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Mechanisms of synchronization and pattern formation in a lattice of pulse-coupled oscillators
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We analyze the physical mechanisms leading either to synchronization or to the formation of spatiotemporal
patterns in a lattice model of pulse-coupled oscillators. In order to make the system tractable from a math-
ematical point of view we study a one-dimensional ring with unidirectional coupling. In such a situation, exact
results concerning the stability of the fixed of the dynamic evolution of the lattice can be obtained. Further-
more, we show that this stability is the responsible for the different behaviors.@S1063-651X~98!11803-2#

PACS number~s!: 05.90.1m, 87.10.1e, 05.50.1q, 87.22.As
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I. INTRODUCTION

Among the collective phenomena that are currently
tracting the interest of the scientific community one of t
most relevant concerns the synchronization of the temp
activity of populations of interacting nonlinear oscillator
due to its ubiquity in many different fields of science. E
perimental evidences of this phenomenon have been repo
for centuries@1# but in the last decades the advance in
comprehension of its nature has allowed the developmen
a theoretical description. In this context, several succes
ideas has been suggested. An interesting approach prop
in @2–4# has been shown to be useful to describe the dyna
evolution of the population. The idea consists in model
the system as an assembly of phase oscillators interac
through continuous-time couplings. For sufficiently lar
coupling strength the system may undergo a phase trans
from incoherence to spontaneous mutual synchronizat
More challenging from a theoretical and realistic point
view is to consider networks of pulse-coupled oscillators t
may account for the behavior of heart pacemaker cells, i
grate and fire neurons, and other systems made of excit
units. The intrinsic nonlinearities associated with these m
els make their dynamical evolution more difficult to descri
and only in the last years have real advances occurred@5–9#.

Up to now, almost all the theoretical approaches ha
been centered around mean-field models or population
just a few oscillators. From these studies it is possible
investigate the mechanisms relevant for the formation of
semblies of synchronized elements as well as other
tiotemporal structures. However, these mean-field desc
tions are, in many cases, far from reality and other meth
where the specific topology or geometry of the system,
well as the precise connectivity between units, must be c
sidered because their effects may be crucial. In such a
world many points remain open. In particular the majority
works rely on simulations showing the outstanding richn
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that a low dimensional system of pulse-coupled oscillat
may display. Some examples are self-organized critica
chaos, quasiperiodicity, etc.@10#.

Unfortunately, a rigorous mathematical description
these systems is still missing. Some of the theoretical pa
appearing in the scientific literature prove the stability
some behaviors@11,12# but they do not explore the mecha
nisms leading to them. The goal of this paper is twofold: t
analysis of the mechanisms that are responsible for sync
nization and formation of spatiotemporal structures, and, a
complement, a proof of the conditions under which they
stable solutions of the dynamical equations. Since our m
vation is to analyze the essence of the problem we h
considered a one-dimensional~1D! model that will allow us
to illustrate the ideas in a very clear way. In spite of th
apparent simplicity, this system displays a rich set of beh
iors that depends on the specific values of the paramete
the model, which has been observed in lattices with hig
coordination numbers@12,13#. Notice that populations of 1D
pulse coupled oscillators are currently of great interest
some areas of science. As an example let us mention tha
a certain type of cardiac arrhythmia there is an abnorm
rapid heartbeat whose period is set by the time that an e
tation takes to travel a circuit. This observation can be
plained by modeling appropriately the circulation of a wa
of excitation on a one-dimensional ring@14#. In a different
context, synchronization and periodic states of 1D popu
tions of phase-locked loops have been recently investiga
@11,15#.

The structure of this paper is as follows. In Sec. II w
describe the system as well as the notation used throug
the paper. Sections III and IV are devoted to analyzing
simplest cases of three and four oscillators, respectively
Sec. V we study the general case, whereas in the last se
we present our conclusions.

II. THE MODEL

Let us consider a system formed by a population ofN11
oscillators distributed on a ring. The state of each oscilla
is described by its phase, which increases linearly in tim
until one of them reaches a threshold value that, without l
3820 © 1998 The American Physical Society
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57 3821MECHANISMS OF SYNCHRONIZATION AND PATTERN . . .
of generality, we have considered equal tof th51. When this
happens the oscillator fires and changes the state of its r
most neighbor according to

f i>1⇒ Hf i→0,
f i 11→f i 111«f i 11[mf i 11 ,

; i 50,...,N ~1!

subjected to periodic boundary conditions, i.e.,N11[0, and
where« denotes the strength of the coupling. From an eff
tive point of view, the pulse interaction between oscillato
as well as the state of each unit of the system, can be
scribed in terms of changes in the phase, or in other wo
in terms of the so-called phase response curve~PRC!, mf in
our case. Behind this fact one assumes that the phase
elicited by an impulse affects the period of a given unit in t
current time interval but not in future intervals. In this pap
we have also considered a linear PRC@16#. In practice, how-
ever, this condition can be relaxed since a nonlinear P
does not change the qualitative behavior of the model p
vided the number of fixed points of the dynamics is n
altered. Moreover, a linear PRC has the advantage of ma
the system tractable from an analytical point of view.

Let us describe the notation used in the paper. The po
lation is ordered according to the following criterion: Th
oscillator that fires will be always labeled as unit 0 and
rest of the population will be ordered from this unit cloc
wise. After the firing, the system is driven until another o
cillator reaches the threshold. Then, we relabel the units s
that the oscillator atf51 is now unit number 0, and so on
The whole process can be described through a suitable tr
formation. This fact will enable us to study the origin
different structures in a very simple way. Our strategy h
been to trace the phases of the oscillators after each fi
and then to construct return maps either of a complete cy
in which all the oscillators fire exactly once, or after a sing
firing 1 driving process~FD!. Let us clarify this point math-
ematically. The first step is to construct the matrix of t
transformation for a FD. To illustrate the situation let
consider the general transformation for a ‘‘jump’’n between
two successive firings, distinguishing betweenn51,

f051 →0 →12mf1 5fN8

f1 →mf1 →1 5f08

f2 →f2 →12mf11f2 5f18

A A A A

f i →f i →12mf11f i 5f i 218

A A A A

fN →fN →12mf11fN 5fN218
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f051 →0 →12fn 5fN2n118

f1 →mf1 →12fn1mf1 5fN2n128

f2 →f2 →12fn1f2 5fN2n138

A A A A

f i →f i →12fn1f i 5fN2n1 i 118

A A A A

fn21 →fn21 →12fn1fn21 5fN8

fn →fn →1 5f08

fn11 →fn11 →12fn1fn11 5f18

A A A A

f j →f j →12fn1f j 5f j 2n8

A A A A

fN →fN →12fn1fN 5fN2n8

wheref8 describe the new phases after the FD process.
diagram describes the situation just when the leader fi
~first column!, the change in phases as a consequence o
emitted pulse~second!, and finally the evolution of the sys
tem due to the linear driving up to the next firing~third!. We
believe that this is the simplest and most compact way
depict the process since we get rid of rotations that should
taken into account after the linear driving for any other re
beling method. Thus the transformation that describes
process reads

fW 85Tn~fW ![1W 1MnfW ,

where fW 8 is a vector withN components since the zerot
component does not play any role in the description. In
above expressionMn is anN3N matrix that can be written
as

~M1! i j 5d i 11,j2~11«!d j ,1 , ~2!

~Mn! i j 5d i 1n, j2d j ,n1«d j ,1d i 1n,1 ; n.1. ~3!

In these expressionsd i , j is the usual Kronecker delta. Th
sums should be interpreted modulus (N11) and none of the
subscripts can be either 0 orN11.

Since we are interested in emphasizing the mechani
leading either to synchronization or to pattern formation,
have considered it very convenient to start our discuss
with two illustrative situations where everything can be co
puted analytically and whose perfect understanding will h
us to tackle the general case.

III. THREE OSCILLATORS

This is the simplest case that is worth analyzing, since
system formed by two units has been widely analyzed in
literature; see, for instance,@6,12,17#. If we define a simple
cycle as a sequence of firings in which each oscillator fi
once and only once, there are only two possibilities for t
system:

~A! 0,1,2
~B! 0,2,1
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3822 57DÍAZ-GUILERA, PÉREZ, AND ARENAS
provided oscillator 0 is always at the threshold at the star
point of the dynamic evolution. Here, the numbering cor
sponds to the firing sequence according to the initial spa
order in the lattice. Let us study both situations in detail.

A. Order „A…: 0,1,2

In this case, the sequence starts when oscillator 0 fi
sending a pulse that changes the state of oscillator 1. A
wards, the system is driven until oscillator 1 arrives at
threshold. According to our notation this process can
viewed as

1 → 0 →12mf15f28,

f1→ mf1→1,

f2→ f2 →11f22mf15f18 .

~4!

Then, we have transformed a state characterized by
phasesf1 and f2 to a new one also characterized by tw
phasesf18 and f28 such thatf18 is always the phase of th
oscillator that will receive the next pulse and keep this n
meric order along the ring. In matrix notation the transfo
mation can be written as follows:

~5!

The complete cycle is constructed by applying three tim
this transformation@T1+T1+T1(f)#. In other words,

fW -5RW A1MA•fW . ~6!

The independent termRW A is

RW A5~1WW 1M11M1•M1!•1W , ~7!

where 1W is a column vector of 1’s, 1WW is the identity matrix,
and the matrix of the transformationMA is defined as

MA5M1•M1•M1 . ~8!

From this expression it is easy to compute the fixed point
the transformation, which are solutions of the equation

fW * 5RW A1MA•fW * , ~9!

that is,

f1* 5
2

312«
~10!

f2* 5
1

312«
. ~11!

The stability of these fixed points is given by the eigenvalu
of MA, which are
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2~m23!m26 i ~m21!m3/2A42m

2
~12!

whose moduli arem3/2. Depending on the sign of« the fixed
point is either stable~2! or unstable~1!.

B. Order „B…: 0,2,1

Now, oscillator 1 receives the pulse but it is oscillator
that leads the driving and arrives first to the threshold

1 →0 →12f2 ,

f1→ mf1→11mf12f2 ,

f2→ f2 →1.

~13!

Therefore, the new phases are

~14!

Again the complete cycle is constructed by applying th
times this transformation@T2+T2+T2(f)#:

fW -5RW B1MB•fW , ~15!

where the independent termRW B is now

RW B5~1WW 1M21M2•M2!•1W ~16!

and the matrix of the transformation is

MB5M2•M2•M2 . ~17!

The fixed point of this transformation, which is the solutio
of the equation

fW * 5RW B1MB•fW * , ~18!

is

f1* 5
1

31«
, ~19!

f2* 5
21«

31«
. ~20!

The stability of this fixed point is given by the eigenvalues
MB that are

3m216 i ~m21!A4m21

2
, ~21!

whose moduli are againm3/2. Therefore, both fixed points
describe the same physical behavior that is independen
the particular order in which oscillators fire.
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C. Phase ordering

In the previous subsections we have studied some feat
of the final state of the system when a sequence of iden
transformations are applied successively. However,
reader can argue that those sequences are not the only
sible dynamical evolution. Indeed, to deal with all the po
sible situations we should analyze what happens when a
ture of T1 and T2 are combined in an arbitrary manner
complete a cycle, and what sort of physical consequen
derive from this fact. In addition, one may wonder wheth
an advancement can take place, i.e., if a given oscillator
fire twice before another element of the chain arrives at
threshold, breaking thus our definition of a simple cyc
Such issues are discussed in this subsection. To illustrate
point let us start by considering Fig. 1, where we have p
ted the evolution of the phases each time oscillator 0 is at
threshold value. It is obvious that there are two differe
situations: a positive or negative value of the coupling.
this figure we have analyzed the situation for«,0.

The left hand side of Fig. 1 shows all the possible init
configurations and the right hand side shows how they tra
form when oscillator 0 is again at the threshold. Regions~A!
and ~B! represent the sequences~A! and ~B! described be-
fore, respectively. Here, we can see that states lying initi
in one of these regions will approach the fixed points~attrac-
tors!, since~A! and~B! are slowly shrinking. Therefore, onc
one starts with a given sequence no other one can be ap
to describe the dynamical evolution of the system. T
physical picture associated to the attractor fixed point is q
simple. The oscillators remain at a certain distance in
phase space~phase locking!. For larger dimensions~more
oscillators! this fact induces the creation of complex spat
patterns.

Special attention is given to region~C!, which corre-
sponds to a sequence of firings 010. This means that osc
tor 0 advances to oscillator 2, a situation not covered bef
Here we can see that the effect of this advancement i
reorganize the phases in such a way that after one cycle
old configurations fall in the basin of attraction of region~B!
and therefore, for them, sequence~B! must be applied for-
ever. No more advancements can take place. The main
clusion is that advancements play a role only in the trans
but not in the stationary properties of the dynamics. A m
clear picture of the physical meaning of this fact will b
provided in the next section.

FIG. 1. Evolution of the phasesf1 andf2 , for a negative value
of «. Right: initial configurations when oscillator 0 is at the thres
old value; left: new values of the phases when oscillator 0 reac
the threshold again. The crosses correspond to the fixed points
each region corresponds to a given sequence of firings~see text!.
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The mechanism for positive« is the opposite of that for
negative«. Regions~A! and ~B! are enlarged every cycle
and the configurations move away from the fixed points~re-
pellers! until they cross some of the borders where at le
two oscillators get absorbed and synchronize. Figure 2 sh
this fact. The left hand side of the figure depicts the size
the basin of attraction of those configurations~closed lines!
that when oscillator 0 reaches the threshold again still req
sequence~A! or ~B! to evolve dynamically. The rest of th
phase space is formed by states characterized by the fac
after the next firing of oscillator 0 occurs at least two un
will merge. These units are specified~underlined! on the
right hand side of the figure. Since two synchronized os
lators act as a single one and cannot be broken after a c
plete cycle, the problem is now equivalent to that of tw
oscillators. This dimensional reduction is the essence of s
chronization. For mean-field models the word absorption
been used to illustrate this phenomenon@6#.

To address the question about the plausibility of hav
mixtures of consecutive transformationsT1 andT2 it is con-
venient to look at the problem from another perspective.
stead of considering complete cycles it is better to anal
single firings. Let us suppose for simplicity negative~inhibi-
tory! coupling between units. In this case, it is evident th
the alternative application of both transformations leads
two possible options. The first case to be considered is
combinationT1+T2 . We can observe that applyingT2 is in-
consistent with the application ofT1 afterwards, because th
resulting configurationT2(fW ) does not satisfy the possibl
different phase orders necessary to applyT1 . On the other
hand, the orderT2+T1 implies one advancement between o
cillators, corresponding to region~C! ~see Fig. 1! of phase
space. This situation has been discussed previously to
the role of transient dynamic behavior of the system. Th
we can conclude that, in general, the advancements
cause the phases to be reordered until the system reac
configuration that is consistent with only one sequence
transformations.

IV. FOUR OSCILLATORS

In this case there are 6 different orders for the oscillat
to complete a simple cycle:

~A! 0,1,2,3
~B! 0,1,3,2
~C! 0,2,1,3
~D! 0,2,3,1
~E! 0,3,1,2
~F! 0,3,2,1
Analogously to the three oscillators case we define

es
nd

FIG. 2. The same as Fig. 1 for positive coupling.
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matrices of the transformation between successive firing
two oscillators, according to the jump between oscillat
that fire successively:

M15S 2m 1 0

2m 0 1

2m 0 0
D , ~22!

M25S 0 21 1

0 21 0

m 21 0
D , ~23!

M35S 0 0 21

m 0 21

0 1 21
D . ~24!

We can easily compute the eigenvalues of those matri
For M1 andM3 the eigenvalues have moduli larger~smaller!
than 1 for positive« ~negative«!. However, forM2 there is
one eigenvalue with modulus equal to 1. This will be ve
important when discussing the stability of the fixed point

According to these jumps the transformation of a co
plete cycle for the different orders are constructed in
following ways:

~A! 0,1,2,3→T1+T1+T1+T1 ,
~B! 0,1,3,2→T2+T3+T2+T1 ,
~C! 0,2,1,3→T1+T2+T3+T2 ,
~D! 0,2,3,1→T3+T2+T1+T2 ,
~E! 0,3,1,2→T2+T1+T2+T3 ,
~F! 0,3,2,1→T3+T3+T3+T3 .
For instance, let us write, in matrix form, the transform

tion for the case~B!:

fW 851W 1M2•1W 1M2•M3•1W 1M2•M3•M2•1W

1M2•M3•M2•M1•fW . ~25!

We can now proceed to compute the fixed points ass
ated to these transformations which are:

~A! 1,
3

413«
,

2

413«
,

1

413«
.

~B! 1,
1

21«
, 0,

11«

21«
.

~C! 1,
1

21«
, 1,

1

21«
.

~D! 1,
1

21«
, 1,

1

21«
.

~E! 1,
1

21«
, 0,

11«

21«
.

~F! 1,
1

41«
,

21«

41«
,

31«

41«
.

Numerically, these fixed points are unique since this is
sured by the fact that all the eigenvalues of the matrix t
multiply fW are different from 1 in all cases. Nevertheless t
of
s

s.

-
e

-

i-

-
t

e

fixed points for cases~C! and~D! are senseless since they d
not verify the prescribed order, and hence they are physic
unacceptable. Furthermore, the fixed points of cases~B! and
~C! are physically the same since they just differ in the ord
in which oscillators 0 and 2 fire but they are synchronize
Thus, basically, we have to deal with fixed points where
phase difference between adjacent oscillators is roug
f i 112f i51/4,2/4,3/4(mod 1), with small corrections de
pending on«.

Let us focus now on the process from the point of view
single firings again. Notice thatT1 and T3 are transforma-
tions that can be applied alone, successively leading t
natural complete cycle. However,T2 cannot be applied in
this way because this would lead to an unphysical situa
where only a group of oscillators will fire. This means th
T2 must be combined withT1 or T3 in order to be physically
acceptable; then the effect of having an eigenvalue w
modulus 1, that can carry a metastability on the system
avoided by this combination. The combinations ofT2 with
either T1 or T3 , can be done in the way described by t
orders ~B!, ~C!, ~D! or ~E!, that always give rise to a
chessboard-type pattern. Other combinations can be obta
applying T1+T2 or T3+T2 forever; this situation elicits ad
vancements but nevertheless the resulting patterns are c
board type again.

V. N11 OSCILLATORS

Although, in general, to construct a complete cycle is n
a trivial mechanism we can infer some key points about
behavior of the system from the FD processes as we h
done for the simplest lattices: compute the fixed points a
their stability.

A. Fixed points

Due to their different behavior we will have to distinguis
again the casesn51 andn.1. Thus, for the first situation
we have to solve

f1512mf11f2 ,

f2512mf11f3 ,

A

fN21512mf11fN ,

fN512mf1 . ~26!

Simply summing up all the equations we are left wi
f15N(12mf1) and then we get

f1* 5
N

N111N«
. ~27!

Notice that the other phases at the fixed point can
obtained from this one, sincef j 212f j512mf1; j
52,...,N. This fixed point corresponds to a situation
which all the oscillators fire in turn following their lattice
ordering.
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On the other hand, forn.1 we have to solve

f1512fn1fn11 ,

A

fN2n512fn1fN ,

fN2n11512fn ,

fN2n12512fn1mf1 ,

fN2n13512fn1f2 ,

A

fN512fn1fn21 . ~28!

Summing up again all the equations we now obtain

f11fn5N~12fn!1mf1 . ~29!

Now we notice that it is not enough to get one of t
values of the phases. We have to close the system of e
tion by means of the following procedure:

and so on. Again all the subscripts are understood mod
N11. This procedure is repeated until we reachfN2n11 ,
which closes the dependence off1 on fn . Obviously, a
necessary condition to close it is thatN11 and n do not
have common factors. This procedure is iteratedmn21
times, wheremn verifies

~11mnn! mod ~N11!50,

and it exists and is unique for eachn,N11. Then for a
given N we will have to consider all the values ofmn be-
tween 1 andN without common factors. We can therefo
obtain that at the fixed point,

fn* 5
N1mn«

N111mn«
, f1* 5

mn

N111mn«
. ~30!

Again, this situation would correspond to a sequence
FD processes of jumpn. It is easy to convince oneself that i
both cases~n51 andn.1! one can build a complete cycl
by applyingN11 times the transformationTn , which does
not change the fixed points. In principle, this successive
plication could make new fixed points appear, but this
forbidden by the fact that the moduli of the eigenvalues
Mn are always larger than 1 for«.0, and smaller than 1 in
the opposite case, wheneverN11 andn do not have com-
mon factors, as we show in the Appendix.

But we still do not know what happens whenN11 andn
have common factors. As we show in the Appendix in t
case there exists at least one eigenvalue of modulus 1
this fact does not ensure the existence of a solution for the
of algebraic equations; even when this solution can exis
usually gives rise to unphysical situations, as, for instance
a-

us

f

p-
s
f
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et
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to

values of the phases that are either below zero or above
We showed explicitly for the case of 4 oscillators that und
these circumstances the transformation of an FD proces
this kind has to be combined with other transformations w
noncommon factors and that this led to advancement
tween oscillators and to the formation of a chessboard
pattern. This is also what happens in the general case.
matrix associated with this combination will have eigenv
ues with moduli different from 1 and will guarantee the e
istence of the fixed point. Let us assume that a given spa
structure with periodp5(N11)/n exists and then there ar
some oscillators that are synchronized (f05fp5f2p
5•••5f (n21)p ; f15fp115•••; ...). Hence we need only
to consider each spatial period, since the transformation
jump p correspond to oscillators that fire exactly at the sa
time. Within each period there will be different possibilitie
for the magnitude of the jumpsnp and then the fixed points
will be characterized by

f1* 5
mnp

p1mnp
«

5
nmnp

N111nmnp
«

. ~31!

By combining Eqs.~27!, ~30!, and~31!, we realize that for
a given N11 there always exists a value ofm
(0,m,N11) such that

f1* 5
m

N111m«
~32!

will be the phase of oscillator 1 at a fixed point. We ha
used this fact to identify the fixed points of the dynamics
simulations of lattices of a few oscillators, as we will s
later on.

In principle one can still think about the possibility o
other fixed points corresponding to combinations of transf
mations not described above, for instance, successive a
cations of two transformations of different values ofn; but
this case will necessarily involve advancements between
oscillators, which, as we have already discussed, are o
important in the transient but not in the approach to the fi
state. This, of course, can make the transients become q
large, as we have observed in the computer simulations,
the only final states for an inhibitory coupling are those d
scribed earlier in the text. It is also important to note th
depending on the strength of the coupling, and on the nu
ber of oscillators, there will be some fixed points, for
inhibitory coupling, that will not exist, i.e., those that verif

«,12
N11

m
. ~33!

For instance, for the three oscillators case this happens
m52 when «,20.5 @see Eq.~10!# and then region~A!
disappears and the fixed point corresponding to~B! is the
only possible final state.
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TABLE I. Percentage of the final states the system formed byN11 oscillators reaches, for«520.1. The
first column stands forN11 and the first row form in Eq. ~32!, which approximately corresponds to th
phase difference timesN11 between consecutive oscillators. It is averaged for 1000 initial random con
rations picking each phase from a uniform distribution between 0 and 1.

1 2 3 4 5 6 7 8 9 10

3 61.4 38.6
4 21.2 71.3 7.5
5 5.5 56.5 37.2 0.8
6 1.2 29.1 58.0 11.7 0.0
7 0.0 11.3 51.7 34.2 2.5 0.0
8 0.0 3.8 32.1 50.6 13.2 0.4 0.0
9 0.0 1.1 16.2 47.9 30.8 3.9 0.1 0.0

10 0.0 0.2 6.4 34.6 43.8 14.3 0.7 0.0 0.0
12 0.0 0.0 0.7 9.2 34.7 40.0 14.0 1.4 0.0 0.0
15 0.0 0.0 0.0 0.5 5.9 23.0 38.8 25.2 6.2 0.4
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B. Stability of the fixed points

After having shown the existence of the fixed points
single FD processes and extending this calculation to c
plete cycles, one needs to compute their stability. Since
calculation of the eigenvalues of the matrices is a lengthy
straightforward procedure we have left it for the Append
There we show that the results easily obtained for three
four oscillators also apply to the general case, i.e., for«,0
the fixed points are attractors, whereas in the opposite
they are repellers. On the one hand, the attractiveness o
fixed points enables the formation of spatiotemporal patte
of phase-locked oscillators. This works not only for t
structures with different phases but also for the perio
ones. On the other hand, when these fixed points bec
repellers it causes the neighboring oscillators to synchro
and from that time on they will act as a single unit; th
absorption~or dimensional reduction in our language! is it-
erated until the whole system acts as a single unit, wh
completes the mechanism of the synchronization of the
tice models with very-short range interactions we have a
lyzed through the paper.

C. Computer simulations

In order to check the validity of our results we have ma
computer simulations on lattices of a few oscillators.
Tables I and II we represent the percentage of the struct
that the system formed byN11 oscillators reaches as a st
tionary state for two different values of« as a function ofm,

TABLE II. The same as Table I for«520.01.

1 2 3 4 5 6 7 8 9

3 51.9 48.1
4 17.5 67.3 15.1
5 4.7 46.7 45.0 3.61
6 1.0 22.8 54.8 20.7 0.7
7 0.2 8.4 43.0 40.9 7.4 0.1
8 0.0 2.8 24.3 48.3 22.5 2.06 0.0
9 0.0 0.8 11.35 39.7 37.7 9.7 0.6 0.0
10 0.0 0.2 4.4 26.0 42.9 23.1 3.4 0.1 0
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which stands roughly for the phase difference betwe
neighboring oscillators timesN11; see Eq.~32!. There are
several results in these simulations that deserve further c
ments. For instance, we can notice that the oscillators ten
keep the maximum phase difference. The chessboard
structure has the largest basin of attraction when the pop
tion has an even number of oscillators, whereas for an
number of oscillators there are two peaks with the larg
phase differences. However, these results depend slightl
the strength of the coupling since the maximum percent
appears for the maximum phase difference and the large
peak the larger the phase difference. Thus we can unders
the different behavior for the two different values of«. An-
other difference concerns the reduction and, eventually,
disappearance of the basins of attraction of the fixed po
that correspond to large values ofm. This fact also affects
the time the system needs to reach the stationary state
instance, for smaller values of« not only the jumps along
one cycle are smaller but there are also more attractive fi
points. On the other hand, we have corroborated that
excitatory couplings the only possible final state is synch
nization, no matter how long the transient is.

VI. CONCLUSIONS

In order to analyze the mechanisms of synchronizat
and the formation of spatiotemporal structures we have
troduced a very simple model of pulse-coupled oscillators
one-dimensional ring with unidirectional coupling. Desp
this apparent simplicity it conserves all the features of lo
dimensional systems subjected to short-range interact
which develop large-scale structures.

Although the dynamic evolution of the system involv
two time scales, a slow one for the driving and a fast one
the interaction, we have constructed return maps that giv
complete information of the system. Concerning the ma
we have been able to compute exactly the fixed points of
dynamical evolution and their stability.

For a negative~inhibitory! coupling the fixed points are
attractors of the dynamics. Each one of these attractors h
well-defined basin of attraction, although in some cases th
regions are not simply connected. Since the evolution is
crete there are jumps among non-connected regions that
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respond to advancements between oscillators. The adva
ments are only important in the transient dynamics, until
phases of the oscillators lie in the final basin of attraction
the fixed point. The volumes of the basins of attraction
different and depend on the value of the coupling, as
have checked by means of computer simulations of a
oscillators. However, the states with the maximum phase
ference between neighboring oscillators seems to be the
ferred ones.

On the other hand, for a positive~excitatory! coupling the
fixed points are repellers of the dynamical evolution. A
though in a configuration space with a multiplicity of repe
lers one can think that the system will jump from one reg
to another this is not our case. There are absorbing bar
surrounding the repellers; when the system reaches on
these barriers it means that at least two neighboring osc
tors have synchronized. When this happens the set of
chronized oscillators acts as a single unit that cannot be
ken. From that time on we only need to consider a redu
number of units; we call this fact dimensional reducti
since the new system can be described in terms of matr
with fewer components. This process of absorption is it
ated until the system reaches a completely synchronized
figuration.

The present work only concerns the qualitative behav
of a population of pulse-coupled oscillators; nevertheles
quantitative behavior about the time a given populat
needs to reach the stationary state, either a synchronized
or a spatiotemporal pattern, would be desirable in orde
complete the description of such systems. Another inter
ing question is related to the stability of the different stru
tures with respect to fluctuations.
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APPENDIX

In this appendix we will compute the bounds of the eige
values of the matricesMn defined in Eqs.~2! and~3!. All the
information will be extracted form the characteristic polyn
mial PN,n(l,«), which corresponds to the determina

ul1WW 2Mnu. In this case we will distinguish several situation
First of all whenN11 andn have common factors it is eas
to see in the determinant that a minor that correspond
eigenvalues of modulus 1 always exists; anyway, as we
plain in the text we do not need to care about this case.

The casen51 is very simple to compute. By simple in
spection of the determinant it is easy to see that

PN,1~l,«!5lPN21,1~l,«!1m ~A1!

and hence

PN,1~l,«!5lN1mlN211mlN221¯1ml1m. ~A2!

In order to compute the casen.1 it is convenient to
introduce the following similarity transformation matrix

~Bn! i , j5d j ,mni ,
ce-
e
f
e
e
w
f-
re-

rs
of

a-
n-
o-
d

es
r-
n-

r
a

n
ne

to
t-

-

-

-

.

to
x-

where again the subscripts are understood modulusN11,
such that when it is applied toMn , Mn85B†MnB, one gets

~Mn8! i , j5d i , j 112d j ,N1«d j ,mn
d i ,mn11 .

With this procedure we have converted a, in principle, co
plex matrix in a much simpler one. The new matrix has21
in the last column and 1’s just below the main diagon
unless at columnmn and rowmn11 where it has 11«. In
order to compute the eigenvalues we should notice that w
«50 the characteristic polynomial is

PN,n~l,«50!5lN1lN211lN221•••1l11.

Then to compute it for«Þ0 we expand the determinan
around the previous case and one realizes that the colu
that are at the right and the rows that are below this elem
will not contribute. Thus one has

PN,n~l,«!5lN1lN211lN221¯1lmn

1m~lmn211¯11!. ~A3!

The last expression can be taken as general, i.e., inclu
the n51 case, bearing in mind thatm15N.

It is obvious that to compute the roots of Eq.~A3! is an
unnecessary task, since the only needed information c
cerning the stability is the bounds of the eigenvalues. In
der to compute these bounds we will look at the properties
the characteristic polynomial. It can be rewritten as

PN,n~l,«!5 (
k50

N

lk1« (
k50

mn21

lk5
lN1121

l21
1«

lmn21

l21
.

~A4!

Then the eigenvalues of the matrix will correspond to t
roots of

~lN1121!1«~lmn21!50

unless the artificially introducedl51. These roots will
verify

ulN111«lmnu511«.

This modulus has upper and lower bounds given by the s
and the difference, i.e.,

uluN112u«uulumn<11«<uluN111u«uulumn.

Thus for«.0, we use

uluN111«ulumn>11«,

which implies thatulu>1. On the other hand, for«,0 we
take

uluN112u«uulumn<12u«u,

which, in turn, implies thatulu<1. The final point is to show
that the equality can only be fulfilled when both compl
numbers have the same direction. It is easy to see that
can only happen whenN11 andmn have common factors
Since this fact is avoided in this demostration we are
with the fact that for an excitatory coupling («.0) the ei-
genvalues are larger than 1 and the opposite for an inhibi
coupling («,0), as we wanted to show.
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