ¢, to a new one also characterized by two &, 1 0 —1 o
phasesp; and ¢, such thate¢; is always the phase of the = + (14)
oscillator that will receive the next pulse and keep this nu- oy 1 p -1 o2
meric order along the ring. In matrix notation the transfor-
mation can be written as follows: M,
Again the complete cycle is constructed by applying three
#, 1 . -1 b times this transformatiofiT,oT,o T () ]:
= (5 L R
¢'2 1 —/,L 0 ¢2 ¢///: RB+MIB ¢, (15)
|
M, where the independent terRy is now
The complete cycle is constructed by applying three times .
this transformationi T1°T1°T1(¢)]. In other words, ﬁB:(1+M2+MZ.M2) 1 (16)
" =Rp+M,- é. (6)  and the matrix of the transformation is
The independent terR, is Mg=My- M- M. 17)
S T MY The fixed point of this transformation, which is the solution
Ra=(1+ My My M- 1, D ot the equation
where 1is a column vector of 1's, is the identity matrix ik _ B T
) ’ = =+ .
and the matrix of the transformatiot, is defined as ¢ =Ret Mg &%, (18
Ma=M;- M- M, . ® °
From this expression it is easy to compute the fixed points of P = 1 , (19
the transformation, which are solutions of the equation 3+e
§* =Rat My 6%, (9) s _2te
that is,
The stability of this fixed point is given by the eigenvalues of
2 Mg that are
* _ B
P35 (19
Bu—1xi(u—1)v4u—1
1 2 ) (21
*
$2= 3+2¢° (1)

whose moduli are agaip®? Therefore, both fixed points
The stability of these fixed points is given by the eigenvaluesiescribe the same physical behavior that is independent on
of Ma, which are the particular order in which oscillators fire.
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FIG. 1. Evolution of the phases; and¢,, for a negative value FIG. 2. The same as Fig. 1 for positive coupling.

of . Right: initial configurations when oscillator 0 is at the thresh-

old value; left: new values of the phases when oscillator O reaches The mechanism for positive is the opposite of that for
the threshold again. The crosses correspond to the fixed points aRbgatives. Regions(A) and (B) are enlarged every cycle,

each region corresponds to a given sequence of firisgs text and the configurations move away from the fixed poinés
pellerg until they cross some of the borders where at least
C. Phase ordering two oscillators get absorbed and synchronize. Figure 2 shows

. : . this fact. The left hand side of the figure depicts the size of
In the previous subsections we have studied some featur?ﬁe basin of attraction of those configuraticiutosed lines

of the final ;tate of the sy;tem when a sequence of |dent|cq at when oscillator 0 reaches the threshold again still require
transformations are applied successively. However, th%equence{A) or (B) to evolve dynamically. The rest of the
reader can argue that those sequences are not the only P@giase space is formed by states characterized by the fact that
sible dynamical evolution. Indeed, to deal with all the pos-after the next firing of oscillator 0 occurs at least two units
ture of T, and T, are combined in an arbitrary manner to right hand side of the figure. Since two synchronized oscil-
complete a cycle, and what sort of physical consequencégtors act as a single one and cannot be broken after a com-
derive from this fact. In addition, one may wonder whetherplete cycle, the problem is now equivalent to that of two
an advancement can take place, i.e., if a given oscillator caoscillators. This dimensional reduction is the essence of syn-
fire twice before another element of the chain arrives at thehronization. For mean-field models the word absorption has
threshold, breaking thus our definition of a simple cycle.been used to illustrate this phenomeri6h
Such issues are discussed in this subsection. To illustrate this To address the question about the plausibility of having
point let us start by considering Fig. 1, where we have plotmixtures of consecutive transformatiofig andT, it is con-
ted the evolution of the phases each time oscillator 0 is at theenient to look at the problem from another perspective. In-
threshold value. It is obvious that there are two differentstead of considering complete cycles it is better to analyze
situations: a positive or negative value of the coupling. Insingle firings. Let us suppose for simplicity negatiirhibi-
this figure we have analyzed the situation for 0. tory) coupling between units. In this case, it is evident that
The left hand side of Fig. 1 shows all the possible initialthe alternative application of both transformations leads to
configurations and the right hand side shows how they trangwo possible options. The first case to be considered is the
form when oscillator 0 is again at the threshold. Regigks  combinationT,°T,. We can observe that applyirig is in-
and (B) represent the sequencés) and (B) described be- consistent with the application df; afterwards, because the

fore, respectively. Here, we can see that states lying initiallyesumng configurationT,(¢) does not satisfy the possible

in one of these regions will approach the fixed poi@aiirac-  gitferent phase orders necessary to agply On the other

tors), since(A) and(B) are slowly shrinking. Therefore, once hanq, the ordeT ,° T, implies one advancement between os-
one starts with a given sequence no other one can be applig§liators, corresponding to regiof€) (see Fig. 1 of phase

to describe the dynamical evolution of the system. Thegpace. This situation has been discussed previously to play
physical picture associated to the attractor fixed point is quitgne role of transient dynamic behavior of the system. Thus
simple. The oscillators remain at a certain distance in thgye can conclude that, in general, the advancements will
phase spacgphase locking For larger dimensiongmore  cayse the phases to be reordered until the system reaches a
oscillatorg this fact induces the creation of complex spatial configuration that is consistent with only one sequence of

patterns. S . _ transformations.
Special attention is given to regiofC), which corre-

sponds to a sequence of firings 010. This means that oscilla-
tor 0 advances to oscillator 2, a situation not covered before.
Here we can see that the effect of this advancement is to In this case there are 6 different orders for the oscillators
reorganize the phases in such a way that after one cycle tite complete a simple cycle:

old configurations fall in the basin of attraction of regi@) (A)0,1,2,3

and therefore, for them, sequen@ must be applied for- (B) 0,1,3,2

ever. No more advancements can take place. The main con- (C) 0,2,1,3

clusion is that advancements play a role only in the transient (D) 0,2,3,1

but not in the stationary properties of the dynamics. A more (E) 0,3,1,2

clear picture of the physical meaning of this fact will be (F) 0,3,2,1

provided in the next section. Analogously to the three oscillators case we define the

IV. FOUR OSCILLATORS
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matrices of the transformation between successive firings dixed points for case€C) and(D) are senseless since they do
two oscillators, according to the jump between oscillatorsnot verify the prescribed order, and hence they are physically
that fire successively: unacceptable. Furthermore, the fixed points of c&Besnd

(C) are physically the same since they just differ in the order

-» 10 in which oscillators 0 and 2 fire but they are synchronized.
My=( —# 0 1], (22 Thus, basically, we have to deal with fixed points where the
—uw 00 phase difference between adjacent oscillators is roughly
b 1— ¢i=1/4,2/4,3/4(mod 1), with small corrections de-
0o -1 1 pending one.
Let us focus now on the process from the point of view of
Mp={ 0 =1 0, (23 single firings again. Notice thaf, and T; are transforma-
u —1 0 tions that can be applied alone, successively leading to a
natural complete cycle. However,, cannot be applied in
0 0 -1 this way because this would lead to an unphysical situation
My=| p O —1], (24) where only a group of c')scillators. will fire. This means that
0 1 -1 T, must be combined witfi; or T4 in order to be physically

acceptable; then the effect of having an eigenvalue with

We can easily compute the eigenvalues of those matrice§10dulus 1, that can carry a metastability on the system, is
For M, andMs, the eigenvalues have moduli largemallep avoided by this combination. The combinationsTgf with

than 1 for positives (negatives). However, forM, there is  €itherT, or Ts, can be done in the way described by the
one eigenvalue with modulus equal to 1. This will be veryorders (B), (C), (D) or (E), that always give rise to a
important when discussing the stability of the fixed points. chessboard-type pattern. Other combinations can be obtained
According to these jumps the transformation of a com-applying T1°T, or Tz°T, forever; this situation elicits ad-
plete cycle for the different orders are constructed in thevancements but nevertheless the resulting patterns are chess-

following ways: board type again.
(A) 0,1,2,3—>T1°T1°T1°T1,
(B) 0,1,3,25TpTgeTpoTy, V. N+1 OSCILLATORS
(C) 0,2,1,3—>T1°T2°T3°T2, . .
(D) 0,2,3,15TgTpoTieT,, Alt_hough, in general, to construct a complet_e cycle is not
(E) 0,3,1,25T,0T;oT,0Ts, a tr|V|a_1I mechanism we can infer some key points about the
(F) 0,3,2,15T30TgTsTs. behavior of the system from the FD processes as we have

For instance, let us write, in matrix form, the transforma-done for the simplest lattices: compute the fixed points and
tion for the caséB): their stability.

@' =1+M,- 1T+M,- Mg- 1+ M, Mg- M,- 1 A. Fixed points
Due to their different behavior we will have to distinguish
again the cases=1 andn>1. Thus, for the first situation,

We can now proceed to compute the fixed points associl/® have to solve

+ M, Mg M,- M - . (25)

ated to these transformations which are: br1=1— upi+ by,
3 2 1
A =1- + ¢3,
(A) 1, 173s’ 1213’ A4+3e b2 1t b3
(B) 1 1 0 1+e
T2+ T 2+¢&]
L 1 In-1=1—pd1t Py,
C _— _—
© 1L 5% b dn=1—pud,. (26)
(D) 1, 1 o1 1 ) Simply summing up all the equations we are left with
2+e 2+te ¢1=N(1—pu¢;) and then we get
E) 1 1 0 1+e N
To2+e" T 2+4¢&” T
° ° PITNFINe @7
P 1 1 2+e 3+e
" 4+e’ 4+e’ 4+’ Notice that the other phases at the fixed point can be

) _ ) ) ) o obtained from this one, sincep; ;- ¢j=1—up,Vj
Numerically, these fixed points are unique since this is en=2 . N. This fixed point corresponds to a situation in
sured by the fact that all the eigenvalues of the matrix thajyhich all the oscillators fire in turn following their lattice

multiply q?) are different from 1 in all cases. Nevertheless theordering.
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On the other hand, fon>1 we have to solve values of the phases that are either below zero or above one.
We showed explicitly for the case of 4 oscillators that under
$1=1=nt dni1, these circumstances the transformation of an FD process of

this kind has to be combined with other transformations with
noncommon factors and that this led to advancement be-
tween oscillators and to the formation of a chessboardlike

dn-n=1—nt Py, pattern. This is also what happens in the general case. The
matrix associated with this combination will have eigenval-
In-n+1=1—¢n, ues with moduli different from 1 and will guarantee the ex-
istence of the fixed point. Let us assume that a given spatial
In-n+2=1=ntpdy, structure with periogp=(N+1)/n exists and then there are
—o 4 some oscillators that are synchronizedb,E ¢,= ¢op
In-n+3=1=ént &2, = =¢n-1)p; P1=Pp+1=---; ...). Hence we need only

to consider each spatial period, since the transformations of
jump p correspond to oscillators that fire exactly at the same
time. Within each period there will be different possibilities

PN=1=bnt ot (28 for the magnitude of the jumps, and then the fixed points
Summing up again all the equations we now obtain will be characterized by
$1+ dn=N(1— )+ ud;. (29
My, nm,
Now we notice that it is not enough to get one of the ¢1 (32)

1 = = .
+m,e N+1+nm,e
values of the phases. We have to close the system of equa- P M, "o

tion by means of the following procedure:

By combining Eqs(27), (30), and(31), we realize that for
dr=1—dn+ Snp1  =2(1 —¢n) + b2mna a given N+1 there always exists a value of

N

1—¢n+d2nt1 (0<m<N+1) such that

and so on. Again all the subscripts are understood modulus
N+ 1. This procedure is repeated until we reagf_,. 1, m

NI (32

which closes the dependence éf on ¢,,. Obviously, a 1" N+1+me

necessary condition to close it is thidt+1 andn do not

have common factors. This procedure is iteratag—1

times, wherem,, verifies will be the phase of oscillator 1 at a fixed point. We have
used this fact to identify the fixed points of the dynamics in

(1+m,n) mod (N+1)=0, simulations of lattices of a few oscillators, as we will see

later on.

and it exists and is unigue for each<N+1. Then for a In principle one can still think about the possibility of

given N we will have to consider all the values af,, be-  other fixed points corresponding to combinations of transfor-
tween 1 andN without common factors. We can therefore mations not described above, for instance, successive appli-

obtain that at the fixed point, cations of two transformations of different valuesmf but
this case will necessarily involve advancements between the
o N+mpe " mp (30) oscillators, which, as we have already discussed, are only

" N+1+mpe' "' N+1+mpe’ important in the transient but not in the approach to the final
state. This, of course, can make the transients become quite
Again, this situation would correspond to a sequence ofarge, as we have observed in the computer simulations, but
FD processes of jump. It is easy to convince oneself that in the only final states for an inhibitory coupling are those de-
both casegn=1 andn>1) one can build a complete cycle scribed earlier in the text. It is also important to note that
by applyingN+1 times the transformatiof,,, which does depending on the strength of the coupling, and on the num-
not change the fixed points. In principle, this successive apber of oscillators, there will be some fixed points, for an
plication could make new fixed points appear, but this isinhibitory coupling, that will not exist, i.e., those that verify
forbidden by the fact that the moduli of the eigenvalues of
M,, are always larger than 1 fer>0, and smaller than 1 in
the opposite case, whenewdr 1 andn do not have com- N+1
mon factors, as we show in the Appendix. e<l-——. (33
But we still do not know what happens whiht+1 andn
have common factors. As we show in the Appendix in this
case there exists at least one eigenvalue of modulus 1 arebr instance, for the three oscillators case this happens for
this fact does not ensure the existence of a solution for the set=2 when ¢<—0.5 [see Eq.(10)] and then regionA)
of algebraic equations; even when this solution can exist itlisappears and the fixed point correspondingBo is the
usually gives rise to unphysical situations, as, for instance, tonly possible final state.
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TABLE I. Percentage of the final states the system formeb #yl oscillators reaches, far=—0.1. The
first column stands foN+1 and the first row fom in Eq. (32), which approximately corresponds to the
phase difference timdd+ 1 between consecutive oscillators. It is averaged for 1000 initial random configu-
rations picking each phase from a uniform distribution between 0 and 1.

1 2 3 4 5 6 7 8 9 10
3 61.4 38.6
4 21.2 71.3 7.5
5 5.5 56.5 37.2 0.8
6 1.2 29.1 58.0 11.7 0.0
7 0.0 11.3 51.7 34.2 25 0.0
8 0.0 3.8 321 50.6 13.2 0.4 0.0
9 0.0 11 16.2 47.9 30.8 3.9 0.1 0.0
10 0.0 0.2 6.4 34.6 43.8 14.3 0.7 0.0 0.0
12 0.0 0.0 0.7 9.2 34.7 40.0 14.0 1.4 0.0 0.0
15 0.0 0.0 0.0 0.5 5.9 23.0 38.8 25.2 6.2 0.4
B. Stability of the fixed points which stands roughly for the phase difference between

After having shown the existence of the fixed points forN€ighboring oscillators timei+1; see Eq(32). There are
single FD processes and extending this calculation to Corr§everal results in these simulations that deserve further com-
plete cycles, one needs to compute their stability. Since thaents. For instance, we can notice that the oscillators tend to

calculation of the eigenvalues of the matrices is a lengthy buf€eP the maximum phase difference. The chessboardlike
straightforward procedure we have left it for the Appendix. Structure has the largest basin of attraction when the popula-

There we show that the results easily obtained for three antlP" has an even number of oscillators, whereas for an odd
four oscillators also apply to the general case, i.e.gfa0

number of oscillators there are two peaks with the largest
the fixed points are attractors, whereas in the opposite ca

fhase differences. However, these results depend slightly on
they are repellers. On the one hand, the attractiveness of tBE Strength of the coupling since the maximum percentage

fixed points enables the formation of spatiotemporal pattern@PPears for the maximum phase difference and the larger the
of phase-locked oscillators. This works not only for the peak_the larger the'phase dlfferencg. Thus we can understand
structures with different phases but also for the periodid€ different behavior for the two different values &fAn-

ones. On the other hand, when these fixed points beconfdher difference concerns the reduction and, eventually, the

repellers it causes the neighboring oscillators to synchroniz&iSaPpearance of the basins of attraction of the fixed points
and from that time on they will act as a single unit; this that correspond to large values wif This fact also affects

absorption(or dimensional reduction in our language it- the time the system needs to reach the stationary state; for

erated until the whole system acts as a single unit, whictStance, for smaller values af not only the jumps along
completes the mechanism of the synchronization of the 1ato"® cycle are smaller but there are also more attractive fixed

tice models with very-short range interactions we have anaP0ints. On the other hand, we have corroborated that for
lyzed through the paper. excitatory couplings the only possible final state is synchro-

nization, no matter how long the transient is.

C. Computer simulations
VI. CONCLUSIONS

In order to check the validity of our results we have made
computer simulations on lattices of a few oscillators. In In order to analyze the mechanisms of synchronization
Tables | and Il we represent the percentage of the structuredd the formation of spatiotemporal structures we have in-
that the system formed by + 1 oscillators reaches as a sta- troduced a very simple model of pulse-coupled oscillators: a

tionary state for two different values efas a function ofn, ~ one-dimensional ring with unidirectional coupling. Despite
this apparent simplicity it conserves all the features of low-

TABLE II. The same as Table | for=—0.01. dimensional systems subjected to short-range interactions
which develop large-scale structures.
1 2 3 4 5 6 7 8 9 Although the dynamic evolution of the system involves

two time scales, a slow one for the driving and a fast one for

3 519 481 the interaction, we have constructed return maps that gives a

4 175 673 151 complete information of the system. Concerning the maps,

5 4.7 46.7 450 3.61 we have been able to compute exactly the fixed points of the

6 1.0 228 548 207 0.7 dynamical evolution and their stability.

7 0.2 8.4 430 409 74 01 For a negativeinhibitory) coupling the fixed points are

8 00 28 243 483 225 206 0.0 attractors of the dynamics. Each one of these attractors has a

9 00 08 1135 397 377 97 0.6 0.0 well-defined basin of attraction, although in some cases those

10 0.0 02 44 260 429 231 3.4 0.1 0.0 regions are notsimply connected. Since the evolution is dis-
crete there are jumps among non-connected regions that cor-
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respond to advancements between oscillators. The advancehere again the subscripts are understood modhluisl,
ments are only important in the transient dynamics, until thesuch that when it is applied t,, M ,=B"M B, one gets
phases of the oscillators lie in the final basin of attraction of
the fixed point. The volumes of the basins of attraction are (M{)ij=8ij+1= SjnT €8 m Sim +1-
different and depend on the value of the coupling, as we ] . o
have checked by means of computer simulations of a fewVith this procedure we have converted a, in principle, com-
oscillators. However, the states with the maximum phase difPlex matrix in a much simpler one. The new matrix has
ference between neighboring oscillators seems to be the pré! the last column and 1's just below the main diagonal,
ferred ones. unless at columm, and rowm,+1 where it has *¢. In

On the other hand, for a positiexcitatory coupling the order to compute the _eigenvalue_s we should notice that when
fixed points are repellers of the dynamical evolution. Al-€=0 the characteristic polynomial is
though in a configuration space with a multiplicity of repgl— Py (A8 =0) = AN+ AN"TH N2\ 41
lers one can think that the system will jump from one region ’
to another this is not our case. There are absorbing barriefthen to compute it fore#0 we expand the determinant
surrounding the repellers; when the system reaches one @found the previous case and one realizes that the columns
these barriers it means that at least two neighboring oscillahat are at the right and the rows that are below this element
tors have synchronized. When this happens the set of syfwill not contribute. Thus one has
chronized oscillators acts as a single unit that cannot be bro-
ken. From that time on we only need to consider a reduced Prn(N,8) = AN ANTIEANT2 4 g\
number of units; we call this fact dimensional reduction my—1g ...
since the new system can be described in terms of matrices At oot d). (A3)
with fewer components. This process of absorption is iterThe last expression can be taken as general, i.e., including
ated until the system reaches a completely synchronized cofhe n=1 case, bearing in mind that,=N.
figuration. It is obvious that to compute the roots of Hé3) is an

The present work only concerns the qualitative behavioiunnecessary task, since the only needed information con-
of a population of pulse-coupled oscillators; nevertheless, gerning the stability is the bounds of the eigenvalues. In or-

quantitative behavior about the time a given populationder to compute these bounds we will look at the properties of
needs to reach the stationary state, either a synchronized ofige characteristic polynomial. It can be rewritten as

or a spatiotemporal pattern, would be desirable in order to N -
complete the description of such systems. Another interest- B K d k_x““—l AMh—1
ing question is related to the stability of the different struc- PN,n()\’s)—gfo Nte k§=:0 N=——1 TenT

tures with respect to fluctuations. (A4)
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unless the artificially introduced.=1. These roots will
verify

In this appendix we will compute the bounds of the eigen-
values of the matricedl,, defined in Eqs(2) and(3). All the
information will be extracted form the characteristic polyno- This modulus has upper and lower bounds given by the sum
mial Py ,(\,e), which corresponds to the determinantand the difference, i.e.,

|)\f—Mn|. In this case we will distinguish several situations. INNFL— || N[ M<1+ e <|A[NTL+[g|[n]™.
First of all whenN+1 andn have common factors it is easy

to see in the determinant that a minor that corresponds tdhus fore>0, we use

eigenvalues of modulus 1 always exists; anyway, as we ex-
plain in the text we do not need to care about this case.

The casen=1 is very simple to compute. By simple in- which implies thatx|=1. On the other hand, far<0 we
spection of the determinant it is easy to see that take

APPENDIX

INNFLlpenM|=1+e.

INNFL+g|N|™=1+e¢,

Pna(N &) =APy-pa(N,e) +u (A1) INNTI—|g] [N |M<1—|¢],

and hence which, in turn, implies thaf\|<1. The final point is to show
that the equality can only be fulfilled when both complex
Pna(N &) =AN+ AN "1 uNN"2 4+ uN+ . (A2)  numbers have the same direction. It is easy to see that this
o ) can only happen wheN+1 andm, have common factors.
In order to compute the case>1 it is convenient to  gince this fact is avoided in this demostration we are left
introduce the following similarity transformation matrix with the fact that for an excitatory coupling £ 0) the ei-
B genvalues are larger than 1 and the opposite for an inhibitory
(Bn)ij= Oj,myi» coupling (<0), as we wanted to show.
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