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We present a simple model of communication in networks with hierarchical branching. We analyze the
behavior of the model from the viewpoint of critical systems under different situations. For certain values
of the parameters, a continuous phase transition between a sparse and a congested regime is observed and
accurately described by an order parameter and the power spectra. At the critical point the behavior of the
model is totally independent of the number of hierarchical levels. Also scaling properties are observed
when the size of the system varies. The presence of noise in the communication is shown to break the
transition. The analytical results are a useful guide to forecasting the main features of real networks.
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Nowadays, many challenging questions have arisen
concerning the behavior of complex technological, eco-
nomical, and social systems [1]. In particular, computer
simulations of agents and their interactions (agent-based
modeling) have become a widely used tool in our current
understanding of their macroscopic behavior [2]. Espe-
cially interesting is the study of hierarchical branching
in networks because it seems to be the basic structure
underlying complex organizational systems. Our interest
is focused on the behavior of hierarchical structures
formed by elements (or agents) that interact with each
other via communication processes. This framework is es-
pecially adequate to study, e.g., Internet flow [3–7], traffic
networks [8], river networks [9], and even communication
flows in organizations [10].

In this Letter, we propose and study a very simple model
of communication. The model includes only the basic
ingredients present in a communication process between
two elements: (i) information packets to be transmitted
(delivered) and (ii) communication channels to transmit
the packets. Despite its simplicity, the model reproduces
the main characteristics of the flow of information pack-
ets in a network, and is general enough to allow the study
of communication processes in many conditions: for ex-
ample, different capabilities of agents to transmit packets,
and/or heterogeneity in the communication channels (mis-
communication, exogenous effects, etc.) represented by
introducing disorder. We observe three different behaviors
depending on the capability of agents to transmit packets.
In particular, for a certain capability, we observe a con-
tinuous phase transition between a sparse and a congested
regime when the number of packets to deliver reaches a
critical value. Near the transition point signs of critical-
ity arise, we find large fluctuations, critical slowing down,
and power law behavior of power spectrum of the amount
of information flowing in the network, in agreement with
reported empirical data [5]. We provide a mean-field esti-
mation of the critical point in good agreement with simula-
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tion results and we define analytically an order parameter
to characterize the behavior of the system.

The model is defined in the following way: the com-
munication network is mapped onto a lattice where nodes
represent the communicating elements (for instance, em-
ployees in a company, routers and servers in a computer
network, etc.) and the links between them represent com-
munication lines. In particular, we use hierarchical trees
as depicted in Fig. 1, although most of the results reported
hold when considering that the hierarchical branching is
characteristic of the paths that information follows and not
of the topology of the network itself. These structures are
characterized by two quantities: the branching factor, z,
and the number of levels, m. From now on, we will use
the notation �z, m� to describe a particular tree.

The dynamics of the model is the following. At each
time step t, an information packet is created at every node
with probability p. When a new packet is created, a des-
tination node, different from the origin node, is chosen at
random in the network. Thus, during the following time
steps t, t 1 1, . . . , t 1 T , the packet is traveling towards
its destination: once the packet reaches this destination
node, it is delivered (disappears from the network). The
time a packet remains in the network is related not only
to the distance between the source node and the target
node, but also to the amount of packets in the network. In
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FIG. 1. Typical hierarchical tree structure used for simulations
and calculations: in particular, it is a tree �3, 4�. Dashed line:
definition of branch.
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particular, at each time step, all the packets move from their
current position, i, to the next node in their path, j, with
a probability qij . We define qij , quality of communication
between i and j, as

qij �
q

kijkji , (1)

where kab represents the capability of agent a to commu-
nicate with agent b at each time step. For kab we propose

kab � jabf�na� , (2)

where jab is a uniformly distributed random number in the
interval �0, 1� representing the effects mentioned above for
the directional connection between a and b [11], na is
the total number of packets currently at node a, and f�n�
determines how the capability evolves when the number of
packets at a given node increases.

Since any election of f�n� could be valid, we will study
the general form

f�n� �

Ω
1 for n � 0 ,
n2g for n � 1, 2, 3, . . . , (3)

with g $ 0. The average number of packets delivered
by a node a to another node b will be proportional to
na��ng�2

a n
g�2
b �. Assuming the degree of homogeneity de-

rived from the model, na � nb , the former expression
reads n12g

a
. It is straightforward to recognize three differ-

ent behaviors corresponding to three different values of g

in the previous formula. For g . 1, the number of trans-
mitted packets decreases as na grows. For small values
of the probability of packet generation per node and time
step, p, all the packets are delivered and hence, after a
transient, the system reaches a steady state in which the
total number of packets, N , fluctuates around a constant
value. However, if we increase p at some point the total
number of packets will be so large that the network will
not be able to handle them, N will increase continuously
and, at the end, no packets at all will be delivered to their
destination. On the contrary, for g , 1, the number of
transmitted packets grows as na does. Thus, the number
of delivered packets increases as N grows until an equilib-
rium between generated and delivered packets is reached:
at this point, N remains constant (except fluctuations). In
case g � 1, the number of delivered packets is constant
irrespective of the number of stored packets (note that this
is consistent with simple models of queues [6]). This par-
ticular behavior is less obvious and will be treated accu-
rately from the viewpoint of critical systems.

As a first step, let us concentrate on the case jij � 1,
;i, j. From simulations, we observe two different regimes
and, as in the case g . 1, p plays the role of a control
parameter. For small values of p, all the packets are de-
livered, while for large values of p, not all the packets
can reach their destination, and N grows in time with no
limit. The key point is that, since the number of delivered
packets is independent of N , there is always a fraction of
problems reaching their destination and the transition to
the collapsed regime is continuous. This transition occurs
for a critical value of p, pc, whose exact value depends on
the network parameters z and m (see Fig. 2). For values of
p smaller than but close to pc, the steady state is reached
but large fluctuations with long correlation times appear.

At the subcritical region, the power spectrum of the total
number of packets, N�t�, is well fitted by a Lorentzian
characterized by a certain frequency, fc. As we get closer
to pc, we observe that fc ! 0 and the power spectrum
becomes 1�f2 for the whole range of frequencies. That
means that the average time the packets remain in the
network grows as we approximate the critical point (critical
slowing down). We have also analyzed the power spectrum
of the number of packets at individual nodes, ni�t�. The
main result is that the power spectrum of N�t� is domi-
nated by the top node which is the most congested: near
pc, the power spectrum for this node is also 1�f2. As
one goes down in the hierarchy the number of packets
diminishes and the power spectra have 1�fb tails with b

decreasing from 2 to 0 at the lowest level. The last result
is consistent with the fact that the bottom agents deliver
packets immediately and so ni�t� is a time series of peaks
separated by Poisson distributed time intervals. As it is
well known, this kind of series has white noise spectra.
We have also checked other topologies [12] and found that
in a square lattice with closed boundaries the central sites
have b � 1.2 (in agreement with Refs. [5,7]) whereas
agents close to the boundaries are less congested and a
much lower exponent for the tail (b � 0) is observed.

As happens in other problems in statistical physics [13],
the particular symmetry of the hierarchical tree allows a
mean-field estimation of the critical point pc (although
these calculations can be performed under more general

FIG. 2. Comparison between simulated (symbols) and analyti-
cal (lines) values for the critical probability of packet generation,
pc as a function of the branching factor z for hierarchies with
different numbers of levels: m � 4 (circles and solid line), m �
5 (squares and dotted line), m � 6 (diamonds and dashed line),
and m � 7 (triangles and dot-dashed line). The error bars are
smaller than the symbol size.
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conditions [12]). Since in the steady state regime there is
no accumulation of packets, the number of packets arriv-
ing at the top of the hierarchical structure (level 1) per time
unit, na

1 , is, on average, equal to the number of packets that
are created in one branch of the network and have their des-
tination in a different branch (see Fig. 1). Since the origin
and the destination of the packets are chosen at random,
from purely geometric considerations it is straightforward
to estimate this number of packets per unit time as

na
1 � p

∑
z�zm21 2 1�2

zm 2 1
1 1

∏
. (4)

Within this mean-field approach, it can be easily shown
that it is indeed the top node which is the most congested.

On the other hand, in our mean-field calculation q12 is
the average probability that a given packet moves from a
node in the second level to the top node and vice versa,
and is given, as a first approximation, by q12 � 1�

p
n1n2,

where n1 is the average number of packets at level 1 and
n2 is the average number of packets at each of the z nodes
in the second level. Thus the average number of packets
leaving the top at each time step will be nl

1 � n1q12, and
the average number of packets going from the z nodes in
the second level to the top will be na

1 � zan2q12, where
a stands for the fraction of packets in the second level that
are trying to go up (some of the packets in level 2 are, of
course, trying to go down to level 3).

At the critical point the top agent becomes collapsed
and the communications between the first and the second
level are much more congested than the communications
between levels 2 and 3 so we can assume that a � 1. At
this point, by imposing the steady state condition na

1 � nl
1

we arrive to the relations n1 � zn2 and na
1 �

p
z. Using

Eq. (4) we obtain the final expression for pc:

pc �

p
z

z�zm2121�2

zm21 1 1
. (5)

Although strictly speaking the condition a � 1 pro-
vides an upper bound to pc, Eq. (5) is an excellent ap-
proximation for z $ 3, as depicted in Fig. 2.

The critical total number of generated packets, Nc �
pcS, with S standing for the size of the system, can be
approximated, for large enough values of z and m such
that zm21 ¿ 1, by

Nc �
z3�2

z 2 1
, (6)

which is independent of the number of levels in the tree. It
suggests that the behavior of the top node is affected only
by the total number of packets arriving from each node of
the second level, which is consistent with the mean-field
hypothesis.

In order to characterize the transition, we introduce an
order parameter:

h�p� � lim
t!`

1
pS

�DN	
Dt

, (7)
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where DN � N�t 1 Dt� 2 N�t� and �· · ·	 indicates av-
erage over time windows of width Dt. Essentially, this
order parameter represents the ratio between undelivered
and generated packets at the stationary state. For p . pc,
the system collapses, �DN	 grows linearly with Dt, and
thus h is a function of p only. For p , pc, �DN	 � 0
and h � 0. As observed in Fig. 3, and as may be ex-
pected from a properly chosen order parameter, when p
is rescaled with pc, the form of h does not depend on the
details of the structure of the network, z and m.

Insofar as h does not depend on the structure of the
network, we can study the simplest case �1, 2� in order to
obtain an analytical estimation of the order parameter. In
this case, the network consist of only 2 nodes, 1 and 2,
interchanging packets. Since from symmetry considera-
tions n1 � n2, the maximum average number of delivered
packets per time unit will be �n1 1 n2��

p
n1n2 � 2. Thus

pc � 1 and with the present formulation of the model it is
not possible to achieve the supercritical regime. However,
it is possible to extend p to be the average number of gen-
erated packets per node and time step and then p can be
greater than one. In this case, for p . pc the number of
packets delivered per time unit will be 2 while the number
of generated packets will be 2p. Thus

h �
p 2 1

p
, (8)

in good agreement with simulated values (Fig. 3). In par-
ticular, near pc we have

h � �p 2 pc�. (9)

Now let us consider the case where jij takes values
uniformly distributed in �0, 1�. Even for very small values
of p, a particular realization of the disorder can provoke

FIG. 3. Behavior of the order parameter in both cases with
noise (filled symbols) and without noise (open symbols),
for different structures: �6, 7� (circles), �3, 6� (squares),
�5, 4� (triangles). The lines represent analytical results obtained
for the simplest case �1, 2�.
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a very weak communication line and the congestion of
the whole network. Thus there is no transition controlled
by p. However, it is still possible to define the order
parameter as in (7), just considering that the average �· · ·	
has to be taken over time and over disorder realizations.
As observed in Fig. 3, the existence of disorder destroys
the phase transition acting as a random local magnetic field
in a paramagnetic-ferromagnetic transition [14] and other
physical systems [15].

Again, it is possible to obtain an analytical expression
of the order parameter in the case of two nodes. As in
the ordered case, the number of packets generated in a
time step will be 2p. Now, however, for a particular re-
alization, j12andj21, the maximum number of delivered
packets will be 2

p
j12j21. Thus, if j12j21 . p2 the sys-

tem will reach the steady state and the configuration will
not contribute to the order parameter, while if j12j21 ,

p2 the system will collapse and the contribution will be
hj12j21 � 1 2

p
j12j21�p.

Thus we can define

h�p, j12, j21� �

Ω
0 for j12j21 . p2,
1 2

p
j12j21�p for j12j21 , p2,

(10)

and the order parameter will be given by the average over
the random variables:

h�p� �
Z 1

0
dj12

Z 1

0
dj21 h�p, j12, j21� . (11)

It is straightforward to obtain the result:

h�p� �

Ω
1 2 4��9p� for p . 1 ,
�5p2 2 3p2 lnp2��9 for p , 1 . (12)

As depicted in Fig. 3, there is reasonable agreement
between this analytical expression and the points obtained
by simulation, always keeping in mind the simplicity of
our approach.

Summarizing, we have studied a simple and general
model of communication in a network with hierarchical
branching. We have obtained some analytical results defin-
ing an order parameter and studying its behavior with re-
spect to the relevant parameters of the model. The behavior
of the system at the critical regime shows to be indepen-
dent of the number of levels in the hierarchy. This phe-
nomenon shows that the main features of information flow
in a network with hierarchical branching are determined
by the branching of the first level. Although we are in a
very tentative stage of the model, we think that this re-
sult can help us to understand flow in real networks, where
this effect can dominate the global behavior of the system.
Another interesting issue is the scaling observed in Fig. 3.
From the viewpoint of organizational design, this scaling
can be used to forecast the behavior of the organization
when increasing or decreasing its size. The inclusion of
a quenched randomness accounting for different kinds of
interaction is not a hindrance for our theoretical analysis
and we give an accurate behavior of the order parameter
in this situation. The approach presented here opens a line
of research which will follow to study different dynamics
and topologies.

The authors gratefully acknowledge F. Giralt, C. J.
Pérez, F. Vega, and H. J. Witt for helpful comments. This
work has been supported by DGES of the Spanish Gov-
ernment, Grants No. PPQ2000-1339, No. BFM2000-
0626, and No. PB96-1025, and EU TMR Grant
No. ERBFMRXCT980183. R. G. also acknowledges
financial support from the Generalitat de Catalunya.

[1] The Economy as an Evolving Complex System II, edited
by W. B. Arthur, S. N. Durlauf, and D. A. Lane (Addison-
Wesley, Reading, 1997).

[2] R. Axelrod, The Complexity of Cooperation (Princeton
University Press, Princeton, New Jersey, 1997).

[3] I. Csabai, J. Phys. A 27, L417 (1994).
[4] A. Y. Tretyakov, H. Takayasu, and M. Takayasu, Physica

(Amsterdam) 253A, 315 (1998).
[5] M. Takayasu, H. Takayasu, and T. Sato, Physica (Amster-

dam) 233A, 824 (1996).
[6] T. Ohira and R. Sawatari, Phys. Rev. E 58, 193 (1998).
[7] R. V. Solé and S. Valverde, Physica (Amsterdam) 289A,

595 (2001).
[8] D. Chowdhury, L. Sanken, and A. Schadschneider, Phys.

Rep. 329, 199 (2000), and references therein.
[9] J. R. Banavar, A. Maritan, and A. Rinaldo, Nature (London)

399, 130 (1999).
[10] R. Radner, Econometrica 61, 1109 (1993).
[11] We consider jab fi jba . Conceptually, our election is

more adequate for systems where agents determine the
efficiency of the communication process (as in organiza-
tions) while the symmetric case jab � jba would be more
adequate for systems where the channel does so (as in
computer networks traffic). Although the particular results
obtained would be different in this case, the qualitative
behavior of the system would be the same and similar cal-
culations should be performed.

[12] A. Arenas, A. Diaz-Guilera, and R. Guimerà (unpublished).
[13] D. Stauffer and A. Aharony, Introduction to Percolation

Theory (Taylor & Francis, London, 1992).
[14] J. Villain, Phys. Rev. Lett. 52, 1547 (1984).
[15] A. Arenas and C. J. Perez, Physica (Amsterdam) 201A, 614

(1993).
3199


