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Synchronization processes in populations of locally interacting elements are in the focus of intense
research in physical, biological, chemical, technological and social systems. The many efforts de-
voted to understand synchronization phenomena in natural systems take now advantage of the
recent theory of complex networks. In this review, we report the advances in the comprehension
of synchronization phenomena when oscillating elements are constrained to interact in a complex
network topology. We also overview the new emergent features coming out from the interplay
between the structure and the function of the underlying pattern of connections. Extensive nu-
merical work as well as analytical approaches to the problem are presented. Finally, we review
several applications of synchronization in complex networks to different disciplines: biological
systems and neuroscience, engineering and computer science, and economy and social sciences.
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I. INTRODUCTION

Synchronization, as an emerging phenomenon of a pop-
ulation of dynamically interacting units, has fascinated
humans from ancestral times. No matter whether the
phenomenon is spontaneous or induced, synchronization
captivates our minds and becomes one of the most in-
teresting scientific problems. Synchronization processes
are ubiquitous in nature and play a very important role
in many different contexts as biology, ecology, climatol-
ogy, sociology, technology, or even in arts ((Osipov et al.,
2007; Pikovsky et al., 2001). It is known that synchrony
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is rooted in human life from the metabolic processes in
our cells to the highest cognitive tasks we perform as a
group of individuals. For example, the effect of synchrony
has been described in experiments of people communi-
cating, or working together with a background of shared,
non-directive conversation, song or rhythm, or of groups
of children interacting to an unconscious beat. In all
cases the purpose of the common wave length or rhythm
is to strengthen the group bond. The lack of such syn-
chrony can index unconscious tension, when goals cannot
be identified nor worked towards because the members
are ”out of sync” (Hall, 1983).

Among the efforts for the scientific description of syn-
chronization phenomena, there are several capital works
that represented a breakthrough in our understanding
of these phenomena. In 1665, the mathematician and
physicist, inventor of the pendulum clock, C. Huygens,
discovered an odd ”kind of sympathy” in two pendulum
clocks suspended side by side of each other. The pendu-
lum clocks swung with exactly the same frequency and
180 degrees out of phase; when the pendula were dis-
turbed, the antiphase state was restored within half an
hour and persisted indefinitely. Huygens deduced that
the crucial interaction for this effect came from ”imper-
ceptible movements” of the common frame supporting
the two clocks. From that time on, the phenomenon got
into the focus of scientists. Synchronization involves, at
least, two elements in interaction, and the behavior of
a few interacting oscillators has been intensively studied
in the physics and mathematics literature. However, the
phenomenon of synchronization of large populations is a
different challenge and requires different hypothesis to be
solved. We will focus our attention on this last challenge.

In the obituary of Arthur T. Winfree, Strogatz (2003a)
summarizes what can be considered the beginning of the
modern quest to explain the synchronization of a popu-
lation of interacting units: ”Wiener (1948) posed a prob-
lem in his book Cybernetics: How is it that thousands of
neurons or fireflies or crickets can suddenly fall into step
with one another, all firing or flashing or chirping at the
same time, without any leader or signal from the envi-
ronment? Wiener did not make significant mathematical
progress on it, nor did anyone else until Winfree came
along”. Winfree (1967) studied the nonlinear dynamics
of a large population of weakly coupled limit-cycle os-
cillators with intrinsic frequencies that were distributed
about some mean value, according to some prescribed
probability distribution. The milestone here was to con-
sider biological oscillators as phase oscillators, neglecting
the amplitude. Working within the framework of a mean
field model, Winfree discovered that such a population of
non-identical oscillators can exhibit a remarkable cooper-
ative phenomenon. When the variance of the frequencies
distribution is large, the oscillators run incoherently, each
one near its natural frequency. This behavior remains
when reducing the variance until a certain threshold is
crossed. However, below the threshold the oscillators be-
gin to synchronize spontaneously (see (Winfree, 1980)).

Note that the original Winfree model was not solved ana-
lytically until recently (Ariaratnam and Strogatz, 2001).

Although Winfree’s approach proved to be successful
in describing the emergence of spontaneous order in the
system, it was based on the premise that every oscillator
feels the same pattern of interactions. However, this all-
to-all connectivity between elements of a large population
is difficult to conceive in real world. When the number
of elements is large enough, this pattern is incompatible
with physical constraints as for example minimization of
energy (or costs), and in general with the rare obser-
vation of long range interactions in systems formed by
macroscopic elements. The particular local connectivity
structure of the elements was missing (in fact, discarded)
in these and subsequent approaches.

In 1998, Watts and Strogatz presented a simple model
of network structure, originally intended precisely to in-
troduce the connectivity substrate in the problem of syn-
chronization of cricket chirps, which show a high degree
of coordination over long distances as though the insects
were ”invisibly” connected. Remarkably, this work did
not end in a new contribution to synchronization theory
but as the seed for the modern theory of complex net-
works (Watts and Strogatz, 1998). Starting with a reg-
ular lattice, they showed that adding a small number of
random links reduces the distance between nodes dras-
tically, see Fig. 1. This feature, known as small-world
(SW) effect, had been first reported in an experiment
conducted by S. Milgram (Travers and Milgram, 1969)
examining the average path length for social networks of
people in the United States. Nowadays, the phenomenon
has been detected in many other natural and artificial
networks. The inherent complexity of the new model,
from now on referred to as the Watts-Strogatz (WS)
model, was in its mixed nature in between regular lattices
and random graphs. Very soon, it turned out that the
nature of many interaction patterns observed in scenar-
ios as diverse as the Internet, the World-Wide Web, sci-
entific collaboration networks, biological networks, was
even more ”complex” than the WS model. Most of them
showed a heavy tailed distribution of connectivities with
no characteristic scale. These networks have been since
then called scale-free (SF) networks and the most con-
nected nodes are called hubs. This novel structural com-
plexity provoked an explosion of works, mainly from the
physicists community, since a completely new set of mea-
sures, models, and techniques, was needed to deal with
these topological structures.

During one decade we have witnessed the evolution of
the field of complex networks, mainly from a static point
of view, although some attempts to characterize the dy-
namical properties of complex networks have also been
made. One of these dynamical implications, addressed
since the very beginning of the subject, is the emergent
phenomena of synchronization of a population of units
with an oscillating behavior. The analysis of synchro-
nization processes has benefited from the advance in the
understanding of the topology of complex networks, but
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FIG. 1 Small-world network construction from a regular lat-
tice by rewiring links with a certain probability (randomness),
as proposed by Watts and Strogatz (1998)

it has also contributed to the understanding of general
emergent properties of networked systems. The main
goal of this review is precisely to revise the research un-
dertaken so far in order to understand how synchroniza-
tion phenomena are affected by the topological substrate
of interactions, in particular when this substrate is a com-
plex network.

The review is organized as follows. We first introduce
the basic mathematical descriptors of complex networks
that will be used henceforth. Next, we focus on the syn-
chronization of populations of oscillators. Section IV is
devoted to the analysis of the conditions for the stability
of the fully synchronized state using the Master Stabil-
ity Function (MSF) formalism. Applications in different
fields of science are presented afterwards and some per-
spectives provided. Finally, the last section rounds off
the review by giving our conclusions.

II. COMPLEX NETWORKS IN A NUTSHELL

There exist excellent reviews devoted to the structural
characterization and evolution of complex networks (Al-
bert and Barabási, 2002; Boccaletti et al., 2006; Costa
et al., 2007; Dorogovtsev and Mendes, 2002; Newman,
2003b; Strogatz, 2001). Here we summarize the main fea-
tures and standard measures used in complex networks.
The goal is to provide the reader a brief overview of the
subject as well as to introduce some notation that will
be used throughout the review.

The mathematical abstraction of a complex network
is a graph G comprising a set of N nodes (or vertices)
connected by a set of M links (or edges), being ki the
degree (number of links) of node i. This graph is repre-
sented by the adjacency matrix A, with entries aij = 1
if a directed link from j to i exists, and 0 otherwise. In
the more general case of a weighted network, the graph is
characterized by a matrix W , with entries wij , represent-
ing the strength (or weight) of the link from j to i. The
investigation of the statistical properties of many natural
and man-made complex networks revealed that, although
representing very different systems, some categorization
of them is possible. The most representative of these

properties refers to the degree distribution P (k), that in-
dicates the probability of a node to have a degree k. This
fingerprint of complex networks has been taken for a long
time as its most differentiating factor. However, several
other measures help to precise the categorization. Exam-
ples are the average shortest path length ℓ = 〈dij〉, where
dij is the length of the shortest path between node i and
node j, and the clustering coefficient C that accounts for
the fraction of actual triangles (three vertices forming a
loop) over possible triangles in the graph.

The first classification of complex networks is related to
the degree distribution P (k). The differentiation between
homogeneous and heterogeneous networks in degree is in
general associated to the tail of the distribution. If it
decays exponentially fast with the degree we refer to as
homogeneous networks, the most representative example
being the Erdös-Rényi (ER) random graph (Erdös and
Rényi, 1959). On the contrary, when the tail is heavy one
can say that the network is heterogeneous. In particular,
SF networks are the class of networks whose distribution
is a power-law, P (k) ∼ k−γ , the Barabási-Albert (BA)
model (Barabási and Albert, 1999) being the paradig-
matic model of this type of graph. This network is grown
by a mechanism in which all incoming nodes are linked
preferentially to the existing nodes. Note that the limit-
ing case of lattices, or regular networks, corresponds to
a situation where all nodes have the same degree.

This categorization can be enriched by the behavior
of ℓ. For a lattice of dimension d containing N vertices,
obviously, ℓ ∼ N1/d. For a random network, a rough
estimate for ℓ is also possible. If the average number of
nearest neighbors of a vertex is k̄, then about k̄ℓ vertices
of the network are at a distance ℓ from the vertex or
closer. Hence, N ∼ k̄ℓ and then ℓ ∼ ln(N)/ ln(k̄) , i.e.,
the average shortest-path length value is small even for
very large networks. This smallness is usually referred to
as the SW property. Associated to distances, there exist
many measures that provide information about ”central-
ity” of nodes. For instance, one can say that a node is
central in terms of the relative distance to the rest of the
network. One of the most frequently used centrality mea-
sures in the physics literature is the betweenness (load in
some papers), that accounts for the number of shortest
paths between any pair of nodes in the network that go
through a given node or link.

The clustering coefficient C is also a discriminating
property between different types of networks. It is usu-
ally calculated as follows:

C =
1

N

N
∑

i=1

Ci =
1

N

N
∑

i=1

ni

ki(ki − 1)/2
, (1)

where ni is the number of connections between nearest
neighbors of node i, and ki is its degree. A large cluster-
ing coefficient implies many transitive connections and
consequently redundant paths in the network, while a
low C implies the opposite.

Finally, it is worth mentioning that many networks
have a community structure, meaning that nodes are
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linked together in densely connected groups between
which connections are sparser. Finding the best parti-
tion of a network into communities is a very hard prob-
lem. The most successful solutions, in terms of accuracy
and computational cost (Danon et al., 2005), are those
based on the optimization of a magnitude called modu-
larity, proposed by Newman and Girvan (2004), that pre-
cisely allows for the comparison of different partitionings
of the network. The modularity of a given partition is, up
to a multiplicative constant, the number of links falling
within groups minus its expected number in an equivalent
network with links placed at random. Given a network
partitioned into communities, the mathematical defini-
tion of modularity is expressed in terms of the adjacency
matrix aij and the total number of links M = 1

2

∑

i ki as

Q =
1

2M

∑

ij

(aij −
kikj

2M
)δci,cj

(2)

where ci is the community to which node i is assigned
and the Kronecker delta function δci,cj

takes the value 1
if nodes i and j are in the same community, and 0 other-
wise. The larger the Q the more modular the network is.
This property promises to be specially adequate to un-
veil structure-function relationships in complex networks
(Girvan and Newman, 2002; Guimerà et al., 2003, 2005;
Newman, 2006).

III. COUPLED PHASE OSCILLATOR MODELS ON

COMPLEX NETWORKS

The need to understand synchronization, mainly in the
context of biological neural networks, promoted the first
studies of synchronization of coupled oscillators consid-
ering a network of interactions between them. In the late
90’s, Strogatz and Mirollo (1988) and later Niebur et al.
(1991) studied the collective synchronization of phase
non-linear oscillators with random intrinsic frequencies
under a variety of coupling schemes in 2D lattices. Be-
yond the differences with the actual conception of a com-
plex network, the topologies studied in Niebur et al.
(1991) can be thought of as a first approach to reveal
how the complexity of the connectivity affects synchro-
nization. The authors used a square lattice as a geomet-
rical reference to construct three different connectivity
schemes: four nearest neighbors, Gaussian connectivity
truncated at 2σ, and finally a random sparse connectiv-
ity. These results showed that random long-range con-
nections lead to a more rapid and robust phase locking
between oscillators than nearest-neighbor coupling or lo-
cally dense connection schemes. This observation is at
the root of the recent findings about synchronization in
complex networks of oscillators. In the current section
we review the results obtained so far on three different
kinds of oscillatory ensembles: limit cycle oscillators (Ku-
ramoto), pulse-coupled models, and finally coupled map
systems. We reserve for Sect. IV those works that use the

MSF formalism. Many other works whose major contri-
bution is the understanding of synchronization phenom-
ena in specific scenarios are discussed in the Applications
section.

A. Phase oscillators

1. The Kuramoto model

The pioneering work by Winfree (1967) spurred the
field of collective synchronization and called for mathe-
matical approaches to tackle the problem. One of these
approaches, as already stated, considers a system made
up of a huge population of weakly-coupled, nearly identi-
cal, interacting limit-cycle oscillators, where each oscilla-
tor exerts a phase dependent influence on the others and
changes its rhythm according to a sensitivity function
(Acebrón et al., 2005; Strogatz, 2000).

Even if these simplifications seem to be very crude, the
phenomenology of the problem can be captured. Namely,
the population of oscillators exhibits the dynamic analog
to an equilibrium phase transition. When the natural
frequencies of the oscillators are too diverse compared to
the strength of the coupling, they are unable to synchro-
nize and the system behaves incoherently. However, if
the coupling is strong enough, all oscillators freeze into
synchrony. The transition from one regime to the other
takes place at a certain threshold. At this point some
elements lock their relative phase and a cluster of syn-
chronized nodes develops. This constitutes the onset of
synchronization. Beyond this value, the population of os-
cillators is split into a partially synchronized state made
up of oscillators locked in phase and a group of nodes
whose natural frequencies are too different as to be part
of the coherent cluster. Finally, after further increas-
ing the coupling, more and more elements get entrained
around the mean phase of the collective rhythm gener-
ated by the whole population and the system settles in
the completely synchronized state.

Kuramoto (1975, 1984) worked out a mathematically
tractable model to describe this phenomenology. He rec-
ognized that the most suitable case for analytical treat-
ment should be the mean field approach. He proposed
an all-to-all purely sinusoidal coupling, and then the gov-
erning equations for each of the oscillators in the system
are:

θ̇i = ωi +
K

N

N
∑

j=1

sin (θj − θi) (i = 1, ..., N) , (3)

where the factor 1/N is incorporated to ensure a good be-
havior of the model in the thermodynamic limit, N → ∞,
ωi stands for the natural frequency of oscillator i, and
K is the coupling constant. The frequencies ωi are dis-
tributed according to some function g(ω), that is usually
assumed to be unimodal and symmetric about its mean
frequency Ω. Admittedly, due to the rotational symme-
try in the model, we can use a rotating frame and redefine
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ωi → ωi+Ω for all i and set Ω = 0, so that the ωi’s denote
deviations from the mean frequency.

The collective dynamics of the whole population is
measured by the macroscopic complex order parameter,

r(t)eiφ(t) =
1

N

N
∑

j=1

eiθj(t) , (4)

where the modulus 0 ≤ r(t) ≤ 1 measures the phase co-
herence of the population and φ(t) is the average phase.
The values r ≃ 1 and r ≃ 0 (where ≃ stands for fluctu-
ations of size O(N−1/2)) describe the limits in which all
oscillators are either phase locked or move incoherently,
respectively. Multiplying both parts of Eq. (4) by e−iθi

and equating imaginary parts gives

r sin(φ− θi) =
1

N

N
∑

j=1

sin(θj − θi) , (5)

yielding

θ̇i = ωi +Kr sin (φ− θi) (i = 1, ..., N) . (6)

Equation (6) states that each oscillator interacts with all
the others only through the mean field quantities r and
φ. The first quantity provides a positive feedback loop
to the system’s collective rhythm: as r increases because
the population becomes more coherent, the coupling be-
tween the oscillators is further strengthened and more
of them can be recruited to take part in the coherent
pack. Moreover, Eq. (6) allows to calculate the criti-
cal coupling Kc and to characterize the order parameter
limt→∞ rt(K) = r(K). Looking for steady solutions, one
assumes that r(t) and φ(t) are constant. Next, without
loss of generality, we can set φ = 0, which leads to the
equations of motion (Kuramoto, 1975, 1984)

θ̇i = ωi −Kr sin (θi) (i = 1, ..., N) . (7)

The solutions of Eq. (7) reveal two different types of long-
term behavior when the coupling is larger than the criti-
cal value, Kc. On the one hand, a group of oscillators for
which |ωi| ≤ Kr are phase-locked at frequency Ω in the
original frame according to the equation ωi = Kr sin (θi).
On the other hand, the rest of the oscillators for which
|ωi| > Kr holds, are drifting around the circle, sometimes
accelerating and sometimes rotating at lower frequencies.
Demanding some conditions for the stationary distribu-
tion of drifting oscillators with frequency ωi and phases
θi (Strogatz, 2000), a self-consistent equation for r can
be derived as

r = Kr

∫ π
2

−π
2

(

cos2 θ
)

g(ω)dθ,

where ω = Kr sin (θ). This equation admits a non-trivial
solution,

Kc =
2

πg(0)
. (8)

beyond which r > 0. Equation (8) is the Kuramoto
mean field expression for the critical coupling at the onset
of synchronization. Moreover, near the onset, the order
parameter, r, obeys the usual square-root scaling law for
mean field models, namely,

r ∼ (K −Kc)
β (9)

with β = 1/2. Numerical simulations of the model veri-
fied these results. The Kuramoto model (KM, from now
on) approach to synchronization was a breakthrough for
the understanding of synchronization in large popula-
tions of oscillators.

Even in the simplest case of a mean field interaction,
there are still unsolved problems that have resisted any
analytical attempt. This is the case, e.g., for finite popu-
lations of oscillators and some questions regarding global
stability results (Acebrón et al., 2005). In what follows,
we focus on another aspect of the model’s assumptions,
namely that of the connection topology of real systems
(Boccaletti et al., 2006; Newman, 2003b), which usually
do not show the all-to-all pattern of interconnections un-
derneath the mean field approach.

2. Kuramoto model on complex networks

To deal with the KM on complex topologies, it is nec-
essary to reformulate Eq. (3) to include the connectivity

θ̇i = ωi +
∑

j

σijaij sin(θj − θi) (i = 1, ..., N) , (10)

where σij is the coupling strength between pairs of con-
nected oscillators and aij are the elements of the connec-
tivity matrix. The original Kuramoto model is recovered
by letting aij = 1, ∀i 6= j (all-to-all) and σij = K/N, ∀i, j.

The first problem when defining the KM in complex
networks is how to state the interaction dynamics prop-
erly. In contrast with the mean field model, there are
several ways to define how the connection topology en-
ters in the governing equations of the dynamics. A
good theory for Kuramoto oscillators in complex net-
works should be phenomenologically relevant and provide
formulas amenable to rigorous mathematical treatment.
Therefore, such a theory should at least preserve the es-
sential fact of treating the heterogeneity of the network
independently of the interaction dynamics, and at the
same time, should remain calculable in the thermody-
namic limit.

For the original model, Eq. (3), the coupling term on
the right hand side of Eq. (10) is an intensive magnitude
because the dependence on the size of the system cancels
out. This independence on the number of oscillatorsN is
achieved by choosing σij = K/N . This prescription turns
out to be essential for the analysis of the system in the
thermodynamic limit N → ∞ in the all-to-all case. How-
ever, choosing σij = K/N for the governing equations of
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the KM in a complex network makes them to become de-
pendent on N . Therefore, in the thermodynamic limit,
the coupling term tends to zero except for those nodes
with a degree that scales with N . Note that the existence
of such nodes is only possible in networks with power-law
degree distributions (Boccaletti et al., 2006; Newman,
2003b), but this happens with a very small probability
as k−γ , with γ > 2. In these cases, mean field solutions
independent of N are recovered, with slight differences in
the onset of synchronization of all-to-all and SF networks
(Restrepo et al., 2005a) .

A second prescription consists in taking σij = K/ki

(where ki is the degree of node i) so that σij is a weighted
interaction factor that also makes the right hand side of
Eq. (10) intensive. This form has been used to solve
the paradox of heterogeneity (Motter et al., 2005b) that
states that the heterogeneity in the degree distribution,
which often reduces the average distance between nodes,
may suppress synchronization in networks of oscillators
coupled symmetrically with uniform coupling strength.
This result refers to the stability of the fully synchronized
state, but not to the dependence of the order parameter
on the coupling strength (where partially synchronized
and unsynchronized states exist). Besides, the inclusion
of weights in the interaction strongly affects the original
KM dynamics in complex networks because it can impose
a dynamic homogeneity that masks the real topological
heterogeneity of the network.

The prescription σij = K/const, which may seem more
appropriate, also causes some conceptual problems be-
cause the sum in the right hand side of Eq. (10) could
eventually diverge in the thermodynamic limit. The
constant in the denominator could in principle be any
quantity related to the topology, such as the average
connectivity of the graph,〈k〉, or the maximum degree
kmax. Its physical meaning is a re-scaling of the tem-
poral scales involved in the dynamics. However, except
for the case of σij = K/kmax, the other possible settings
do not avoid the problems when N → ∞. On the other
hand, for a proper comparison of the results obtained for
different complex topologies (e.g. SF or uniformly ran-
dom), the global and local measures of coherence should
be represented according to their respective time scales.
Therefore, given two complex networks A and B with
kmax = kA and kmax = kB respectively, it follows that to
make meaningful comparisons between observables, the
equations of motion Eq. (10) should refer to the same
time scales, i.e., σij = KA/kA = KB/kB = σ. With this
formulation in mind, Eq. (10) reduces to

θ̇i = ωi + σ
∑

j

aij sin(θj − θi) (i = 1, ..., N) , (11)

independently of the specific topology of the network.
This allows us to study the dynamics of Eq. (11) on
different topologies, compare the results, and properly
inspect the interplay between topology and dynamics in
what concerns synchronization.

As we shall see, there are also several ways to define the

order parameter that characterizes the global dynamics
of the system, some of which were introduced to allow
for analytical treatments at the onset of synchronization.
We advance, however, that the same order parameter,
Eq. (4), is often used to describe the coherence of the
synchronized state.

3. Onset of synchronization in complex networks

Studies on synchronization in complex topologies
where each node is considered to be a Kuramoto oscil-
lator, were first reported for WS networks (Hong et al.,
2002; Watts, 1999) and BA graphs (Moreno and Pacheco,
2004; Moreno et al., 2004). These works are mainly
numerical explorations of the onset of synchronization,
their main goal being the characterization of the critical
coupling beyond which groups of nodes beating coher-
ently first appear. Hong et al. (2002) considered oscil-
lators with intrinsic frequencies distributed according to
a Gaussian distribution with unit variance arranged in a
WS network with varying rewiring probability, p, and ex-
plored how the order parameter, Eq. (4), changes upon
addition of long-range links. Moreover, they assumed
a normalized coupling strength σij = K/〈k〉, where 〈k〉
is the average degree of the graph. Numerical integra-
tion of the equations of motion (10) under variation of
p shows that collective synchronization emerges even for
very small values of the rewiring probability.

The results confirm that networks obtained from a reg-
ular ring by just rewiring a tiny fraction of links (p & 0)
can be synchronized with a finite K. Moreover, in con-
trast with the arguments provided by Hong et al. (2002),
we notice that their results had been obtained for a fixed
average degree and thus the Kuramoto’s critical coupling
can not be recovered by simply taking p→ 1, which pro-
duces a random ER graph with a fixed minimum connec-
tivity. This limit is recovered by letting 〈k〉 increase. Ac-
tually, numerical simulations of the same model by Watts
(1999) showed that the Kuramoto limit is approached
when the average connectivity grows.

Moreno and Pacheco (2004) considered the same prob-
lem in BA networks. The natural frequencies and the
initial values of θi were randomly drawn from a uniform
distribution in the interval (−1/2, 1/2) and (−π, π), re-
spectively. The global dynamics of the system, Eq. (11),
turns out to be qualitatively the same as for the original
KM as shown in Fig. 2, where the dependence of the or-
der parameter Eq. (4) with σ is shown for several system
sizes.

The existence of a critical point for the KM on SF net-
works came as a surprise. Admittedly, this is one of the
few cases in which a dynamical process shows a critical
behavior when the substrate is described by a power-law
connectivity distribution with an exponent γ ≤ 3 (Boc-
caletti et al., 2006; Dorogovtsev et al., 2007; Newman,
2003b). In principle it could be a finite size effect, but
it turned out from numerical simulations that this was
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FIG. 2 Order parameter r (Eq. (4)) as a function of σ for sev-
eral BA networks of different sizes. Finite size scaling analysis
shows that the onset of synchronization takes place at a crit-
ical value σc = 0.05(1). The inset is a zoom around σc. From
Moreno and Pacheco (2004).

not the case. To determine the exact value of σc, one
can make use of standard finite-size scaling analysis. At
least two complementary strategies have been reported.
The first one allows bounding the critical point and is
computationally more expensive. Consider a network of
size N , for which no synchronization is attained below
σc, where r(t) decays to a small residual value of size

O(1/
√
N). Then, the critical point may be found by ex-

amining the N -dependence of r(σ,N). In the sub-critical
regime (σ < σc), the stationary value of r falls off as
N−1/2, while for σ > σc, the order parameter reaches a
stationary value as N → ∞ (though still with O(1/

√
N)

fluctuations). Therefore, plots of r versus N allow us to
locate the critical point σc. Alternatively, a more accu-
rate approach can be adopted. Assume the scaling form
for the order parameter (Marro and Dickman, 1999):

r = N−αf(Nν(σ − σc)) , (12)

where f(x) is a universal scaling function bounded as
x → ±∞ and α and ν are two critical exponents to be
determined. Since at σ = σc, the value of the function
f is independent of N , the estimation of σc can be done
by plotting Nαr as a function of σ for various sizes N
and then finding the value of α that gives a well-defined
crossing point, the critical coupling σc. As a by-product,
the method also allows us to calculate the two scaling
exponents α and ν, the latter can be obtained from the
equality

ln[(dr/dσ)|σc
] = (ν − α) lnN + const, (13)

once α is computed.
Following these scaling procedures, Moreno and

Pacheco (2004) and Gómez-Gardeñes et al. (2007a,b) es-
timated a value for the critical coupling strength σc =

0.05(1). Moreover, r ∼ (σ − σc)
β when approaching the

critical point from above with β = 0.46(2) indicating
that the square-root behavior typical of the mean field
version of the model (β = 1/2) seems to hold as well for
BA networks.

Before turning our attention to some theoretical at-
tempts to tackle the onset of synchronization, it is worth
to briefly summarize other numerical results that have
explored how the critical coupling depends on other topo-
logical features of the underlying SF graph. Recent re-
sults have shed light on the influence of the topology of
the local interactions on the route to and the onset of
synchronization. In particular, McGraw and Menzinger
(2005, 2007) and Gómez-Gardeñes and Moreno (2007)
explored the Kuramoto dynamics on networks in which
the degree distribution is kept fixed, while the cluster-
ing coefficient (C) and the average path length (ℓ) of
the graph change. The results suggest that the onset
of synchronization is mainly determined by C, namely,
networks with a high clustering coefficient promote syn-
chronization at lower values of the coupling strength. On
the other hand, when the coupling is increased beyond
the critical point, the effect of ℓ dominates over C and
the phase diagram is smoothed out (a sort of stretching),
delaying the appearance of the fully synchronized state
as the average shortest path length increases.

In a series of recent papers (Ichinomiya, 2004, 2005;
Lee, 2005; Restrepo et al., 2005a,b, 2006), the onset of
synchronization in large networks of coupled oscillators
has been analyzed from a theoretical point of view. De-
spite these efforts no exact analytical results for the KM
on general complex networks are available up to date.
Moreover, the theory predicts that for uncorrelated SF
networks with an exponent γ ≤ 3, the critical coupling
vanishes as N → ∞, in contrast to numerical simulations
on BA model networks. It appears that the strong het-
erogeneity of real networks and the finite average connec-
tivity strongly hampers analytical solutions of the model.

Following Restrepo et al. (2005a), consider the system
in Eq. (11), with a symmetric1 adjacency matrix aij =
aji. Defining a local order parameter ri as

rie
iφi =

N
∑

j=1

aij〈eiθj 〉t , (14)

where 〈· · ·〉t stands for a time average, a new global or-
der parameter to measure the macroscopic coherence is
readily introduced as

r =

∑N
i=1 ri

∑N
i=1 ki

. (15)

Now, rewriting Eq. (11) as a function of ri, yields,

θ̇i = ωi − σri sin(θi − φi) − σhi(t) . (16)

1 The reader can find the extension of the forthcoming formalism
to directed networks in Restrepo et al. (2005b).
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In Eq. (16), hi(t) = Im{e−iθi
∑N

j=1 aij(〈eiθj 〉t − eiθj )} de-
pends on time and contains time fluctuations. Assuming
the terms in the previous sum to be statistically indepen-
dent, hi(t) is expected to be proportional to

√
ki above

the transition, where ri ∼ ki. Therefore, except very
close to the critical point, and assuming that the number
of connections of each node is large enough2 (ki ≫ 1 as
to be able to neglect the time fluctuations entering hi,
i.e., hi ≪ ri), the equation describing the dynamics of
node i can be reduced to

θ̇i = ωi − σri sin(θi − φi) . (17)

Next, we look for stationary solutions of Eq. (17), i.e.
sin(θi − φi) = ωi/σri. In particular, oscillators whose
intrinsic frequency satisfies |ωi| ≤ σri become locked.
Then, as in the Kuramoto mean field model, there are
two contributions (though in this case to the local order
parameter), one from locked and the other from drifting
oscillators such that

ri =

N
∑

j=1

aij〈ei(θj−φi)〉t = (18)

=
∑

|ωj|≤σrj

aije
i(θj−φi) +

∑

|ωj|>σrj

aij〈ei(θj−φi)〉t .

To move one step further, some assumptions are needed.
Consider a graph such that the average degree of near-
est neighbors is high (i.e., if the neighbors of node i are
well-connected). Then it is reasonable to assume that
these nodes are not affected by the intrinsic frequency
of i. This is equivalent to assume solutions (ri, φi) that
are, in a statistical sense, independent of the natural fre-
quency ωi. With this assumption, the second summand
in Eq. (18) can be neglected. Taking into account that
the distribution g(ω) is symmetric and centered at Ω = 0,
after some algebra one is left with (Restrepo et al., 2005a)

ri =
∑

|ωj |≤σrj

aij cos(φj − φi)

√

1 −
(

ωj

σrj

)2

. (19)

The critical coupling σc is given by the solution of Eq.
(19) that yields the smallest σ. It can be argued that it
is obtained when cos(φj − φi) = 1 in Eq. (19), thus

ri =
∑

|ωj |≤σrj

aij

√

1 −
(

ωj

σrj

)2

, (20)

which is the main equation of the time average ap-
proximation (recall that time fluctuations have been ne-
glected). Note, however, that to obtain the critical cou-
pling, one has to know the adjacency matrix as well as

2 This obviously restricts the range of real networks to which the
approximation can be applied.

the particular values of ωi for all i and then solve Eq.
(20) numerically for the {ri}. Finally, the global order
parameter defined in Eq. (15) can be computed from ri.

Even if the underlying graph satisfies the other afore-
mentioned topological constraints, it seems unrealistic to
require knowledge of the {ωi}’s. A further approach, re-
ferred to as the frequency distribution approximation can
be adopted. According to the assumption that ki ≫ 1 for
all i, or equivalently, that the number of connections per
node is large (a dense graph), one can also consider that
the natural frequencies of the neighbors of node i follows
the distribution g(ω). Then, Eq. (20) can be rewritten
avoiding the dependence on the particular realization of
{ωi} to yield,

ri =
∑

j

aij

∫ σrj

−σrj

g(ω)

√

1 −
(

ω

σrj

)2

dω

= σ
∑

j

aijrj

∫ 1

−1

g(xσrj)
√

1 − x2dx , (21)

with x = ω/(σrj). This equation allows us to readily de-
termine the order parameter r as a function of the net-
work topology (aij), the frequency distribution (g(ω))
and the control parameter (σ). On the other hand,
Eq. (20) still does not provide explicit expressions for
the order parameter and the critical coupling strength.
To this end, one introduces a first-order approximation
g(xσrj) ≈ g(0) which is valid for small, but nonzero,
values of r. Namely, when rj → 0+

r0i =
σ

Kc

∑

j

aijr
0
j ,

where Kc = 2/(πg(0)) is Kuramoto’s critical coupling.
Moreover, as the smallest value of σ corresponds to σc,
it follows that the critical coupling is related to both Kc

and the largest eigenvalue λmax of the adjacency matrix,
yielding

σc =
Kc

λmax
. (22)

Equation (22) states that in complex networks, syn-
chronization is first attained at a value of the coupling
strength that inversely depends on g(0) and on the largest
eigenvalue λmax of the adjacency matrix. Note that this
equation also recovers Kuramoto’s result when aij = 1,
∀i 6= j, since λmax = N − 1. It is worth stressing that
although this method allows us to calculate σc analyt-
ically, it fails to explain why for uncorrelated random
SF networks with γ ≤ 3 and in the thermodynamic
limit N → ∞, the critical value remains finite. This
disagreement comes from the fact that in these SF net-
works, λmax is proportional to the cutoff of the degree
distribution, kmax which in turn scales with the system
size. Putting the two dependencies together, one obtains

λmax ∼ k
1
2
max ∼ N

1
2(γ−1) → ∞ asN → ∞, thus predicting
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σc = 0 in the thermodynamic limit, in contrast to finite
size scaling analysis for the critical coupling via numer-
ical solution of the equations of motion. Note, however,
that the difference may be due to the use of distinct order
parameters. Moreover, even in the case of SF networks
with γ > 3, λmax still diverges when we take the ther-
modynamic limit, so that σc → 0 as well. As we shall
see soon, this is not the case when other approaches are
adopted, at least for γ > 3.

It is possible to go beyond with the latter approxima-
tion and to determine the behavior of r near the criti-
cal point. Restrepo et al. (2005a) developed a perturba-
tive approach to higher orders of Eq. (21), which is valid
for relatively homogeneous degree distributions (γ > 5).3

They showed that for (σ/σc) − 1 ∼ 0+

r2 =

(

η

η1K2
c

) (

σ

σc
− 1

) (

σ

σc

)3

, (23)

where η1 = −πg′′(0)Kc/16 and

η =
〈u〉2λ2

max

N〈k〉2〈u4〉 , (24)

where u is the normalized eigenvector of the adjacency

matrix corresponding to λmax and 〈u4〉 =
∑N

j u4
j/N .

The analytical insights discussed so far can also be re-
formulated in terms of a mean field approximation (Ichi-
nomiya, 2004, 2005; Lee, 2005; Restrepo et al., 2005a) for
complex networks. This approach (valid for large enough
〈k〉) considers that every oscillator is influenced by the
local field created in its neighborhood, so that ri is pro-
portional to the degree of the nodes ki, i.e., ri ∼ ki.
Assuming this is the case and introducing the order pa-
rameter r through

r =
ri
ki

=
1

ki

∣

∣

∣

∣

∣

∣

N
∑

j=1

aij〈eiθj 〉t

∣

∣

∣

∣

∣

∣

, (25)

after summing over i and substituting ri = rki in Eq.
(21) we obtain (Restrepo et al., 2005a)

N
∑

j

kj = σ

N
∑

j

k2
j

∫ 1

−1

g(xσrkj)
√

1 − x2dx . (26)

The above relation, Eq. (26), was independently derived
by Ichinomiya (2004), who first studied analytically the
problem of synchronization in complex networks, though
using a different approach. Taking the continuum limit,
Eq. (26) becomes

∫

kP (k)dk = σ

∫

k2P (k)dk

∫ 1

−1

g(xσrk)
√

1 − x2dx ,

(27)

3 The approach holds if the fourth moment of the degree distribu-
tion, 〈k4〉 =

R

∞

1
P (k)k4dk remains finite when N → ∞.

which for r → 0+ verifies
∫

kP (k)dk = σ

∫

k2P (k)dk

∫ 1

−1

g(0)
√

1 − x2dx

=
σg(0)π

2

∫

k2P (k)dk , (28)

which leads to the condition for the onset of synchroniza-
tion (r > 0) as

σg(0)π

2

∫

k2P (k)dk >

∫

kP (k)dk ,

that is,

σc =
2

πg(0)

〈k〉
〈k2〉 = Kc

〈k〉
〈k2〉 . (29)

The mean field result, Eq. (29), gives as a surprising re-
sult that the critical coupling σc in complex networks
is nothing else but the one corresponding to the all-
to-all topology Kc re-scaled by the ratio between the
first two moments of the degree distribution, regardless
of the many differences between the patterns of inter-
connections. Precisely, it states that the critical cou-
pling strongly depends on the topology of the underlying
graph. In particular, σc → 0 when the second moment
of the distribution 〈k2〉 diverges, which is the case for SF
networks with γ ≤ 3. Note, that in contrast with the re-
sult in Eq. (22), for γ > 3, the coupling strength does not
vanish in the thermodynamic limit. On the other hand,
if the mean degree is kept fixed and the heterogeneity
of the graph is increased by decreasing γ, the onset of
synchronization occurs at smaller values of σc. Interest-
ingly enough, the dependence gathered in Eq. (29) has
the same functional form for the critical points of other
dynamical processes such as percolation and epidemic
spreading processes (Boccaletti et al., 2006; Dorogovt-
sev et al., 2007; Newman, 2003b). While this result is
still under numerical scrutiny, it would imply that the
critical properties of many dynamical processes on com-
plex networks are essentially determined by the topology
of the graph, no matter whether the dynamics is non-
linear or not. The corroboration of this last claim will
be of extreme importance in physics, probably changing
many preconceived ideas about the nature of dynamical
phenomena.

Within the mean field theory, it is also possible to ob-
tain the behavior of the order parameter r near the tran-
sition to synchronization. Lee (2005) also independently
derived Eq. (29) starting from the differential equation
Eq. (11). Using the weighted order parameter

r̄(t)eiφ̄(t) =

∑N
i=1

∑N
j=1 aije

iθj

∑N
i=1 ki

,

and assuming the same magnitude of the effective field
of each pair of coupled oscillators one obtains

θ̇i = ωi −
σ

〈k〉kir̄ sin(θi) , (30)
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where we have set φ̄ = 0. Now, it is considered again
that in the stationary state the system divides into two
groups of oscillators, which are either locked or rotating
in a nonuniform manner. Following the same procedure
employed in all the previous derivations, the only con-
tribution to r comes from the former set of oscillators.
After some algebra, Lee (2005) showed that the critical
coupling σc is given by Eq. (29) and that near criticality

r ∼ (σ − σc)
β , (31)

for γ > 3, with a critical exponent β = 1
2 if γ ≥ 5,

and β = 1
γ−3 when 3 < γ ≤ 5. For the most common

cases in real networks of 2 < γ < 3, the critical coupling
tends to zero in the thermodynamic limit so that r should
be nonzero as soon as σ 6= 0. In this case, one gets
r ∼ σ1/(3−γ). Notably, the latter equation is exactly
the same found for the absence of critical behavior in
the region 2 < γ < 3 for a model of epidemic spreading
(Moreno et al., 2002).

One recent theoretical study by Oh et al. (2007) is
worth mentioning here. They have extended the mean
field approach to the case in which the coupling is asym-
metric and depends on the degree. In particular, they
studied a system of oscillators arranged in a complex
topology whose dynamics is given by

θ̇i = ωi +
σ

k1−η
i

N
∑

j=1

sin(θj − θi). (32)

η = 1 corresponds to the symmetric, non-degree depen-
dent, case. Extending the mean field formalism to the
cases η 6= 1, they investigated the nature of the syn-
chronization transition as a function of the magnitude
and sign of the parameter η. By exploring the whole pa-
rameter space (η, σ), they found that for η = 0 and SF
networks with 2 < γ < 3, a finite critical coupling σc is
recovered in sharp contrast to the non-weighted coupling
case for which we already know that σc = 0. This re-
sult seems phenomenologically meaningful, since setting
η = 0 implies that the coupling in Eq. (10) is σij = σ/ki,
which, as discussed before (Motter et al., 2005b), might
have the effect of partially destroying the heterogeneity
inherent to the underlying graph by normalizing all the

contributions
∑N

j=1 aij sin(θj − θi) by ki =
∑N

j=1 aij .

4. Path towards synchronization in complex networks

Up to now, we have discussed both numerically and
theoretically the onset of synchronization. In the next
section, we shall also discuss how the structural proper-
ties of the networks influence the stability of the fully
synchronized state. But, what happens in the region
where we are neither close to the onset of synchroniza-
tion nor at complete synchronization? How is the latter
state attained when different topologies are considered?

As we have seen, the influence of the topology is not
only given by the degree distribution, but also by how

TABLE I Topological properties of the networks and critical
coupling strengths derived from a finite size scaling analyses,
Eq. (12). Different values of χ corresponds to grown net-
works whose degree of heterogeneity varies smoothly between
the two limiting cases of ER and SF graphs. From Gómez-
Gardeñes et al. (2007b).

χ 〈k2〉 kmax σc

0.0 (SF) 115.5 326.3 0.051

0.2 56.7 111.6 0.066

0.4 44.9 47.7 0.088

0.6 41.1 25.6 0.103

0.8 39.6 16.8 0.108

1.0 (ER) 39.0 14.8 0.122

the oscillators interact locally. To reduce the number
of degrees of freedom to a minimum, let us focus on the
influence of heterogeneity and study the evolution of syn-
chronization for a family of complex networks which are
comparable in their clustering, average distance and cor-
relations so that the only difference is due to the de-
gree distribution.4 For these networks, the previous the-
oretical approaches argued that the critical coupling σc

is proportional to 〈k〉/〈k2〉, so that different topologies
should give rise to distinct critical points. In particular,
Gómez-Gardeñes et al. (2007a,b) studied numerically the
path towards synchronization in ER and SF networks.
They also studied several networks whose degree of het-
erogeneity can be tuned between the two limiting cases
(Gómez-Gardeñes and Moreno, 2006). These authors put
forward the question: How do SF networks compare with
ER ones and what are the roots of the different behaviors
observed?

Numerical simulations (Gómez-Gardeñes et al.,
2007a,b) confirm qualitatively the theoretical predictions
for the onset of synchronization, as summarized in Table
I. In fact, the onset of synchronization first occurs for
SF networks. As the network substrate becomes more
homogeneous, the critical point σc shifts to larger values
and the system seems to be less synchronizable. On the
other hand, they also showed that the route to complete
synchronization, r = 1, is sharper for homogeneous net-
works. No critical exponents for the behavior of r near
the transition points have been reported yet for the ER
network, so that comparison with the mean field value
β = 1/2 for a SF network with γ = 3 is not possible.5 Nu-

4 This isolation of individual features of complex networks is essen-
tial to understand the interplay between topology and dynamics.
As we will discuss along the review, many times this aspect has
not been properly controlled raising results that are confusing,
contradictory or even incorrect.

5 The numerical value of β contradicts the prediction of the mean-
field approach (see the discussion after Eq. (31)) The reason of
such discrepancy is not clear yet.
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FIG. 3 (color online) Synchronized components for several
values of σ for the two limiting cases of ER and SF networks.
The figure clearly illustrates the differences in forming syn-
chronization patterns for both types of networks: in the SF
case links and nodes are incorporated together to the largest
of the synchronized clusters, while for the ER network, what
is added are links between nodes already belonging to such
cluster. From Gómez-Gardeñes et al. (2007a).

merically, a detailed finite size scaling analysis in SF and
ER topologies shows that the critical coupling strength
corresponds in SF networks to σSF

c = 0.051, and in ran-
dom ER networks to σER

c = 0.122, a fairly significant
numerical difference.

The mechanisms behind the differences in the emer-
gence of collective behavior for ER and SF topologies
can be explored numerically by defining a local order pa-
rameter that captures and quantifies the way in which
clusters of locked oscillators emerge. The main differ-
ence with respect to r is that one measures the degree of
synchronization of nodes (r) with respect to the average
phase φ and the other (rlink) to the degree of synchro-
nization between every pair of connected nodes. Thus,
rlink gives the fraction of all possible links that are syn-
chronized in the network as

rlink =
1

2Nl

N
∑

i,j=1

aij

∣

∣

∣

∣

∣

lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)−θj(t)]dt

∣

∣

∣

∣

∣

,

(33)
being tr the time the system needs to settle into the sta-
tionary state, and ∆t a large averaging time. Gómez-
Gardeñes et al. (2007a,b) measured the degree of syn-
chronization of pairs of connected oscillators in terms of
the symmetric matrix

Dij = aij

∣

∣

∣

∣

∣

lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)−θj(t)]dt

∣

∣

∣

∣

∣

, (34)

which, once filtered using a threshold T such that the
fraction of synchronized pairs equals rlink, allows us to
identify the synchronized links and reconstruct the clus-
ters of synchrony for any value of σ, as illustrated in
Fig.3. From a microscopic analysis, it turns out that
for homogeneous topologies, many small clusters of syn-
chronized pairs of oscillators are spread over the graph
and merge together to form a giant synchronized cluster
when the effective coupling is increased. On the con-
trary, in heterogeneous graphs, a central core containing

the hubs first comes up driving the evolution of synchro-
nization patterns by absorbing small clusters. Moreover,
the evolution of rlink as σ grows explains why the tran-
sition is sharper for ER networks: nodes are added first
to the giant synchronized cluster and later on the links
among these nodes that were missing in the original clus-
ters of synchrony. In SF graphs, oscillators are added to
the largest synchronized component together with most
of their links, resulting in a much slower growth of rlink.
Finally, Gómez-Gardeñes et al. (2007a,b) also computed
the probability that a node with degree k belongs to the
largest synchronized cluster and reported that this prob-
ability is an increasing function of k for every σ, namely,
the more connected a node is, the more likely it takes
part in the cluster of synchronized links. It is interesting
to mention here that a similar dependence is obtained if
one analyzes the stability of the synchronized state under
perturbations of nodes of degree k. Moreno and Pacheco
(2004) found that the average time 〈τ〉 a node needs to
get back into the fully synchronized state is inversely pro-
portional to its degree, i.e., 〈τ〉 ∼ k−1.

Very recently, Almendral and Dı́az-Guilera (2007) also
studied the path towards synchronization, looking for the
relation between the time needed for complete synchro-
nization and the spectral properties of the Laplacian ma-
trix of the graph,

Lij = kiδij − aij . (35)

The Laplacian matrix is symmetric with zero row-sum
and hence all the eigenvalues are real and non-negative.
Considering the case of identical Kuramoto oscillators,
whose dynamics has only one attractor, the fully syn-
chronized state, they found that the synchronization time
scales with the inverse of the smallest nonzero eigenvalue
of the Laplacian matrix. Surprisingly, this relation qual-
itatively holds for very different networks where synchro-
nization is achieved, indicating that this eigenvalue alone
might be a relevant topological property for synchroniza-
tion phenomena. Donetti et al. (2006) remark the role
of this eigenvalue not only for synchronization purposes
but also for the flow of random walkers on the network.

5. Kuramoto model on structured or modular networks

In this section, we discuss a context in which synchro-
nization has turned out to be a relevant phenomenon
to explore the relation between dynamical and topologi-
cal properties of complex networks. Many complex net-
works in nature are modular, i.e. composed of certain
subgraphs with differentiated internal and external con-
nectivity that form communities (Boccaletti et al., 2006;
Danon et al., 2005; Newman and Girvan, 2004). This
is a limiting situation in which the local structure may
greatly affect the dynamics, irrespective of whether or not
we deal with homogeneous or heterogeneous networks.

Synchronization processes on modular networks have
been recently studied as a mechanism for community de-
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tection (Arenas et al., 2006a,b; Lodato et al., 2007; Oh
et al., 2005). Arenas et al. (2006a,b), studied the situa-
tion in which a set of identical Kuramoto oscillators (i.e.,
ωi = ω, ∀i) with random initial conditions evolves after
a transient to the synchronized state.6 Note that in this
case full synchronization is always achieved as this state
is the only attractor of the dynamics so that the coupling
strength sets the time scale to attain full synchronization:
the smaller σ is, the longer the time scale. Arenas et al.
(2006b) guessed that if high densely interconnected mo-
tifs synchronize more easily than those with sparse con-
nections (Moreno et al., 2004), then the synchronization
of complex networks with community structure should
behave differently at different time and spatial scales. In
synthetic modular networks, starting from random initial
phases, the highly connected units forming local clusters
synchronize first and later on, in a sequential process,
larger and larger topological structures do the same up to
the point in which complete synchronization is achieved
and the whole population of oscillators beat at the same
pace. Moreover, this process occurs at different time
scales and the dynamical route towards the global at-
tractor reveals the topological structures that represent
communities, from the microscale at very early states up
to the macroscale at the end of the time evolution.

The authors studied the time evolution of pairs of os-
cillators defining the local order parameter

ρij(t) = 〈cos[θi(t) − θj(t)]〉 , (36)

averaged over different initial conditions, which measures
the correlation between pairs of oscillators. To identify
the emergence of compact clusters reflecting communi-
ties, a binary dynamic connectivity matrix is introduced
such that

Dt(T )ij =

{

1 if ρij(t) > T

0 if ρij(t) < T,
(37)

for a given threshold T . Changing the threshold T at
fixed times reveals the correlations between the dynamics
and the underlying structure, namely, for large enough T ,
one is left with a set of disconnected clusters or commu-
nities that are the innermost ones, while for smaller val-
ues of T inter-community connections show up. In other
words, the inner community levels are the first to be-
come synchronized, subsequently the second level groups,
and finally the whole system shows global synchroniza-
tion. Note that since the function ρij(t) is continuous
and monotonic, we can define a new matrix DT (t), that
takes into account the time evolution for a fixed thresh-
old. The evolution of this matrix unravels the topologi-
cal structure of the underlying network at different time

6 It is worth stressing here that for this purpose the assumption
of ωi = ω can be adopted without loss of generality as it makes
the analysis easier. Synchronization of non-identical oscillators
also reveals the existence of community structures. See Gómez-
Gardeñes et al. (2007b).
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FIG. 4 (color online) Top: Number of disconnected synchro-
nized components (d.s.c.) as a function of time. Bottom:
Rank index versus the corresponding eigenvalue of the Lapla-
cian matrix. Each column corresponds to a network with two
hierarchical levels of communities. The difference lies in the
relative weight of the two modular levels. From Arenas et al.
(2006b).

scales. In the top panels of Fig. 4 we plot the number of
connected components corresponding to the binary con-
nectivity matrix with a fixed threshold as a function of
time for networks with two hierarchical levels of commu-
nities. There we can notice how this procedure shows
the existence of two clear time scales corresponding to
the two topological scales.

It is also possible to go one step further and show that
the evolution of the system to the global attractor is in-
timately linked to the whole spectrum of the Laplacian
matrix (35). The bottom panels of Fig. 4 show the
ranked index of the eigenvalues of Lij versus their in-
verse. As can be seen, both representations (top and
bottom) are qualitatively equivalent, revealing the topo-
logical structure of the networks. The only difference is
that one comes from a dynamical matrix and the other
from the spectrum of a matrix that fully characterizes the
topology. Thus, synchronization can be used to unveil
topological scales when the architecture of the network
is unknown.

The relationship between the eigenvalue spectrum of
Lij and the dynamical structures of Fig. 4 can be un-
derstood from the linearized dynamics of the Kuramoto
model close to the global attractor, which reads (Arenas
et al., 2006a,b)

θ̇i = −σ
N

∑

j=1

Lijθj i = 1, ..., N . (38)

The solution of Eq. (38) in terms of the normal modes
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ψi(t), which has to be satisfied at any given time t, is

ψi(t) =

N
∑

j=1

Bijθj = ψi(0)e−λit , (39)

where Bij is the matrix of eigenvectors and λi the eigen-
values of Lij . Sorting the set of Eqs. (39) in descending
order of the eigenvalues, one realizes that the solutions
ψi(0)e−λit (i = N, ..., 1) will approach zero in a hierarchi-
cal way; exactly in the same qualitative way that groups
of synchronized oscillators appear when the synchroniza-
tion threshold T is varied. If we fix the threshold and
look at different times, the gaps in the eigenvalue spec-
trum of the Laplacian matrix are associated to different
time scales between modes representing different topo-
logical scales. Summarizing these findings, the modular
structure of the network is revealed by the synchroniza-
tion process, and on the other side, a more interesting
fact comes along, the topological structure of networks
imposes characteristic times scales on the synchroniza-
tion dynamics.

The above results refer to situations in which networks
have clearly defined communities. The approach we have
proposed enables one to deal with different time and
topological scales. In the current literature about com-
munity detection (Danon et al., 2005; Newman and Gir-
van, 2004), the main goal is to maximize the modularity,
see Eq. (2). In this case the different algorithms try to
find the best partition of a network. Using a dynamical
procedure, however, we are able to devise all partitions
at different scales. Arenas and Dı́az-Guilera (2007) find
that the partition with the largest modularity turns out
to be the one for which the system is more stable, if the
networks are homogeneous in degree.7 If the networks
have hubs, these more connected nodes need more time
to synchronize with their neighbors and tend to form
communities by themselves. This is in contradiction with
the optimization of the modularity that punishes single
node communities. From this result we can conclude that
the modularity is a good measure for community parti-
tioning. But when dealing with dynamical evolution in
complex networks other related functions different from
modularity are needed.

For real (not synthetic or computer generated) net-
works, Oh et al. (2005) have shown that the same phe-
nomenology applies. They studied a system of Ku-
ramoto oscillators, Eq. (10) with σij = σ/ki, arranged
on the nodes of two real networks with community struc-
tures, the yeast protein interaction network and the Au-
tonomous System representation of the Internet map.
Both networks have a modular structure, but differ in

7 Here stability (relative) of a given structure is understood to be
the ratio between the final and initial times a partition remains
synchronized. In terms of the number of connected components
in Fig. 4 it corresponds to the length of the plateaus.

the way communities are assembled together. In the for-
mer one, the modules are connected diversely (as for the
synthetic networks analyzed before), while in the latter
one different communities are interwoven mainly through
a single module. The authors found that the transition
to synchrony depends on the type of intermodular con-
nections such that communities can mutually or indepen-
dently synchronize.

Modular networks are found in nature and they are
commonly the result of a growth process. Nevertheless,
these structural properties can also emerge as an adap-
tive mechanism generated by dynamical processes taking
place in the existing network, and synchronization could
be one of them. In particular, Gleiser and Zanette (2006)
studied the evolution of a network of Kuramoto oscilla-
tors. For a coupling strength below its critical value,
the network is rewired by replacing links between neigh-
bors with a large frequency difference with links between
units with a small frequency difference. In this case, the
network dynamically evolves to configurations that in-
crease the order parameter. Along this evolution they
noticed the appearance of synchronized groups (commu-
nities) that make the structure of the network to be more
complex than the random starting one.

Very recently, Boccaletti et al. (2007) have considered
a slightly different model, where the dynamics of each
node is governed by

ẋi = ωi +
σ

∑

j∈Γi
b
α(t)
ij

∑

j∈Γi

b
α(t)
ij sin(xj − xi)βe

β|xj−xi|

being bij the betweenness centrality of the link, Γi the set
of nodes that are connected to i, and α a time-dependent
exponent. The authors use this dynamical evolution to
identify communities. The betweenness is used as a mea-
sure of community coparticipation, since links between
nodes that are in the same community have low between-
ness (Girvan and Newman, 2002). Starting from a syn-
chronized state, α is decreased from zero and then the
corresponding interaction strength on those links is in-
creasingly enhanced. An additional mechanism that ad-
justs frequencies between neighboring nodes causes the
final state to show partial synchronization among nodes
that are in the same community.

6. Synchronization by pacemakers

It is worth mentioning the existence of other different
approaches to the synchronization of populations of Ku-
ramoto oscillators. So far we have referred to populations
where the oscillators are nearly identical in the sense that
they can have slightly different frequencies. Whenever
there is a subset of units that play a special role, in the
sense that they have substantially different frequencies
than the rest in the population or they affect some units
but are not affected by any of them, one usually refers
to them as pacemakers. The effect of pacemakers has
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been studied in regular networks, as for instance in one-
dimensional rings, two-dimensional tori and Cayley trees
(Radicchi and Meyer-Ortmanns, 2006). So far, the only
approach in a complex topology has been performed by
Kori and Mikhailov (2004). There, the authors consid-
ered a system of identical units (same frequency) and a
singular pacemaker. For an ER network they found that
for a large coupling the pacemaker entrains the whole
system (all units with the same effective frequency, that
of the pacemaker), but the phase distribution is hierar-
chically organized. Units at the same downward distance
from the pacemaker form shells of common phases. As
the coupling strength is decreased the entrainment breaks
down at a value that depends exponentially on the depth
of the network. This result also holds for complex net-
works, as for instance in WS or SF networks, although
the analytical explanation is only valid for ER networks.

B. Pulse-coupled models

In parallel to the studies described so far, some other
approaches to synchronization in networks have invoked
models where the interaction between units takes the
form of a pulse. In particular, much attention has been
devoted to models akin to reproduce the dynamics of neu-
rons, e.g. excitable integrate-and-fire oscillators (IFOs).
The basics of an IFO system is as follows. The phase dy-
namics of any oscillator i is linear in time dφi(t)/dt = 1
in absence of external perturbations. However, when the
oscillator i reaches the threshold φi(t) = 1 it sends a sig-
nal (or pulse) to the rest of the oscillators to which it is
connected, and relaxes to φi(t) = 0. The pulse can be
considered to propagate instantaneously or with a cer-
tain time delay τ , and when it reaches other oscillators
induces a phase jump φj → φj +∆(φj). The effects of the
topology on the synchronization phenomena emerging in
a network of IFOs are at least as rich as those presented
in Sect. III.A, although far more difficult to be revealed
analytically. The main problem here is that the dynam-
ics presents discontinuities in the variable states that are
difficult to deal with. Nevertheless, many insights are
recovered from direct simulations and clever mappings
of the system. From direct simulations the first insights
pointed directly to certain scaling relations between the
synchronization time and topological parameters of net-
works. In ER networks, the scaling relation between the
time to needed to achieve complete synchronization T ,
the number of nodes N , and the number of links M , was
found to be

T

N2α−β
∼

(

M

N2

)α

, (40)

with α = 1.30(5) and β = 1.50(5). Comparing this
synchronization process with the same system on a reg-
ular square lattice, one realizes that the time needed
to synchronize a random network is larger, specially in
sparse networks (Guardiola et al., 2000). In between of

these two extremal topologies, some WS networks with
a rewiring probability p were studied and were found to
expand the synchronization time more than the original
regular lattice. However, it was first pointed out that
an appropriate normalization of the pulses received by
each neuron, rescales the time to very short values. This
phenomenon of normalization of the total input signal
received by each oscillator has been repeatedly used to
homogenize the dynamics in heterogeneous substrates.

Excitable IFOs in SW networks were revisited later
by Roxin et al. (2004) to study the possibility of self-
sustained activity induced by the topology itself. Con-
sidering a unidirectional ring of IFOs with density p
of random long-range directed connections, the authors
showed that periodical patterns persist at low values of
p, while long-transients of disordered activity patterns
are observed for high values of p. Responsible for this
behavior is a tradeoff between the average path length
and the speed of activity propagation. For low p configu-
rations, the distances in the networks decrease logarith-
mically with size, while the superposition of activities is
almost the same than in the regular configuration, i.e.
the same activity occurs but in a ”smaller” network able
to self-sustain its excitation. However for large p, the
superposition of activity between excited domains plays
also an important role, and then both effects make the
synchronized self-sustained activity collapse, leading to
disordered patterns.

Lago-Fernández et al. (2000) were the first to in-
vestigate a network of nonidentical Hodgkin-Huxley
(Hodgkin and Huxley, 1952) elements coupled by exci-
tatory synapses in random, regular, and SW topologies.
The parameters of the model neurons were kept to stay
below the bifurcation point, until the input arrives and
forces the system to undergo a saddle-node bifurcation on
a limit cycle. The dynamics of the system ends up into a
coherent oscillation or in the activation of asynchronous
states. In absence of a detailed analysis of the mecha-
nism that generates coherence, the simulations showed
several effects of the topology on the dynamics, the most
interesting of which is that achieving synchronization in
regular networks takes longer compared to SW, where the
existence of short-cuts favors faster synchronization. The
results obtained in all cases show that the randomness of
the topology has strong effects on the dynamics of these
models, in particular the average connectivity is a con-
trol parameter for the transition between asynchronous
and synchronous states. In Fig. 5 we present a phase dia-
gram for the Hodgkin-Huxley model in SW networks with
varying average degree 〈k〉 and rewiring probability p. A
detailed analysis of sparse random networks of general
IFOs was exposed by Golomb and Hansel (2000). Their
analytic results are in agreement with the previous obser-
vations. Very recently, Leyva et al. (2006) analyzed a SW
network of non-identical Hodgkin-Huxley units in which
some of the couplings could be negative; they surpris-
ingly found that a small fraction of such phase-repulsive
links can enhance synchronization.
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FIG. 5 Phase diagram which shows the regions of oscillatory
(clear) and nonoscillatory (dark) activity of the network in
the (k, p) plane. The island that appears on the right side
indicates that the SW (for some range of values of k) is the
only regime capable to produce fast coherent oscillations in
the average activity after the presentation of the stimulus.
From Lago-Fernández et al. (2000).

In a slightly different scenario, Vragovic et al. (2006)
studied numerically a system of pulse coupled ex-
citable Bonhoeffer-van der Pol-FitzHugh-Nagumo oscil-
lators (Cartwright, 2000) in WS networks, and found a
major influence of the average path length of the network
on the degree of synchronization, whereas local properties
characterized by clustering and loop coefficients seem to
play a minor role. In any case, the authors warn that the
results are far from being conclusive, since single charac-
teristics of the network are not easily isolated. We will
come back to this issue in the next section, when dealing
with the stability of the synchronized state.

The works reviewed so far in this subsection are based
on the assumption that the coupling is fixed, and that
the only source of topological complexity is embedded
in the connectivity matrix. Denker et al. (2004) showed
that for networks of pulse-coupled oscillators with com-
plex connectivity, coupling heterogeneity induces peri-
odic firing patterns, which replace the state of global syn-
chrony. The coupling heterogeneity has a critical value
from which the periodic firing patterns become asyn-
chronous aperiodic states. These results are in agree-
ment with the observations described in previous works
and allow us to state that a certain degree of complex-
ity in the interaction between excitable or pulse coupled
oscillators is needed to observe regular (or ordered) pat-
terns. However, once a critical level of complexity is
surpassed, asynchronous aperiodic states dominate the
dynamic phenomena.

C. Coupled maps

Maps represent simple realizations of dynamical sys-
tems exhibiting chaotic behavior. At a first sight they
can represent discrete versions of continuous oscillators.
Coupled populations of such rather simple dynamical sys-
tems have been one of the paradigmatic models to explain
the emergence and self-organization in complex systems
due to the rich variety of global qualitative behavior they
give rise to. From a more practical point of view cou-
pled map systems have found a widespread range of ap-
plications, ranging from fluid dynamics and turbulence
to stock markets or ecological systems (Pikovsky et al.,
2001). Since these systems are nowadays known to have
complex topologies, populations of maps coupled through
a complex pattern of interactions are natural candidates
to study the onset of synchronization as an overall char-
acteristic of the population.

Coupled maps have been widely analyzed in regular
lattices, trees and also in global connectivity schemes.
The first attempt to consider connectivities in between
these extreme cases is due to Gade (1996). He proposed
a system formed by units, whose individual dynamics are
given by the logistic map, that are connected to a fixed
number k of other units randomly chosen (multiple and
self-links are permitted). The evolution rule for the units
is

xi(t+ 1) =
1

k

∑

j

aijf (xj(t)) . (41)

A linear stability analysis of this system is performed in
terms of the eigenvalues of the matrix A. For the logistic
map it is shown that for k > 4 the maps synchronize. The
time the system needs to synchronize decreases with the
connectivity k and also with the system size, although in
the latter case the time saturates for large values of the
system size. When the connectivity pattern is changed to
a modified WS model (by adding long-range short-cuts
but not rewiring), Gade and Hu (2000) showed that just
a nonzero value of the addition probability is enough to
guarantee synchronization in the thermodynamic limit.

In another early attempt to include non-regular topolo-
gies in chaotic dynamics, Batista et al. (2003) studied a
SW network, in which

θi(t+1) = (1−σ)f (θi(t))+
σ

4 + κ

N
∑

j=1

aijf (θj(t)) , (42)

where κ is the number of shortcuts in the network, and
σ the coupling constant. Each unit evolves according to
a sine-circle map (Ott, 1993)

f(θ) = θ + Ω − K

2π
sin(2πθ) (mod 1), (43)

which provides a simple example for describing the dy-
namics of a phase oscillator perturbed by a time-periodic
force. Here K is a constant related to the external force
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amplitude and 0 ≤ Ω < 1 is the ratio between the nat-
ural oscillator frequency and the forcing frequency. It is
observed that synchronization, in terms of a parameter
related to the winding number dispersion, is induced by
long-range coupling in a system that, in the absence of
the shortcuts, does not synchronize.

A slightly different approach was conducted by Jost
and Joy (2002), who considered a population of units
evolving according to

xi(t+ 1) = (1 − σ)f (xi(t)) +
σ

ki

∑

j∈Γi

f (xj(t)) . (44)

They obtain the stability condition of the synchronized
state in terms of the eigenvalues of the normalized Lapla-
cian matrix (δij − aij/ki) and the Lyapunov exponent of
the map f(x). Furthermore, they also find a sufficient
condition for the system to synchronize independently of
the initial conditions, namely

(1 − σλ2) sup |f ′| < 1, (45)

where λ2 is the smallest non-zero eigenvalue of the nor-
malized Laplacian matrix. They demonstrate their re-
sults for regular connectivity patterns as global coupling
and one-dimensional rings with a varying number of near-
est neighbors, since in these cases the eigenvalues can be
computed analytically. Complexity in the connectivity
pattern is introduced in different ways. In these cases one
needs numerical estimates of the eigenvalues to compare
the synchronization condition (45) with the simulation of
the model (44). By using a quadratic map f(x) = 1−ax2

(Ott, 1993) and choosing the free parameter a in a range
where different regimes are realized, they find that in a
random network the system synchronizes for an arbitrary
large number of units, whenever the number of neighbors
is larger than some threshold determined by the maximal
Lyapunov exponent. This implies a remarkable difference
to the one-dimensional case where synchronization is not
possible when the number of units is large enough. For
a WS model their main finding is that a quite high value
of the rewiring probability (p > 0.8) is needed to achieve
complete synchronization. Finally for BA networks the
behavior is comparable to the random ER case.

Following a similar line, Lind et al. (2004) study the
behavior of a model where the interaction between the
units can be strengthened according to the degree. In
this case

xt+1,i = (1 − σ)f(xt,i) +
σ

Ni

∑

j∈Γi

kα
j f(xt,j), (46)

where Ni =
∑

j∈Γi
kα

j is the appropriate normalizing con-

stant. Here the function f(x) is also a quadratic map.
The authors study first BA networks. When α = 0 the
model is equivalent to that discussed previously; in this
case they find the existence of a first-order transition be-
tween the coherent and the noncoherent phases that de-
pends on both the mean connectivity and the coupling

σ. As varying a, the parameter of the quadratic map,
they find that these two critical values are related by the
power law σc ∝ k−µ

c . The effect of α being larger than
zero is only quantitative, since in this case the transition
appears at smaller values of the interaction as compared
with the usual case. Additionally, the authors studied
two types of deterministic SF networks: a pseudofrac-
tal SF network introduced by Dorogovtsev et al. (2002)
and the Apollonian network introduced by Andrade et al.
(2005). In both cases, there is no coherence when α = 0
and a = 2. This fact leads the authors to conclude that
some degree of randomness that shortens the mean dis-
tance between units is needed for achieving a synchro-
nized state, since in these networks the SF nature is not
related to a short mean distance. Nevertheless, this sit-
uation is avoided if the contributions from the hubs are
strengthened, by making α > 0.

Another set of papers deals with units that are cou-
pled with some transmission delay. Atay et al. (2004),
Masoller and Mart́ı (2005), and Mart́ı et al. (2006), in-
vestigate the effect of delays in complex topologies. In the
first paper, Atay et al. (2004) propose a model in which
all units have the same time delay (in discrete units) with
respect to the unit considered:

xi(t+1) = f (xi(t))+
σ

ki

∑

j∈Γi

[f(xj (t− τij)) − f (xi(t))] .

(47)
For a uniform delay τij = τ ∀i, j, they show analytically,
and numerically, that the delay facilitates synchroniza-
tion for general topologies. In any case, this fact con-
firms the results obtained in Jost and Joy (2002) that
ER and SF networks are easier to synchronize than reg-
ular or SW ones. Furthermore, one of the implications
of connection delays is the possibility of the emergence
of new collective phenomena. Masoller and Mart́ı (2005)
and Mart́ı et al. (2006) considered uniform distributions
of (discrete) time delays. Their main result is that in the
presence of random delays the synchronization depends
mainly on the average number of links per node, whereas
for fixed delays there is also a dependence on other topo-
logical characteristics.

In a more general framework (Amritkar and Jalan,
2003; Jalan and Amritkar, 2003; Jalan et al., 2005), the
following problem is considered

xi(t+ 1) = (1 − σ)f (xi(t)) + σ
1

ki

∑

j∈Γi

g (xj(t)) . (48)

For a logistic map g(x) = µx(1 − x) (although anal-
yses on other maps as the circle map and the tent map
have also been performed) the authors show a phase dia-
gram in which the different stationary configurations are
obtained as a function of the coupling strength σ and
the parameter of the map µ. The stationary configura-
tions are classified in the following way: turbulence (all
units behave chaotically), partially ordered states (few
synchronized clusters with some isolated nodes), ordered
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states (two or more synchronized clusters with no isolated
nodes), coherent states (nodes form a single synchronized
cluster), and variable states (nodes form different states
depending strongly on initial conditions). The critical
value of the coupling above where phase synchronized
clusters are observed depends on the type of network and
the coupling function. As a remarkable point, it is found
that two different mechanisms of cluster formation (par-
tial synchronization) can be distinguished: self-organized
and driven clusters. In the first case, the nodes of a clus-
ter get synchronized because of intracluster coupling. In
the latter case, however, synchronization is due to inter-
cluster coupling; now the nodes of one cluster are driven
by those of the others. For a linear coupling function
g(x) = x, self-organization of clusters dominates at weak
coupling; when increasing the coupling strength, a tran-
sition to driven-type clusters, almost independent of the
type of network, appears. However, for a nonlinear cou-
pling function the driven type dominates for weak cou-
pling, and only networks with a tree-like structure show
some cluster formation for strong coupling.

Finally, it is worth mentioning the very recent work by
Levnajic and Tadic (2007), in which the authors consider
a SF tree (preferential-attachment growing network with
one link per node) of two-dimensional standard maps:

x′ = x+ y + µ sin(2πx) (mod 1)

y′ = y + µ sin(2πx).
(49)

The nodes are coupled through the angle coordinate (x)
so that the complete time-step of the node i is

xi(t+ 1) = (1 − ε)x′i(t) + ε
ki

∑

j∈Γi
(xj(t) − x′i(t))

yi(t+ 1) = (1 − ε)y′i(t).
(50)

Here, (′) denotes the next iteration of the (uncoupled)
standard map (49) and t denotes the global discrete time.
The update of each node is the sum of a contribution
given by the updates of the nodes, the ′ part, plus a cou-
pling contribution given by the sum of differences, taking
into account a delay in the coupling from the neighbors.
By keeping µ = 0.9 such that the individual dynamics is
in the strongly chaotic regime, the authors analyze the
dependence on the interaction strength σ. For small val-
ues of the coupling the motion of the individual units
is still chaotic, but the trajectories are contained in a
bounded region. With further increments of the coupling,
the units follow periodic motions which are highly syn-
chronized. In this case, however, synchronization takes
place in clusters, each cluster having a common value of
the band center around which the periodic motion occurs,
and center values appear in a discrete set of possible val-
ues. These clusters form patterns of dynamical regularity
affecting mainly nodes at distances 2, 3, and 4, as shown
in Fig. 6(left). In fact, the histograms of distances be-
tween nodes along the tree and between nodes belonging
to the same synchronized cluster have different statistical
weights only for these values of the distances.
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FIG. 6 (color online) Left: Distribution of the topological
distances for a tree with 1000 nodes (bullets) and the distance
inside the synchronized clusters (other symbols) for σ = 0.017
and different initial conditions. Right: visualization of the
tree with five interconnected clusters of synchronized nodes
marked by different colors. From Levnajic and Tadic (2007).

All previously discussed chaotic models are discrete
time maps, which are appropriate discrete versions of
chaotic oscillators. Nevertheless, we also notice a couple
of works dealing with time continuous maps. Li and Chen
(2004) analyze a WS network of Rössler oscillators, where
the parameters are chosen to ensure that the system gen-
erates chaotic dynamics. The basic observation is that
the network synchronizes when the coupling strength is
increased, as expected. Another interesting result is that
the mean phase difference among the chaotic oscillators
decreases with the increasing of the probability of adding
long-range random short-cuts. Along the same line, Yook
and Meyer-Ortmanns (2006) consider a system of Rössler
oscillators on BA networks. The only tuning parameter
of the BA networks is m, the number of links that a
newly added node has. For m = 1 (SF trees) there is
no synchronized state for a large number of oscillators.
Increasing m synchronization is favored. The topological
effect of increasing m is to create loops, but it is shown
that this is not the only fact that improves synchroniza-
tion.

Finally, a different and interesting proposal was made
by Belykh et al. (2004a) where a fixed 1-d connectivity
pattern is complemented by a set of switching long-range
connections. In this case, it is proven that interactions
between nodes that are only sporadic and of short dura-
tion are very efficient for achieving synchronization.

As a summary, we can say that most of the works deal
with particular models of coupled maps (logistic maps,
sine-circle maps, quadratic maps, ...). Thus, it is possi-
ble, to obtain in some cases not only the conditions of
local stability of the completely synchronized state but
the conditions for the synchronization independently of
the initial conditions. In general, the addition of short-
cuts to regular lattices improves synchronization. There
are even some cases, for which synchronization is only
attainable when a small fraction of randomness is add to
the system. On the contrary, in the next section we will
discuss the linear stability of the syncrhonized state for
general dynamical systems.
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IV. STABILITY OF THE SYNCHRONIZED STATE IN

COMPLEX NETWORKS

In the previous section we have reviewed the synchro-
nization of various types of oscillators on complex net-
works. Another line of research on synchronization in
complex networks, developed in parallel to the studies of
synchronization in networks of phase oscillators, is the
investigation of the stability of the completely synchro-
nized state of populations of identical oscillators. The
seminal work by Barahona and Pecora (2002) initiated
this research line by analyzing the stability of synchro-
nization in SW networks using the Master Stability Func-
tion (MSF). The framework of MSF was developed earlier
for the study of synchronization of identical oscillators
on regular or other simple network configurations (Fink
et al., 2000; Pecora and Carroll, 1998). The extension
of the framework to complex topologies is natural and
important, because it relates the stability of the fully
synchronized state to the spectral properties of the un-
derlying structure. It provides with an objective crite-
rion to characterize the stability of the global synchro-
nization state, from now on called synchronizability of
networks independently of the particularities of the oscil-
lators. Relevant insights about the structure-dynamics
relationship has been obtained using this technique.

In this section, we review the MSF formalism and the
main results obtained so far. Note that the MSF ap-
proach assesses the linear stability of the completely syn-
chronized state, which is a necessary, but not a sufficient
condition for synchronization.

A. Master Stability Function formalism

To introduce the MSF formalism, we start with an ar-
bitrary connected network of coupled oscillators. The
assumption here for the stability analysis of synchroniza-
tion is that all the oscillators are identical, represented
by the state vector x in an m-dimensional space. The
equation of motion is described by the general form

ẋ = F(x). (51)

For simplicity, we consider time-continuous systems.
However, the formalism applies also to time-discrete
maps. We will also assume an identical output function
H(x) for all the oscillators, which generates the signal
from the state x and sends it to other oscillators in the
networks. In this representation, H is a vector function of
dimension m. For example, for the 3-dimensional system
x = (x, y, z), we can take H(x) = (x, 0, 0), which means
that the oscillators are coupled only through the compo-
nent x. H(x) can be any linear or nonlinear mapping of
the state vector x. The N oscillators, i = 1, . . . , N , are
coupled in a network specified by the adjacency matrix

A = (aij). We have

ẋi = F(xi) + σ

N
∑

i=1

aijwij [H(xj) − H(xi)] (52)

= F(xi) − σ

N
∑

j=1

GijH(xj), (53)

being wij the connection weights, i.e., the network is,
in general, weighted. The coupling matrix G is Gij =

−aijwij if i 6= j and Gii =
∑N

j=1 aijwij . When the cou-

pling strength is uniform for all the connections (wij =
1), the network is unweighted, and the coupling matrix G
is just the usual Laplacian matrix L. By definition, the
coupling matrix G has zero row-sum. Thus there exists a
completely synchronized state in this network of identical
oscillators, i.e.,

x1(t) = x2(t) = . . . = xN (t) = s(t), (54)

which is a solution of Eq. (53). In this synchronized
state, s(t) also approaches the solution of Eq. (51), i.e.,
ṡ = F(s). This subspace in the state space of Eq. (53),
where all the oscillators evolve synchronously on the same
solution of the isolated oscillator F, is called the synchro-
nization manifold.

1. Linear Stability and Master Stability Function

When all the oscillators are initially set at the synchro-
nization manifold, they will remain synchronized. Now
the crucial question is whether the synchronization man-
ifold is stable in the presence of small perturbations δxi.
To assess the stability, we need to know whether the per-
turbations grow or decay in time. The linear evolution of
small δxi can be obtained by setting xi(t) = s(t)+δxi(t)
in Eq. (53), and expanding the functions F and H to first
order in a Taylor series, i.e., F(xi) = F(s) + DF(s)δxi

and H(xi) = H(s)+DH(s)δxi. Here DF(s) and DH(s)
are the Jacobian matrices of F and H on s, respectively.
This expansion results in the following linear variational
equations for δxi,

δẋi = DF(s)δxi − σDH(s)
N

∑

j=1

Gijδxj . (55)

The variational equations display a block form, each
block (ij) having m components. The main idea here is
to project δx into the eigenspace spanned by the eigen-
vectors vi of the coupling matrix G. This projection
can operate in block form without affecting the structure
inside the blocks. By doing so, Eqs. (55) can be diago-
nalized into N decoupled eigenmodes in the block form

ξ̇l = [DF(s) − σλlDH(s)] ξl, l = 1, · · · , N, (56)

where ξl is the eigenmode associated with the eigenvalue
λl of G. The property λ1 = 0, associated to the eigen-
vector v1 = (1, 1, . . . , 1), follows naturally from the zero
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row-sum of G. So the first eigenmode ξ̇1 = DF(s)ξ1 cor-
responds to the perturbation parallel to the synchroniza-
tion manifold. The otherN−1 eigenmodes are transverse
to the synchronization manifold and should be damped
out to have a stable synchronization manifold.

In the following we assume that all the eigenvalues are
real. This property is analytically proven for symmetric
G but it can also be true for non-symmetric cases, as will
be discussed later. Furthermore, the non-negative nature
of G ensures that the eigenvalues are also non-negative.
Then they can be ordered as

0 = λ1 ≤ λ2 · · · ≤ λN . (57)

In a connected network ofN oscillators, λ2 is the minimal
and λN is the maximal non-zero eigenvalue.

Importantly, we observe that all the variational equa-
tions in Eq. (56) have the same form

ξ̇ = [DF(s) − αDH(s)] ξ. (58)

They only differ by the parameter αl = σλl. Now if
we know the stability of the solution ξ = 0 for any rea-
sonable value of α, then we can infer the stability for
any eigenmode with αl = σλl. To assess the stabil-
ity of this master variational equation (58), we calcu-
late its largest Lyapunov exponent λmax as a function of
α, the resulting function is the master stability function.
The evolution of small ξ is then described on average
as ||ξ(t)|| ∼ exp[λmax(α)t], and the mode is stable with
||ξ|| → 0 if λmax(α) < 0.

So far, we have assumed that the eigenvalues λl are
real, and the problem is to compute the MSF λmax(α)
for real values of α. In general, the coupling matrix G
is asymmetric, and the eigenvalues λl can be complex
numbers. In this case one needs to evaluate the MSF in
the complex plane (αR, αI). It has been found that for
many oscillator types λmax(α) < 0 in a finite region of
this plane (Fink et al., 2000; Pecora and Carroll, 1998).

The reader may find the framework of master stability
function abstract. Here we present it in a physically in-
tuitive manner with the help of a schematic diagram. For
this, we restrict ourself to the case where α is real. Let
us consider first two coupled oscillators. The first one is
autonomous and evolving along the trajectory s(t), and
the second one is driven by the first one with a coupling
strength α, as depicted in Fig. 7(a). The dynamical equa-
tions read,

ṡ = F(s), (59)

ẋ = F(x) + α[H(s) − H(x)]. (60)

Then immediately, we obtain the linear variational equa-
tion for the synchronization difference ξ(t) = x(t) − s(t)
as in Eq. (58). This means that the MSF describes the
stability of the state in which the two oscillators are syn-
chronized.

In a similar spirit, the equations for the N − 1 trans-
verse eigenmodes in Eq. (56) can be graphically repre-
sented as N − 1 oscillators driven by a common au-
tonomous oscillator ṡ = F(s), and the corresponding

FIG. 7 Schematic plot of the eigenmode decomposition. (a)
For 2 unidirectionally coupled nodes; (b) for a network of N
coupled nodes.
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FIG. 8 Four master stability functions for coupled Rössler
oscillators: chaotic (bold) and periodic (regular lines); with
y coupling (dashed) and x coupling (solid lines). (The curves
are scaled for clearer visualization). From Barahona and
Pecora (2002).

coupling strengths are σλl, as depicted in Fig. 7(b). In
this representation, the mode decomposition decouples
the complex network connections into many pairs of os-
cillators and the stability thus can be understood from
that of the two coupled oscillators, the MSF. The com-
plete synchronization state s is stable when all the N −1
oscillators in Fig. 7(b) are synchronized by the common
forcing signal s. This picture will be useful later on in
this section.

2. Measures of synchronizability

In general, the MSFs verify that λmax(α) < 0 within a
finite interval α1 < α < α2 (Fig. 8). This means that for
two coupled oscillators, as those in Fig. 7(a), the driven
oscillator will be synchronized, i.e., x(t) = s(t), if the
coupling strength α ∈ (α1, α2). For the network, all the
N − 1 oscillators in Fig. 7(b) should be synchronized by
the common forcing s(t), requiring σλl ∈ (α1, α2) for 2 ≤
l ≤ N . Explicitly, the following condition is necessary for
the stability of the synchronization state of the network,

α1 < σλ2 ≤ σλ3 ≤ · · · ≤ σλN < α2. (61)



20

This condition can only be fulfilled for some values of σ
when the eigenratio R satisfies the following relation

R ≡ λN

λ2
<
α2

α1
. (62)

Therefore, we conclude that it is impossible to completely
synchronize the network if R > α2/α1, since there is no
σ for which the fully synchronized state is linearly stable.
On the contrary, if R < α2/α1 the synchronous state is
stable for α1/λ2 < σ < α2/λN .

Note that the eigenratio R depends only on the net-
work structure, as defined by G. If R is small, the condi-
tion in Eq. (62) is, in general, easier to satisfy. From this,
it follows that the smaller the eigenratio R the more syn-
chronizable the network and vice versa (Barahona and
Pecora, 2002), and we can characterize the synchroniz-
ability of the networks with R, without referring to spe-
cific oscillators.

In the case that α2 is finite, the MSF is bounded. This
is what happens always for time discrete maps and in
occasionally to time-continuous systems. In other cases,
the MSF is unbounded, i.e., α2 = ∞, and the synchro-
nized state is stable when the overall coupling strength
σ > α1/λ2. For example, this is the case for time-
continuous systems and H(x) = x, i.e., the oscillators are
linearly coupled through all the m corresponding com-
ponents. In these cases, a larger λ2 means a smaller
coupling strength σ for synchronization, and thus cor-
responds to a better synchronizability of the networks.
Both λ2 and R are adopted as measures of synchroniz-
ability in the literature. Moreover, as previously dis-
cussed in Sect. III.A.4, λ2 plays a special role in the time
needed to achieve complete synchronization (Almendral
and Dı́az-Guilera, 2007).

The key advantage of the MSF framework is that it
provides an objective criterion for the synchronizability
of complex networks without the need to refer to specific
oscillators. The drawback is that it only informs about
the dynamics towards synchronization from small per-
turbations of the synchronization manifold. The study
of synchronizability is then converted into the investiga-
tion of the eigenvalues of the coupling matrix G of the
networks. Note that although the more appropriate ap-
proach seems to be that of following the general frame-
work of graph theory to investigate the spectral proper-
ties of networks, many authors have tried to relate one
statistical properties of networks with synchronizability,
sometimes misinterpreting the results due to an incorrect
approach.

Of course, natural questions are: What is the synchro-
nizability of different types of complex networks? Which
structural properties are related to or control the syn-
chronizability? In the following section, we will summa-
rize results on the synchronizability of typical network
models and then describe the relationship between graph
theoretical measures and the synchronizability of com-
plex networks. Further insights will be obtained with the
help of graph theory to get the bounds that constrain the
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FIG. 9 (color online) Decay of the eigenratio R in a N = 100
lattice as a fraction f of the N(N − 1)/2 possible edges are
added following purely deterministic, semirandom, and purely
random schemes. Networks become synchronizable below the
dashed line (β = α2/α1, where α1 and α2 are from Fig. 8).
The squares (numerical) and the solid line [analytic Eq. (63)]
show the eigenratio decay of regular networks through the
deterministic addition of short-range connections. The dot-
dashed line corresponds to purely random graphs [Eq. (68)],
which become almost surely disconnected and unsynchroniz-
able at f ≃ 0.0843. The semirandom approach (dots, shown
for ranges k = 1, 2, 4, 6, 10, 14) is more efficient in producing
synchronization when k < ln N . From Barahona and Pecora
(2002).

eigenvalues of the networks.

3. Synchronizability of typical network models

We will present the main findings related to synchro-
nizability in the most common classes of complex net-
works found in the literature: Regular, SW, ER, and SF
networks.

Regular networks For a long time, synchronization of
chaotic oscillators has been studied on regular network
configurations (Fink et al., 2000; Pecora and Carroll,
1998). A typical example of a regular network is a cy-
cle (or ring) of N nodes each coupled to its 2k nearest
neighbors with a total ofNk links. The eigenvalues of the
coupling matrix are (Barahona and Pecora, 2002; Monas-
son, 1999)

λl = 2k − 2

k
∑

j=1

cos
(2π(l − 1)j

N

)

. (63)

By a series expansion, we obtain

λ2 ≃ 2π2k(k + 1)(2k + 1)

3N2
, λN = (2k + 1)(1 + 2/3π).

(64)
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and the eigenratio R for k ≪ N can be approximated as

R ≃ (3π + 2)N2

2π3k(k + 1)
. (65)

Regular networks have a poor synchronizability, since
R increases rapidly with the system size N . In fact,
λ2 ∼ 1/N2, and it approaches zero quickly when increas-
ing N , thus making synchronization effectively impossi-
ble for both bounded and unbounded MSFs given chaotic
oscillators with α1 > 0. In such systems with local
coupling we usually have complicated pattern formation
(waves) instead of a stable spatially homogeneous (com-
pletely synchronized) state (Mat́ıas and Güémez, 1998).
For fixed N , adding connections to generate regular net-
works with higher range k improves the synchronizabil-
ity, since λ2 increases approximately as λ2 ∼ k3 and the
eigenratio R decreases as R ∼ 1/k2 for k ≪ N .

SW networks In the work by Barahona and Pecora
(2002), SW networks are obtained by adding NS links
at random between the N(N −2k−1)/2 remaining pairs
in the regular network, so that the average number of
shortcuts per node is S. As shown in Fig. 9, adding a
small fraction of such random connections reduces the
eigenratio R so that the synchronizability is improved
significantly.

The eigenvalues of the SW networks have been ob-
tained (Barahona and Pecora, 2002) through a pertur-
bation analysis of the SW Laplacian L = L0 + Lr. Here
L0 is the deterministic Laplacian of the regular networks
and Lr the Laplacian formed by the random shortcuts.
In the stochastic Laplacian matrix Lr (symmetric, zero
row-sum), any of the remaining entries N(N − 2k− 1) of
L0 takes the value 1 with probability ps = 2S/(N−2k−1)
and the value 0 with probability (1 − ps). For ps ≪ 1,
and N1/3 < k ≪ N , the perturbations of the eigenvalues
are

ελ
(1)
2 ≃ Nps−

√

3πps/4, ελ
(1)
N ≃ Nps+

√

3πps/4. (66)

The extreme eigenvalues are

λ2 = λ
(0)
2 + ελ

(1)
2 , λN = λ

(0)
N + ελ

(1)
N , (67)

where λ
(0)
2 and λ

(0)
N are the eigenvalues of the regular

networks (L0) as in Eq. (64). From this analysis, it
follows that for a fixed small value of S, the minimal

non-zero eigenvalue λ2 is driven away from λ
(0)
2 ≈ 0 to

ελ
(1)
2 ≈ Nps ≈ 2S for any SW network with large N and

N1/3 < k ≪ N . This means that the synchronizability
is mainly determined by the average number of shortcuts
per node S.

In SW networks, the variance of the degree distribution
raises as the regular network is rewired with an increasing
probability p (Hong et al., 2004) or when more shortcuts
are added, see Fig. 10(b). This process results in an im-
provement of the synchronizability (the eigenvalue ratio,

FIG. 10 Synchronizability (eigenratio R, (a)) and heterogene-
ity of degrees (variance σ2

k of the degree distribution (b)) of
SW networks as a function of the rewiring probability p. Inset
of (b): average path length ℓ vs p. The network has a size
N = 2000 and the range k = 3. From Hong et al. (2004).

R, is reduced), as illustrated in Fig. 9 and Fig. 10(a).
This is because λ2 increases proportionally to the num-
ber of shortcuts per node, i.e., λ2 ≈ 2S = 2kp.

Random networks In purely random graphs, in which a
fraction f of the N(N −1)/2 possible links is established
at random, the eigenratio is a function of f andN (Bara-
hona and Pecora, 2002). It reads

R ≃ Nf +
√

2f(1 − f)N lnN

Nf −
√

2f(1 − f)N lnN
. (68)

Note that the networks are synchronizable only when
f & 2 lnN/(N + 2 lnN), where it is almost sure that
the networks are connected (Bollobás, 2001). If this con-
dition is verified the synchronizability is improved with
increasing f , as seen in Fig. 9.

Note that for small f . lnN/N , the purely random
networks are almost surely disconnected and thus non-
synchronizable. On the contrary, the regular backbone
of nearest connections with k ≥ 1 can already make the
semirandom SW networks connected regardless of N and
thus synchronizable as a whole. In this sense, semiran-
dom SW networks turn out to be much superior to the
purely random networks in terms of synchronizability, as
can be seen from Fig. 9 for small k, k . lnN (k = 1 ∼ 4
in networks with N = 100). The improvement is even
more pronounced for larger N .

SF networks Here we discuss the synchronizability of SF
networks for different values of the degree distribution
exponent γ. To this end, we consider a random model
introduced by Newman et al. (2001) to construct SF
networks. The algorithm works as follows, first, a degree
ki is assigned to each node i according to the probability
distribution P (k) ∼ k−γ and k ≥ kmin. The network
is generated by randomly connecting the nodes so that
node i has exactly the prescribed ki links to other nodes,
prohibiting self- and repeated links.

The dependence of the eigenvalues λ2 and λN and the
eigenratio R on γ and N are shown in Fig. 11. We ob-
serve that λ2 has no noticeable dependence on γ and N .
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FIG. 11 Synchronizability of random SF networks. Plotted
are eigenvalues λ2 (circles) and λN (squares) and eigenratio
R (triangles). (a) As functions of the exponent γ for network
size N = 210; open symbols for kmin = 5 and filled symbols
for kmin = 10. (b) As a functions of network size N at γ = 3
and kmin = 10. The results are averaged over 50 realizations.

However, λN becomes larger as the degree heterogeneity
is increased. So the changes of the eigenratio R follow
the trend of λN closely. This result is somehow expected
given that the largest eigenvalue λN is intimately related
to the degree of hubs, and this is the essential fingerprint
of SF networks with different exponents γ. On the other
hand, λ2 increases with kmin, and R is larger at smaller
kmin for the same γ and N . The variation of R as a
function of γ was reported by Nishikawa et al. (2003).
The dependence of the synchronizability on kmin and N
in this random SF network model turns out to be very
similar in the BA growing model, as shown by Pecora
and Barahona (2005).

In an early paper (Wang and Chen, 2002) that stud-
ied robustness and fragility of synchronization of SF net-
works, it was reported that λ2 is a constant almost un-
related with kmin (kmin = 3, 5, 7, 9, 11). This result by
Wang and Chen (2002) is inconsistent with the obser-
vation in Fig. 11, with the work by Pecora and Bara-
hona (2005), and with graph theoretical analysis by Wu
(2003), which we will discuss in more detail later on.
Thus the observation of robustness and fragility of syn-
chronizability by Wang and Chen (2002) (changes of λ2

due to random or deliberate attack of the nodes) should
be taken cautiously, and a detailed reexamination of this
issue is mandatory before assessing conclusions.

4. Synchronizability and structural characteristics of networks

The relationship between structural characteristics of
networks and synchronizability has been explored inten-
sively in the literature, mainly based on numerical ex-
periments on various network models. The observations,
which are summarized in what follows, are quite confus-
ing. The main problem is that many works have made a
naive use of complex network models to assess synchro-
nizability. Very often network models do not allow us
to isolate one structural characteristic while keeping the
other properties fixed. For this reason many results have
been misinterpreted. As we will see in the next section,
a more objective graph theoretical analysis sheds some

light to the whole problem.

Synchronizability dependence on ℓ The average shortest
path length ℓ is a property of the network closely re-
lated to the efficiency of information processing. Most
real-world complex networks are characterized by a small
ℓ . lnN (Dorogovtsev et al., 2007). Indeed, it has been
conjectured and rationalized that in biological neuronal
networks, ℓ has been minimized by evolution (Kaiser and
Hilgetag, 2006; Stephan et al., 2000). Generally speak-
ing, ℓ is lower in SF networks than in ER networks due
to the presence of hubs (Cohen and Havlin, 2003), and ℓ
is lower in SW networks than in regular lattices due to
the presence of shortcuts.

Watts and Strogatz (1998) suggested that the decrease
in the distance in the WS network would lead to more
efficient coupling and thus enhanced synchronization of
the oscillators. Investigation of phase oscillators (Hong
et al., 2002) or circle maps (Batista et al., 2003) on WS
networks has shown that when more and more shortcuts
are created at larger rewiring probability p, the transition
to the synchronization regime becomes easier. On the
other hand, the synchronizability of identical oscillators
follows the same trend of ℓ, in networks with fixed N
and k, as p is increased (Fig. 10). A similar type of
behavior is observed if shortcuts are added to the regular
networks (Fig. 9). However, more detailed analyses of
various network models have shown that there is no direct
relationship between ℓ and the synchronizability of the
networks. The reason is that the transition to the small-
world regime occurs at a value of the rewiring probability
for which there is no significant effect on λ2.

In fact, in WS networks, ℓ is a function of the network
size N , the degree of the nodes in the original regular
network, k, and the randomness parameter p (Newman
et al., 2000)

ℓ(N, k, p) ∼ N

k
f(pkN), (69)

where f(u) is a universal scaling function, f(u) = const
if u ≪ 1 and f(u) = ln(u)/u if u ≫ 1. From this result,
it turns out that ℓ begins to decrease with p, and conse-
quently the SW behavior emerges, for p & pSW = 1/Nk.
At p = pSW the average number of shortcuts per node is
S ∼ 1/N , and then λ2 ∼ 1/N as well. This shows that
at this point the synchronizability is not enhanced by the
rewiring. To achieve such an enhancement, the density of
shortcuts has to be independent of N , which happens for
p & psync = 1/k, that is deep in the SW regime. In other
words, in the intermediate region pSW < p < psync, ℓ de-
creases while the synchronizability of the system remains
roughly the same.

Barahona and Pecora (2002) showed the existence of
two thresholds, one for the small-world transition and
the other for the enhancement of synchronizability, in
SW networks using a more rigorous analysis. They ob-
tained that the SW regime starts at Sℓ ∼ 1/N whereas
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FIG. 12 (color online) Synchronizability thresholds Ssync

(◦) for graphs with N nodes (N = 300, 400, 500, 1000) and
range k ∈ [1, 70], averaged over 1000 realizations. Solid lines
are based on an analytical perturbation (Eqs. (66,67) valid

in N1/3 < k < k0
sync). For most parameters, Ssync lies

within the SW region between the dashed lines (depicted for
N = 1000), but it is distinct from its onset Sℓ. Inset: decay of
the average distance ℓ, clustering C, and eigenratio (squares)
as shortcuts are added to a regular network of n = 500 and
k = 20. We define Sℓ and SC as the points where ℓ and C
are 75% of the regular network value. From Barahona and
Pecora (2002).

the threshold beyond which the synchronizability is im-
proved goes like Ssync ∼ k. This means that when k is

large, λ
(0)
2 of the underlying regular network contributes

significantly to the synchronizability, and then it can be
enhanced without additional shortcuts. This is mani-
fested in Fig. 12 by the fast decrease of Ssync when k ap-
proaches the critical value k0

sync. On the other hand, at
low k, the approximation in Eq. (66) is not valid. How-
ever, the results in Fig. 12 show that Ssync ∈ [0.3, 1]
depends on k, but not noticeably on N .

In summary, it is not very meaningful to compare the
synchronizability of two SW networks (with different N ,
k or p) considering only ℓ. In other words, it is possible
to have better synchronizability for networks (e.g., fixed
N) with larger ℓ in some region of p and k. For example,
along the line pk = const, R ∼ 1/p decreases while ℓ ∼ p.

The relationship between ℓ and the synchronizability
of the system was also scrutinized for SF networks by
Nishikawa et al. (2003). As seen in Fig. 13, for random
SF networks, ℓ decreases when the degree distribution be-
comes more heterogeneous by lowering γ. However, the
network becomes less synchronizable, since R increases.
Note that in these simulations, the mean degree of the
network 〈k〉 = kmin

γ−1
γ−2 also changes with γ, as well as

the standard deviation of the degree distribution. As will
be clarified later on, in this case, the synchronizability is
controlled by the heterogeneity of the degree distribution,
being R ∼ kmax/kmin if kmin is large enough (Zhou, Mot-
ter and Kurths, 2006). Similar to the SW networks with
different range k, where synchronizability is not simply
controlled by ℓ, here it is also not surprising to observe
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FIG. 13 Synchronizability of SF networks of size N = 1024.
The average network distance (a) and the eigenratio (b) for
the random SF model with kmin = 5. The inset of (a) shows
the mean degree 〈k〉 and the standard deviation s of the con-
nectivity distribution. Inset of (b): the maximum normalized
load bmax. The horizontal lines in (a) and (b) indicate the
values of ℓ and the eigenratio R for the γ = ∞ case. The
solid curve in (b) is the lower bound kmax/kmin in Eq. (76).
The upper bounds of in Eq. (76) are above the limits, but
follow the same trend. All quantities are averaged over 100
realizations. From Nishikawa et al. (2003).

that synchronizability can be reduced when ℓ becomes
smaller (Nishikawa et al., 2003). Besides, it should be
possible to observe the opposite situation in which R de-
creases with ℓ for suitable combinations of parametersN ,
γ and kmin. Therefore, the conclusion is that the synchro-
nizability of complex networks cannot be assessed solely
on the average shortest path length ℓ.

Synchronizability dependence on betweenness centrality

Nishikawa et al. (2003) argued heuristically that this ap-
parently surprising behavior (smaller ℓ, less synchroniz-
ability in SF networks) is due the fact that a few central
oscillators interacting with a large number of other oscil-
lators tend to become overloaded. When too many inde-
pendent signals with different phases and frequencies are
going through a node at the same time, they can cancel
out each other, resulting in no effective communication
between oscillators. Thus the authors were motivated to
examine the influence of the load (betweenness) of the
nodes. Nishikawa et al. (2003) showed (see the inset of
Fig. 13 (b))that the synchronizability follows the same
trend as the maximum load bmax (normalized by the to-
tal load of the network). However, the load of a node in
SF networks is closely related to the degree (Barthélemy,
2004; Goh et al., 2001), i.e., nodes with large degrees or
links connecting nodes with large degrees have, on aver-
age, a large load. The correlation between reduced syn-
chronizability and heterogeneous load has also been ob-
served in a variant of the WS network model by addingm
shortcuts to the network from a randomly selected node
to one out of the nc center nodes (Nishikawa et al., 2003).
In this case, when nc is small, the m shortcuts are con-
nected to a few hubs, and the degree becomes more het-
erogeneous and the maximum load bmax increases, while
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the synchronizability decreases. As before, in these two
examples, it is not very clear whether the change of syn-
chronizability is mainly influenced by the degree hetero-
geneity or by the load itself, because these two properties
are closely related.

In the original WS network (Watts and Strogatz,
1998), the maximum load bmax decreases when the degree
distribution becomes more heterogenous as p is increased.
Based on this observation, it was claimed that more ho-
mogeneous load predicts better synchronizability on com-
plex networks (Hong et al., 2004). However, a direct re-
lationship between load and synchronizability can not be
clearly established. In fact, Zhao, Zhou, Wang, Yan,
Yang and Bai (2006) showed an example where the net-
work displays improved synchronizability while the load
becomes more heterogeneous when an original random
SF is rewired to obtain nontrivial clustering.

The heuristic argument by Nishikawa et al. (2003)
is not clearly justified. If the picture described is cor-
rect, i.e., signals can cancel out each other at the central
nodes, resulting in no effective communication, then the
synchronizability should also be reduced significantly for
unbounded MSF where the synchronizability is only con-
trolled by λ2. However, as seen in Fig. 11, λ2 in SF net-
works is mainly determined by the minimal degree kmin,
without a noticeable dependence on the degree distribu-
tion exponent or load. In fact, several further investi-
gations have shown that the highly connected oscillators
synchronize faster among them and form synchronization
clusters (Gómez-Gardeñes et al., 2007a; Lee, 2005; Zhou
and Kurths, 2006a,b), which is in contrast with the ar-
gument provided by Nishikawa et al. (2003). A different
viewpoint, based on a mean field approximation (Mot-
ter et al., 2005a; Zhou and Kurths, 2006a,b), leads to a
deeper understanding of this issue, as will be discussed
later.

Synchronizability dependence on the clustering coefficient

Motter et al. (2005b) pointed out that, in general, the
eigenratio R increases with increasing clustering in a
modified version of the BA model (Steyvers and Tenen-
baum, 2005). Unlike the original one, in this model,
motivated by the evolution of language, a new node is
first linked to an existing node according to the prefer-
ential attachment rule, and also linked to the neighbors
of this target node. Thus this model displays nontrivial
clustering while keeping the same SF degree distribution.
Besides, the eigenratio R is larger than that of the BA
model.

A recent work demonstrated that for both SW and SF
networks, large values of clustering hinders global syn-
chronization of phase oscillators, since the network splits
into dynamical clusters that oscillate at different frequen-
cies (Gómez-Gardeñes and Moreno, 2007; McGraw and
Menzinger, 2005). Zhao, Zhou, Wang, Yan, Yang and
Bai (2006), using the rewiring scheme proposed by Kim
(2004), that changes the clustering but keeps the degree
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FIG. 14 (color online) The relationship between graph dis-
tance ℓ and clustering coefficient C. Left: the original net-
works are the SW networks. Right: the original networks are
the extensional BA networks. The different symbols are for
different heterogeneity of degrees, measured by the standard
deviation σ of the degree distribution. All the data are the av-
erage over 20 different realizations. From Zhao, Zhou, Wang,
Yan, Yang and Bai (2006).

sequence, showed that the eigenratio R also increases
with C, for both SW and SF networks. This indicates
that synchronizability is reduced when clustering C in-
creases.

Note that in the above investigations different struc-
tural properties change at the same time (Barahona and
Pecora, 2002; Hong et al., 2004; Nishikawa et al., 2003)
when the parameters characterizing the original networks
are modified. Once again, it is difficult to draw conclu-
sions about the relationship between one single statistical
descriptor of the network and its synchronizability. Zhao,
Zhou, Wang, Yan, Yang and Bai (2006) paid special at-
tention to this problem and showed that in the rewiring
scheme of Kim (2004), ℓ is correlated with the clustering
coefficient C (Fig. 14).

Synchronizability dependence on degree correlations In
many real-world networks, the degree of a node is often
correlated with the degree of the neighboring nodes. Cor-
related networks show assortative (disassortative) mixing
when high degree nodes are mostly attached to nodes
with high (low) degree (Newman, 2002). In practice,
the degree-degree correlation of a network can be calcu-
lated as the Pearson correlation coefficient between de-
grees (jl, kl) of the nodes at the ends of the lth link, i.e.,

rk =
〈jlkl〉 − 〈kl〉2
〈k2

l 〉 − 〈kl〉2
, (70)

where 〈·〉 denotes average over the total number of links
in the network. Positive values of rk indicate assorta-
tive mixing, while negative values refers to disassortative
networks. A specific correlation rk can be obtained by
rewiring the links while keeping the degree sequences un-
changed (Newman, 2003a). However, one can expect that
ℓ and bmax change also when the networks are rewired.

The influence of degree correlations on synchronizabil-
ity was addressed by Motter et al. (2005b), showing that
the eigenratio R increases when increasing the assorta-
tivity of the network. A more detailed and systematic
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FIG. 15 (color online) Synchronizability of degree correlated
SF networks of size N = 1000, kmin = 5 and γ = 2.5. Left:
Behavior of the eigenratio R. Right: behavior of the second
lowest eigenvalue λ2. Both as functions of the correlation
coefficient rk defined in (Newman, 2002), for γ varying from 2
(blue line) to 5 (red line) in steps of 0.2. The results have been
averaged over 100 different realizations. From di Bernardo
et al. (2007).

analysis was later on carried out by di Bernardo et al.
(2007). They generated random SF network as in New-
man et al. (2001) with a minimal degree kmin = 5 and ob-
tained the desired degree correlation rk using the rewiring
procedure of Newman (2003a) and Motter et al. (2005b).
The dependence of the synchronizability on rk is shown
in Fig. 15. The main effect on the eigenratio R comes
from the fact that λ2 decreases when rk grows, while λN

remains roughly constant (di Bernardo et al., 2007). As
it happens for the other parameters, the dependence of
λ2 on rk can be obtained from graph theoretical analysis,
which is the subject we are going to discuss next.

5. Graph theoretical bounds to synchronizability

Previously we have seen that many structural proper-
ties can influence the synchronizability of the networks,
but none of them can be regarded as the exclusive fac-
tor in the observed dependencies. The moral is that all
works described in the preceding paragraphs seem not to
be on the most appropriate way to elucidate the depen-
dence of synchronizability on the network characteristics.
Since the synchronizability depends on the ratio between
the two extreme eigenvalues of the Laplacian matrix, a
sound analysis must attack the raw problem of the spec-
tral properties of networks from a mathematical point of
view, given that the simulation experiments are far from
being conclusive.

Graph theoretical analyses of the Laplacian matrix L
mainly focus on the bounds of its extreme eigenvalues.
These bounds have been discussed in several works (Atay
et al., 2006a,b; Chung et al., 2003; Donetti et al., 2007;
Nishikawa et al., 2003; Pecora and Barahona, 2005; Wu,
2003, 2005). Here we summarize the main results and dis-
cuss how they help to understand the synchronizability of
complex networks. Some detailed proof of the results can
be found in the corresponding references and in books on
graph theory, e.g. (Chung, 1997; Mohar, 1991a).

First, we follow Wu (2005) and Atay et al. (2006a,b) to

discuss the bounds for networks with prescribed degree
sequences kmin = k1 ≤ k2 ≤ · · · ≤ kN = kmax. The
bounds are

2
(

1 − cos(
π

N
)
)

kmin ≤ λ2 ≤ N

N − 1
kmin, (71)

and

N

N − 1
kmax ≤ λN ≤ 2kmax. (72)

It follows that

kmax

kmin
≤ R ≤ kmax

(

1 − cos( π
N )

)

kmin

. (73)

Note that the lower bound in Eq. (71) is the same as
the minimal nonzero eigenvalue of the regular network
with range k = kmin = 2 in Eqs. (63-64). If k is fi-
nite, the bound decreases as 1/N2 which is asymptoti-
cally the fastest possible decay. This means that among
all networks with the same minimal degree kmin, regu-
lar networks have the lowest synchronizability, since λ2

approaches 0 in the fastest way as N → ∞.
The upper bound in Eq. (71) is approached when the

network is random. As shown by Wu (2003, 2005), in
a k-regular random network, where each node is ran-
domly connected to other k = kmin nodes in the net-
work, λ2 = k − O(

√
k) as N → ∞. In fact, λ2 = ckk,

where ck → 1 as k → ∞ both for k-regular networks
and random SF networks (Wu, 2003). In this sense, the
observation in (Wang and Chen, 2002) that λ2 is almost
constant, practically unrelated to kmin, is incorrect. So
for large random networks with large enough minimal
degree, λ2 ≈ kmin is a good approximation.

Another general lower bound for λ2 is (Mohar, 1991b)

4

ND
≤ λ2 ≤ N

N − 1
kmin, (74)

so that

kmax

kmin
≤ R ≤ NDkmax

2
, (75)

where D is the diameter of the graph, i.e. the maximum
value of the shortest path lengths between any two nodes.

Let us discuss the implications of the above bounds
for WS networks. In this model, when the probability of
having shortcuts is very low, pkN ≪ 1, then D ∼ N/k
and the lower bound in Eq. (74) approaches zero as 1/N2

(regular network). Beyond the onset of the SW regime
(pkN ∼ 1), D decreases and approaches D ∼ ln(N), and
λ2 increases for fixedN . Thus this bound allows us to un-
derstand why the network synchronizability is inversely
proportional to ℓ, as observed numerically by Barahona
and Pecora (2002) and Hong et al. (2004) (Figs. 9 and
10). However, λ2 is not immediately bounded away from
zero, since it approaches zero faster than 1/N just after
the onset of the SW regime. When moving deeper into
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the SW region, pkN ∼ N so that each node has S ∼ 1
shortcuts, and λ2 is already bounded away from the lower
bound 4/ND and approaching the upper bound kmin. In
this regime, λ2 will not be sensitive to changes in the
diameter D. This helps to understand why the synchro-
nization threshold is different from the onset of the SW
behavior in Fig. 12.

Thus, in WS networks with high p, kmax/kmin pro-
vides a good lower bound to the eigenratio R. The up-
per bound, NDkmax/2, still increases with N , and can be
several orders of magnitude larger than the actual value
of R even for small random networks. In fact, R may not
follow the variation of the distant upper bound when the
diameter D or the size N change. Thus, in complex net-
works with both local and random connections, a close
relationship between the synchronizability and ℓ is not
expected.

Nishikawa et al. (2003) obtained similar bounds but as
a function of ℓ and bmax as

kmax

kmin
≤ R ≤ NkmaxbmaxDℓ. (76)

These authors pointed out that experimental values of
R are closer to the lower bound, and far away from the
upper bound (Fig. 13). Thus quite probably such upper
bound does not provide meaningful understanding of the
relationship between synchronizability and ℓ, D or bmax,
since the change of the upper bound by these structural
measures is quite likely not to be reflected in the actual
value of R. The observation by Nishikawa et al. (2003)
that the synchronizability is correlated with a more ho-
mogeneous load distribution is basically an effect of the
correlation between the load and the degree. In fact,
when keeping the degree sequence unchanged, it is ob-
served that more heterogeneous load distributions can be
correlated with improved synchronizability (Zhao, Zhou,
Wang, Yan, Yang and Bai, 2006).

The above analysis of bounds provides justification
about why we can observe different R for increased or
decreased heterogeneity, distances or loads. Moreover,
the bounds expressed by these quantities are not tight
at all in the particular examples, e.g., in Eq. (76). In
general, the graph theoretical analysis states that ran-
domness improves the synchronizability, since λ2 is well
bounded away from 0, while in networks with dominantly
local connections, λ2 approaches to 0 in large networks.
In other words, for a prescribed degree sequence, the
eigenratio R changes mainly because of λ2. A schematic
plot of the bounds of λ2 is shown in Fig. 16.

On the other hand, the local organization of the con-
nections even within a small part of the network, can
make the eigenvalue λ2 deviate significantly from the up-
per bound kminN/(N − 1). For an arbitrary network,
there is a better upper bound for λ2 as

λ2 ≤ 2iG , (77)

where iG is the isoperimetric number of a graph (Atay

FIG. 16 A schematic plot of the bounds of λ2 for networks
with minimal degree kmin.

et al., 2006a,b; Mohar, 1989), which is defined as

iG = min
S

|∂S|
|S| . (78)

Here S ⊂ G is a subset of the nodes, with G − S denoting
its complement, and |S| is the number of nodes within
S, with 0 < |S| < N/2. Besides, |∂S| is the number of
connections between S and its complement, namely,

|∂S| =
∑

i∈S

∑

j∈(G−S)

aij . (79)

For an arbitrary partition of the network into S and G,
we have (Atay et al., 2006b)

λ2 ≤ 2
|∂S|
|S| . (80)

This means that the synchronizability of the network is
determined by the sparse connections between the two
subnetworks. For instance, if a small set S made up of,
say, 20 nodes, is connected to G − S with just one link,
then λ2 < 0.1, regardless of how the nodes are connected
within S and within the large complement G − S. It fol-
lows that the statistical properties of the network G are
mainly determined by the huge part G − S, while λ2 is
independently constrained by the small subgraph. This
result is in complete agreement with the path towards
synchronization in modular networks presented in section
III.A.5, where the community structure has been demon-
strated to impose scales in the synchronization process.

Everything up to now indicates that statistical prop-
erties, such as degree distribution, ℓ, etc., may not be
always correlated with the synchronizability of the net-
work. In fact, it was particularly shown by Wu (2005)
and Atay et al. (2006a,b), that networks with very dif-
ferent synchronizability can be constructed for the same
prescribed degree sequences, because iG can be at any
place in a broad range between the lower and upper
bounds in Eq. (71), see also Fig. 16.

Another similar bound in graph theory is based on the
Cheeger inequality (Cheeger, 1970; di Bernardo et al.,
2007),

λ2 ≤ hG , (81)

where hG = minS hG(S) and

hG(S) =
|∂S|N

|S|(N − |S|) . (82)
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As for correlated networks, di Bernardo et al. (2007)
showed that in random networks with degree correlations
rk

∂hG(S)

∂rk
< 0, (83)

which explains why the synchronizability is reduced
in networks with assortative connections, as shown in
Fig. 15. Along the same line, the dependence of the min-
imum nonzero eigenvalue on the topological properties of
the network and its degree-degree correlation coefficient
r was also analyzed by Donetti et al. (2007). The authors
derived a rigorous upper bound for λ2 as,

λ2 ≤ (1 − r)
〈k〉〈k3〉 − 〈k3〉〈k2〉
〈k〉(〈k2〉 − 〈k〉2) . (84)

Another interesting inequality from graph theory is (di
Bernardo et al., 2007; Mohar, 1989),

λ2 ≥ kmax −
√

k2
max − i2G . (85)

Note that kmax −
√

k2
max − i2G is a decreasing function of

kmax if iG is fixed. Based on this bound, we can expect
some apparently counterintuitive effects on the synchro-
nizability of complex networks. Suppose we put more
links to the graph G, but only add them to the nodes
within G − S and S, but not to the nodes between S
and G − S so that iG does not change. For simplicity, we
can further assume that the nodes within S and G − S
are connected with a uniform probability f (random net-
works), so that kmax and the mean degree 〈k〉 increase
when more and more links are added. In this case, the
synchronizability of the subnetworks S and G − S is en-
hanced at larger f , see Fig. 9. However, λ2 of the whole
network G is reduced according to Eq. (85). Therefore,
in the case of two coupled networks, enhancing the syn-
chronizability of the subnetworks may actually reduce
the synchronizability of the whole network. Phenomeno-
logically, this is intuitively expected, because the subnet-
works tend to form distinct synchronized clusters.

Based on the above arguments (Eqs. (77,81,85)), net-
works possessing a clear community organization display
a small synchronizability, since the density of connec-
tion between different communities can be much smaller
than the density within the communities (Almendral
and Dı́az-Guilera, 2007; Huang et al., 2006; Zhou, Zhao,
Chen, Yan and Wang, 2006).

Recapitulating, we have seen that for a prescribed de-
gree sequence, it is possible to construct a very large
number of networks ranging from fully local connections
to fully random networks (Wu, 2005), with many possible
structures in between. However, the degree sequence by
itself is not sufficient to determine the synchronizability.
On the other hand, we have seen that the synchronizabil-
ity is not directly related to graph measures, such as dis-
tance, clustering or maximal betweenness. Admittedly,

the weak connections between two subnetworks (charac-
terized by the isoperimetric number iG) determine the
behavior of the eigenvalue λ2, and hence that of the syn-
chronizability of the whole network.

6. Synchronizability of weighted networks

Up to now, we have considered the influence of the
network topology on synchronization, assuming that the
connection weights are the same for all the links in the
network, i.e., the networks are unweighted. However, this
is not the case for many real-world networks. Indeed,
many complex networks where synchronization is rele-
vant are actually weighted and display a highly hetero-
geneous distribution of both degrees and weights (Barrat
et al., 2004; Braunstein et al., 2003; Newman, 2001; Yook
et al., 2001). Examples include neural networks (Felle-
man and Van Essen, 1991; Scannell et al., 1999), airport
networks (Barrat et al., 2004) and the structure of the
networks characterizing epidemic outbreaks in different
cities (Grassly et al., 2005; Grenfell et al., 2001). Fur-
thermore, it has been observed that in many cases, the
connection strength is not an independent parameter, but
it is correlated to the network topology. The analysis of
some real networks (Barrat et al., 2004) yields the fol-
lowing main properties:

(i) the weight wij of a connection between nodes j and
i is strongly correlated with the product of the corre-
sponding degrees as 〈wij〉 ∼ (kikj)

θ;
(ii) the average intensity S(k) of nodes with degree k

increases as S(k) ∼ kβ . Here the intensity Si of a node i
is defined as the total input weight of the node:

Si =
N

∑

j=1

aijwij . (86)

Note that the inclusion of a distribution of weights in
the network affects directly its classification within topo-
logical homogeneity or heterogeneity. For example, a reg-
ular lattice with a very skewed distribution of weights can
eventually represent a SF topology. From a mathemat-
ical point of view, the adjacency matrix is in this case
simply substituted by the weight matrix. On the con-
trary, from a physical perspective, it is still interesting
to keep separated the topology of interactions from the
distribution of weights, and answer questions, whenever
possible, discriminating these two topological aspects.

The first works on synchronization in weighted net-
works considered that the weighted input of a node i
from a node j depends on the degree ki of node i (Mot-
ter et al., 2005a,b), with a model of weighted coupling as
wij = kθ

i , so that the matrix G = (Gij) in Eq. (53) reads

G = Dθ(D −A) = DθL. (87)

Here Dij = δijki is the diagonal matrix of degrees. θ
is a tunable parameter that keeps the network topology
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FIG. 17 Eigenratio R as function of θ in Eq. (87): (a) random
SF networks with γ = 3 (•), γ = 5 (�) and γ = ∞ (solid
line), for kmin = 10; (b) random networks with expected SF

sequence for γ = 3 and k̃min = 10; (c) growing SF networks
for γ = 3 and m = 10; (d) SW networks with M = 256 (•)
and M = 512 (�), for k = 1. Each curve is the result of
an average over 50 realizations for N = 1024. Modified after
Motter et al. (2005b).

unchanged, but varies the distribution of the weights of
the links.

Within this scheme, the weights between a pair of
nodes i and j are in general asymmetric, because wij =
kθ

i and wji = kθ
j . However, since

det(DθL− λI) = det(Dθ/2LDθ/2 − λI), (88)

is valid for any λ, the spectrum of eigenvalues of the ma-
trix G is equal to the spectrum of a symmetric matrix
defined as H = Dθ/2LDθ/2. As a result, all the eigenval-
ues of G are real, and the synchronizability can still be
characterized in the framework of the MSF.

The synchronizability of various complex networks as
a function of the parameter θ is shown in Fig. 17. Except
for k-regular networks, in all other cases, including the
SW networks, the eigenratio R exhibits a pronounced
minimum at θ = −1. Here the SW networks are obtained
by adding M ≤ N(N − 2k − 1)/2 new links between
randomly chosen pairs of nodes on the basic regular array
where each node is connected to its 2k first neighbors.

Motter et al. (2005a,b) also characterize the synchro-
nizability of the network, related to λ2, using the no-
tion of the cost of the network. When Eq. (62) is sat-
isfied, the fully synchronized state is linearly stable for
σ > σmin ≡ α1/λ2. The cost is defined as the total input
strength of the connections of all nodes at the synchro-

nizability threshold: σmin

∑

i,j wijaij = σmin

∑N
i=1 Si. A

more convenient definition for comparisons is obtained
normalizing by the number of nodes, such that

C0 ≡ σmin

∑N
i=1 Si

Nα1
= 〈S〉/λ2, (89)
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FIG. 18 Normalized cost C0 as a function of θ in Eq. (87) for
random SF networks with γ = 3, kmin = 10 and N = 1024.
Modified after Motter et al. (2005a).
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FIG. 19 Eigenratio R (a) and normalized cost C0 (b) as a
function of γ for random SF networks with with θ = 0 (◦)
and θ = −1 (•) and for random homogeneous networks with
the same average degree 〈k〉 (⋄). The other parameters are
kmin = 10 and N = 1024. The dashed line corresponds to
γ = ∞ (〈k〉 = 10). The solid line in (a) is the approximation
given by Eq. 91. Modified from Motter et al. (2005b).

where 〈S〉 is the average intensity of nodes in the network.
Similar to R, C0 is also minimal at θ = −1 (Fig. 18).

Interestingly enough, Motter et al. (2005a,b) obtained
that in SF networks with fixed minimal degrees kmin,
the weighted versions (θ = −1) behave differently to the
unweighted networks when one looks at the dependence
of both the eigenratio R and the cost C0 on the scaling
exponent γ, as shown in Fig. 19 .
θ = −1 is a special case. The coupling matrix is now

G = D−1L, and all the diagonal elements Gii ≡ 1. It
is usually called the normalized Laplacian of a graph.
Based on graph spectral analysis results by Chung et al.
(2003) for random networks with arbitrary given degrees,
it can be shown that the spectrum of the normalized
Laplacian tends to the semicircle law for large networks.
In particular, for kmin ≫

√

〈k〉 ln3N , one has

max{1 − λ2, λN − 1} = [1 + O(1)]
2

√

〈k〉
. (90)

This result is rigorous for ensembles of networks with
a given expected degree sequence and sufficiently large
minimum degree kmin, but the numerical results reported
in Fig. 19 support the hypothesis that the approximate
relations

λ2 ≈ 1 − 2/
√

〈k〉, λN ≈ 1 + 2/
√

〈k〉 (91)
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hold under much milder conditions. In particular, the
relations (91) are expected to hold for any large network
with a sufficient number of random connections, kmin ≫
1.

Furthermore, the synchronizability in this case seems
to be independent of the degree distribution. It is only
controlled by the average degree 〈k〉, since the synchro-
nizability of the weighted SF networks is almost identical
to that of a regular random network where each node has
the same degree ki = 〈k〉. These results demonstrate that
the topological degree of networks is not the only deter-
minant of the synchronizability of the networks; having
a heterogeneous distribution for the connection strengths
can significantly influence the synchronizability.

7. Universal parameters controlling the synchronizability

What are the leading parameters governing the syn-
chronizability for the more general case in which weighted
networks are considered? Zhou, Motter and Kurths
(2006) have proved analytically and verified numerically
what controls the synchronizability of sufficiently random
networks with large enough minimal degree (kmin ≫ 1).
It is the distribution of the intensities Si defined in
Eq. (86). The intensity of a node incorporates both the
information about the topology and the weights of the
connections in the networks. The main finding is that
the synchronizability is sensitively controlled by the het-
erogeneity of the intensity Si. The eigenratio R and the
normalized cost C0 can be expressed as

R = AR
Smax

Smin
, C0 = AC

〈S〉
Smin

, (92)

where Smin, Smax, and 〈S〉 are the minimum, maximum
and average intensities, respectively. The pre-factors AR

and AC are expected to approach 1 for large average
degree 〈k〉. Equations (92) are universal in the sense
that they apply to many random networks with arbi-
trary degree and weight distributions provided that the
minimal degree is sufficiently large. The main hypothesis
behind this result is the assumption that the local mean
fields H̃i = (1/ki)

∑

j aijH(xj) can be substituted by the

global mean field H̃i ≈ H̃ = (1/N)
∑

j H(xj).

In Fig. 20, Eq. (92) is corroborated by numerical re-
sults of R and C0 for networks with several degree and
intensity distributions of degrees, using the weighted cou-
pling scheme

wij = Si/ki. (93)

This coupling scheme means that the intensity of the
nodes, which is not necessarily correlated with the de-
grees, is uniformly distributed into the input links of the
nodes. It covers the coupling scheme in Eq. (87) as

a special example: Si = k1+θ
i . Recent analysis by Kim

and Kahng (2007) on the spectral density of SF networks
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FIG. 20 (a) R as a function of Smax/Smin and (b) C0 as
a function of 〈S〉/Smin, averaged over 50 realizations of the
networks. Filled symbols: uniform distribution of Si ∈
[Smin, Smax]. Open symbols: power-law distribution of Si,
P (S) ∼ S−Γ for 2.5 ≤ Γ ≤ 10. Different symbols are for
networks with different topologies: BA networks (◦), growing
SF network with aging exponent α = −3 (�), random SF
network with γ = 3 (⋄), and k-regular random networks (△).
The number of nodes is N = 210 and the average degree is
〈k〉 = 20. Insets of (a) and (b): AR and AC as functions of
〈k〉 for Smax/Smin = 1 (◦), 2 (�), 10 (△), and 100 (∗), ob-
tained with uniform distribution of Si in k-regular networks.
The dashed lines are the bounds. Solid lines in (a) and (b):
Eqs. (92) with AR = AC = 1. From Zhou, Motter and Kurths
(2006).

with a weighted Laplacian matrix similar to Eq. (87), also
confirms that Eq. (92) holds.

Zhou, Motter and Kurths (2006) also presented results
for the following coupling scheme

wij = (kikj)
θ, (94)

that describes the relationship between the weights and
the degrees in some real networks (Barrat et al., 2004;
Macdonald et al., 2005). The tunable parameter θ con-
trols the heterogeneity of the intensity Si and the cor-
relation between Si and ki, since Si = k1+θ

i 〈kθ
j 〉i, where

〈kθ
j 〉i = (1/ki)

∑

kθ
j is approximately constant for ki ≫ 1

when the degree correlations can be neglected. Vari-
ations of θ have a significant impact on the synchro-
nizability of networks which are heterogeneous in de-
gree(Fig. 21). Note that in heterogeneous in degree net-
works, the weighted coupling in Eq. (94) may result in
a broad distribution of the input weights wij among the
ki links of the node i, especially when θ is not close to
0. However, as shown in the insets of Fig. 21 for various
networks and θ values, R and C0 collapse again to the
universal curves when regarded as functions of Smax/Smin

and 〈S〉/Smin, respectively. The fact that the universal
formula holds for a broad range of θ values shows that the
mean field approximation used to obtain Eq. (92) often
remains valid under milder conditions.

It is important to stress that these results also hold for
unweighted random networks. In this case Si = ki for all
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FIG. 21 (a) Eigenratio R and (b) cost C0 as functions of θ for
BA networks (◦), growing SF networks with aging exponent
α = −3 (�) and random SF networks with γ = 3 (△). Each
symbol is an average over 50 realizations of the networks with
〈k〉 = 20 and N = 210. Inset of (a): the same data for R as
a function of Smax/Smin. Inset of (b): the same data for
C0 as a function of 〈S〉/Smin. Solid lines: Eqs. (92) with
AR = AC = 1. From Zhou, Motter and Kurths (2006).

the nodes and one gets

kmin(1 − 2
√

〈k〉
) . λ2 . kmin

kmax ≤ λN ≤ kmax(1 +
2

√

〈k〉
),

for large random networks with minimal degree kmin ≫ 1.
These results provide much tighter bounds than those
discussed in the previous sections (e.g., cf. Eqs. (73,75,
76)) which depend on the system size N . Interestingly,
Eqs. (92) also provide meaningful insights into the prob-
lem for other special networks. For example, consider
the class of SF networks generated using the BA model.
When m = 1, the network is a tree, and R is much larger
than Smax/Smin. However, it is an increasing function of
Smax/Smin, showing that the heterogenity of the intensity
is still an important parameter. But for m = 2 (〈k〉 = 4)
it approaches the universal curve quickly (Fig. 22 (a)).
The drastic change of synchronizability from m = 1 to
m = 2 can be attributed to the appearance of loops (Yook
and Meyer-Ortmanns, 2006). In WS networks (Watts
and Strogatz, 1998) with N = 210 and 〈k〉 = 20, R
collapses to the universal curve even when the networks
are dominated by local connections, e.g. for a rewiring
probability p = 0.3 with intensities Smax/Smin & 10, see
Fig. 22 (b).

B. Design of synchronizable networks

An interesting subject related to the impact of net-
work structure on synchronization dynamics is the de-
sign of synchronizable networks. Here we review several
ideas exploring this issue: weighting the couplings leav-
ing the topology unchanged, perturbing part of the net-
work topology, and finally searching for optimal topolo-
gies with respect to synchronizability. Note that the fol-
lowing theoretical schemes may not directly apply to real
complex networks. It is difficult to conceive real systems
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FIG. 22 (a) Eigenratio R as a function of Smax/Smin for BA
growing networks with m = 1(〈k〉 = 2) (◦), m = 2(〈k〉 = 4)
(�) and m = 10(〈k〉 = 20) (△). (b) R for SW networks with
〈k〉 = 20 and rewiring probability p = 0.01 (◦), p = 0.1 (�)
and p = 0.3 (△). Solid lines: Eqs. (92) with AR = AC = 1.

where the weights can be tuned at discretion, or where
the topological substrate of interactions can be changed
accordingly. Nevertheless, the insights given by these
works allow for a deeper understanding of the synchro-
nizability of networks.

1. Weighted couplings for enhancing synchronizability

The previous analysis shows that for networks that
are heterogeneous in degree, synchronizability can be en-
hanced by balancing the heterogeneity in the degree dis-
tribution with suitable weighted couplings, towards the
obtention of a homogeneous distribution of the intensities
Si.

Chavez et al. (2005) presented a different scheme as-
suming that the weight of a link is related to its between-
ness bij as

Gij = −
bαij

∑

j∈Γi
bαij
, (95)

where α is a tunable parameter that controls the depen-
dence of the weights wij on the loads bij . The zero-sum
requirement of the matrix G implies that Gii = 1 for all
i. Note that α = 0 corresponds to the weighted coupling
scheme in Eq. (87) at the optimal point θ = −1. As
seen in Fig. 23, the eigenratio R depends on α, reach-
ing a minimum at a value 0 < α . 1, showing that
the synchronizability in SF networks can be slightly en-
hanced compared to the optimal case of the weighted cou-
pling scheme (Motter et al., 2005a,b; Zhou, Motter and
Kurths, 2006). The SF network considered by Chavez
et al. (2005) is a generalized BA model with a prefer-
ential attachment probability πi ∼ ki + B (Dorogovtsev
et al., 2000), where the parameter B controls the expo-
nent γ = 3 +B/m of the power law degree distribution,
and m = kmin. At large α values, only the links with
the largest loads bij are significant, which can lead to
effectively disconnected nodes, so that synchronizability
is reduced. Chavez et al. (2005) also pointed out that
for large minimal degrees, the regimes corresponding to



31

FIG. 23 (color online) (a) eigenratio λN/λ2 (in logarithmic
scale) for SF networks in the parameter space (α, B). (b)The
relative synchronizability Γ = log(λN/λ2) − [log(λN/λ2)]α=0

vs (α, B). In all cases m = 2, and the graphs refer to averaging
over 10 realizations of networks with N = 1000. The domain
with with Γ < 0 is outlined by the black contours drawn on
the figure. From Chavez et al. (2005).

enhanced synchronizability are reduced so that the mini-
mum approaches to α = 0. This demonstrates again that
for random networks with large enough minimal degree,
Eq. (91) is asymptotically valid regardless of the detailed
weighted scheme, as claimed by Zhou, Motter and Kurths
(2006).

The explanation of the observed enhanced synchroniz-
ability proposed by Chavez et al. (2005) is that the load
bij reflects the global information of the network, while
at α = 0 only the local information (degree) is employed.
Such a heuristic explanation, however, is not supported
by several further investigations. In fact, only the local
information can also lead to similar enhanced synchroniz-
ability. For example, consider that the weights depend
on the degrees following Eq. (94), and then normalize
to allow fully uniform intensity Si = 1, namely (Motter
et al., 2005c)

Gij = − (kikj)
α

∑

j∈Γi
(kikj)α

= −
kα

j
∑

j∈Γi
kα

j

. (96)

Again, α = 0 corresponds to the optimal case (Eq. (87),
θ = −1) of the weighted coupling scheme (Motter et al.,
2005a,b; Zhou, Motter and Kurths, 2006). Similar to
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FIG. 24 Eigenratio R (a) and normalized cost C0 (b) as a
function of the parameter α in Eq. (96), for random SF net-
works with γ = 3 and kmin = 10. From Motter et al. (2005c)

Chavez et al. (2005), the synchronizability can be further
enhanced in a range α > 0 (Fig. 24). However, the mini-
mum moves closer to α = 0 when the networks are larger,
indicating that the synchronizability in large random net-
works with kmin ≫ 1 can hardly be enhanced further with
other weighted coupling schemes different from the op-
timal case in Eq. (87). This coupling scheme was also
considered by Lind et al. (2004) where synchronizability
in SF networks of maps is enhanced for α > 0. Addi-
tionally, we note that the coupling form in Eq. (96) has
been recently revisited from the viewpoint of gradient-
network (Wang et al., 2007).

Another work (Zhao, Zhou, Wang, Ou and Ren, 2006)
introduced an additional parameter β into the coupling
scheme in Eq. (96), as

Gij = −
kα

j
(
∑

j∈Γi
kα

j

)β
. (97)

In this case, the intensity of the node is Si =
(
∑

j∈Γi
kα

j

)1−β
. If β 6= 1, the intensity is not uniform

and becomes more heterogeneous when |1− β| increases.
For any given α, the synchronizability is optimal at β = 1
where the intensity is fully uniform. Besides, for a fixed
β, there is also a value of α for which the best synchro-
nizability is achieved.

More weighted coupling methods have been proposed.
Hwang et al. (2005) use the information about the age of
the nodes in growing networks and introduce asymmetri-
cal coupling between old and young nodes. In particular,
they propose

Gij = − aijΘij
(
∑

j∈Γi
Θij

) , (98)

where Θij = (1 − θ)/2 for the connections from old to
young nodes (i > j) and Θij = (1 + θ)/2 for the con-
nections from young to old nodes (i < j). The limit
θ = −1 (θ = 1) gives a unidirectional coupling where
the old (young) nodes drive the young (old) ones. It
was shown that in SF networks, synchronizability is en-
hanced when couplings from older to younger nodes are
dominant (θ < 0).

In spite of these numerical observations, a clear un-
derstanding about why the synchronizability is further
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enhanced with the various weighted coupling schemes
(Eqs. (95,96,97)) has not been obtained. The same
scheme as in ( 98), but without the normalization (Gij =
−aijΘij) was considered by Zou et al. (2006), and again
the synchronizability is enhanced for θ < 0. In this case,
the change of synchronizability is mainly due to the het-
erogeneity of the intensity distribution Si, which becomes
more homogeneous for θ < 0 because the old nodes are
hubs and have most of the connections to young nodes. In
this case, the universality in Eq. (92) should apply when
the minimal degree is large enough. Finally, it has also
been shown that a random distribution of the weights of
the connections of regular networks, with only nearest
neighbors, can also enhance synchronizability. This fact
is related to the effective presence of short cuts in terms
of weights (Li et al., 2007).

As it has been already pointed out, the particular
scientific course of action taken by proposing different
weighting schemes to enhance synchronizability is unfin-
ished, and probably an unfruitful quest given the many
possibilities of inventing new weights. A more rigorous
analysis of the eigenspectra of general graphs beyond the
already obtained bounds is absolutely required to boost
this line of research.

On the other hand, the above weighted coupling
schemes are static. In many real-world systems, the net-
work structure evolves and changes with time. Zhou and
Kurths (2006a) proposed a scheme that can adaptively
tune the correlation between the degrees of the nodes and
the weights of the links as in Eq. (87), with θ ≈ −0.5,
so that synchronizability can be significantly enhanced
compared to the unweighted counterpart. The adapta-
tion scheme is based on the local synchronization between
a node and its ki direct neighbors in the network. Each
node tries to synchronize to its neighbors by increasing
the connection strength among them. By doing this, the
coupling strength of the node i with its neighbors in-
creases uniformly trying to suppress the difference ∆i

with the mean activity of its neighbors, namely,

Gij(t) = aijVi(t), V̇i = ρ∆i/(1 + ∆i), (99)

where ∆i = |H(xi) − (1/ki)
∑

j aijH(xj)|, and ρ > 0
is the tuning parameter. Note that with this adapta-
tion scheme, the input weight (wij = Vi) and the output
weight (wji = Vj) of a node i are in general asymmetrical.

This adaptive process was simulated using Rössler os-
cillators and a chaotic food web model on BA networks,
and both the unbounded and bounded MSFs were con-
sidered. For the unbounded case, the system approaches
complete synchronization when ρ > 0, while for the
bounded case, one has that this happens for 0 < ρ < ρc,
where ρc depends on the particular oscillators, and on
the system size N . In both situations, when synchro-
nization is achieved, the adaptation process will lead to
a weighted coupling structure where the input strength
of the links of a node displays a power law dependence
on the degree as

V (k) ∼ kθ, (100)
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FIG. 25 The average input weight V (k) of nodes with de-
gree k as a function of k for the Rössler oscillators (◦) and
the food-web model (•) (a) and its dependence on various
parameters: m (b), N (c) and ρ (d). Results in (b-d) are
averaged over 10 realizations of the networks with random
initial conditions. For clarity, only the results for the Rössler
oscillators are shown in (b-d) and are logarithmically binned.
The solid lines in (a-d) have a slope −0.48. From Zhou and
Kurths (2006a).

with θ ≃ −0.5. The results for the unbounded MSF,
which are rather robust to variations in network models,
parameters and oscillator models, are shown in Fig. 25.

The mechanism underlying such a self-organization of
the weighted structure is due to the degree-dependent
synchronization difference ∆i (Zhou and Kurths,
2006a,b). Starting from random initial conditions on the
chaotic attractors, both the local synchronization differ-
ence ∆i ≫ 1 and the input weights for each node in-
crease rather homogeneously in the whole network, i.e.,
wij = Vi(t) ≈ γt. Now, the intensity of the node
Si(t) = Vi(t)ki = ρkit. Hence, nodes with large degrees
are coupled stronger to the mean activity of their neigh-
bors. As a consequence, after a short period of time the
synchronization difference ∆i for those highly connected
nodes decreases, and the weights Vi of different nodes
evolve at different rates and converge to different val-
ues. Once synchronization is achieved, the input strength
wij = Vi is small for nodes with large degrees.

The adaptation process makes the intensity more ho-
mogeneous, so that it is expected that the synchronizabil-
ity is enhanced. In Fig. 26 we show the eigenratio R, as
a function of the network size N . There we compare the
original unweighted network with two weighted networks
after the adaptation. Suppose that the largest network
size synchronizable for the bounded MSF (R = α2/α1)
is N1 for unweighted networks and N2 for weighted net-
works obtained from adaptation. It then follows that
N2/N1 ∼ (α2/α1)

1/(1+θ) ∼ (α2/α1)
2 for power law de-

gree distributions regardless of the exponent γ (Zhou and
Kurths, 2006a).
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FIG. 26 The eigenratio R as a function of N averaged over
20 realizations of the networks. The solid lines are power-law
fitting. The weighted networks are obtained by the adaptive
process with the conditions: M = 5, γ = 0.002 with H(x) =
(x, 0, 0) for the Rössler oscillators (�) and H(x) = (0, y, z) for
the food-web model (△). The networks are synchronizable if
R < Rα: Rössler oscillators, Rα = 40 (dashed line), food-web
model, Rα = 29 (dashed-dotted line). From Zhou and Kurths
(2006a)

2. Topological modification for enhancing synchronizability

Some authors have proposed to enhance synchroniz-
ability by perturbing the network topology. Based on
the argument that heterogeneity in the betweenness dis-
tribution is related to poor synchronizability, Zhao et al.
(2005) and Yin et al. (2006) proposed to modify the nodes
or links with the highest maximal betweenness. As al-
ready noticed, in SF networks, the betweenness of a node
and a link is strongly correlated with the degree ki, and
the product of degrees kikj of the two nodes at the ends,
respectively. The perturbation proposed by Zhao et al.
(2005) consists of dividing the node with the highest de-
gree into a group of several fully connected nodes and
redistribute the ki links equally over the new nodes. Fol-
lowing this scheme, the synchronizability can be substan-
tially enhanced by modifying a very small portion of the
nodes. The enhanced synchronizability follows closely
the reduced maximal degree in the networks. It was also
shown that the average distance actually increases when
the hubs are divided. Yin et al. (2006) propose that
the connections with the largest kikj are broken, and
again the synchronizability can be enhanced by cutting
a small fraction of links with high betweenness. These
ideas can plausibly be implemented in technological net-
works, where the substitution of hubs by a core of nodes
is possible. In this way, the redistribution of load will im-
prove traffic, and as a by-product, the synchronizability.

3. Optimization of synchronizability

A more straightforward approach to the design is that
of asking which are the best network architectures to get
an optimal synchronizability. Donetti et al. (2005) ap-
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FIG. 27 (color online) Eigenvalue ratio R as a function of
the number of algorithmic iterations. Starting from different
initial conditions, with N = 50, and 〈k〉 = 4, the algorithm
converges to entangled networks with very similar values of
R. From Donetti et al. (2005).

plied an optimization scheme (e.g. simulated annealing)
combined with a network rewiring algorithm to minimize
the eigenratio R. In this case, the total number of nodes
and links are preserved. The resulting networks, with
optimal synchronizability, called entangled networks, are
found to be very homogeneous in many topological mea-
sures, such as degrees, distance between nodes, between-
ness etc. This result is quite relevant because it provides
a null model that allows to compare the synchronizability
of networks directly with its optimal counterpart.

A similar optimization scheme was applied to study the
optimal synchronizability in networks with a preserved
SF degree sequence (Liu et al., 2007). In this case, the
synchronizability can only be slightly enhanced. An in-
teresting finding is that the optimized networks become
disassortative and the clustering and the maximal be-
tweenness is reduced, which is consistent with the ob-
served enhanced synchronizability obtained by changing
these features.

Thus, optimization schemes are helpful to identify
meaningful topological features that correlate with the
synchronizability of complex networks. However, such
optimization schemes are computationally demanding
when we deal with large networks. The development of
analytical tools to attack this optimization problem is
currently a major challenge in the subject.

Furthermore, in these two studies, the underlying net-
work topology is bi-directional. In many of the weighted
coupling schemes previously mentioned, the connections
are effectively directed, since the coupling strength is
asymmetrical for the input and output links. Nishikawa
and Motter (2006) went to the extreme by imposing an
unidirectional information flow so that the networks be-
come optimally synchronizable with R = 1. For any
topology, the maximally synchronizable network can be
achieved by imposing that the network: (i) embeds a di-
rected spanning tree, (ii) has no directed loop, and (iii)
has normalized input strengths. With these conditions,
the original networks are changed into feedforward net-
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works without any feedback, and 0 = λ1 < λ2 = · · · =
λN = λ. Furthermore, the synchronization of the whole
network is achieved in a hierarchical way. The condi-
tions (i)-(iii) lead to the following path towards syn-
chrony. There is a node in the directed spanning tree
that has no input and acts as a master oscillator driving
the network dynamics. If α = σλ, the oscillators that are
just one hierarchical level below the master oscillator will
synchronize. Then, the next lower level oscillators will
also get synchronized and so on until the whole network
reaches complete synchronization. Note that this hap-
pens for the entire range of the coupling strength where
α = σλ. Finally, we note that it could take a very long
time to achieve complete synchronization when the num-
ber of effective layers is large. It would be interesting to
see how the topology of the original networks is related to
the depth of such effective directed trees and how it influ-
ences the transient time towards synchronization. Very
recently, it was shown (Lu et al., 2007) that an age-based
coupling similar to Eq. 98, but with Θij = e−α(i−j)/N ,
will lead to such an effective directed tree with R = 1 at
large values of α (Lu et al., 2007).

C. Beyond the Master Stability Function formalism

We have discussed how the impact of network topology
on synchronizability can be addressed using the MSF and
graph theory. Away from the complete synchronization
regime, the linear stability does not strictly apply. How-
ever, it is still possible to go one step forward to further
understand some aspects of the dynamical synchroniza-
tion patterns.

Zhou and Kurths (2006b) studied effective synchro-
nization patterns in unweighted SF networks of chaotic
oscillators (with the coupling function H(x) = x) in sev-
eral situations: away from the complete synchronization
regime, when the coupling strength is smaller than the
threshold for complete synchronization, when the oscil-
lators have mismatches in parameters, and when there
are noise perturbations. They considered a mean field
approximation in which each oscillator is influenced by
a global mean field X, with a coupling strength σki,
namely,

ẋi = F(xi) + σki(X − xi), ki ≫ 1. (101)

The authors compared the synchronization of each oscil-
lator to X by computing ∆Xi = |xi − X| and then ob-
tained the average ∆X(k) over all nodes with the same
degree k. It was shown that out of the complete synchro-
nized state

∆X(k) ∼ k−γ , (102)

where the exponent γ ≈ 1, as seen in Fig. 28. This
result shows that in heterogenous networks, the hubs
(ki > kth) will synchronize more closely with the mean
field and they will form effective synchronization clusters
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FIG. 28 The average values ∆X(k) as a function of k in SF
networks of Rössler oscillators outside the complete synchro-
nization regime. (a) At various coupling strengths g = σ〈k〉
below the threshold for complete synchronization and (b) the
synchronized state is perturbed by noise of different intensi-
ties D. Qualitatively, the same behavior is observed when the
oscillators are nonidentical. From Zhou and Kurths (2006b).

(|xi −xj| < ∆th). However, there is not a unique thresh-
old to define such effective clusters (see Fig. 28). This
path to synchronization, i.e., the formation of clusters by
the hubs, was further described later in Gómez-Gardeñes
et al. (2007a), see also Sect. III.A.4.

The formation of such SF or hierarchical clusters could
be understood from a linear analysis using the MSF for-
malism. The linear variational equations of (101) read

ξ̇i = [DF(X) − σkiI] ξi, ki ≫ 1. (103)

They have the same form as (56), except that λi is re-
placed by ki and DH by the identity matrix I. The MSF
for the coupling function H(x) = x is λmax(α) = λF

1 −α,
where λF

1 is the largest Lyapunov exponent of the iso-
lated oscillator F. Thus the largest Lyapunov exponent
λmax(ki) of the linearized Eq. (103) is a function of ki

and becomes negative for σki > λF
1 . For large k values

satisfying σk ≫ λF
1 , we have λmax(k) ≈ −σk.

Now suppose that the network is not completely syn-
chronized, but slightly perturbed from the state of com-
plete synchronization, when the coupling strength σ is
below the complete synchronization threshold, or when
there is noise present in the system. For nodes with large
degree k, so that λmax(k) ≈ −σk is large enough in ab-
solute value but negative, the dynamics of the averaged
synchronization difference ∆X(k) over large time scales
can be expressed as

d

dt
∆X(k) = λmax(k)∆X(k) + c, (104)

where c > 0 is a constant denoting the level of perturba-
tion with respect to the complete synchronization state,
and depends either on the noise level D or on the cou-
pling strength σ. From this we get the asymptotic result
∆X(k) = c/|λmax(k)|, yielding

∆X(k) ∼ k−1, (105)

which explains qualitatively the numerically observed
scaling (solid lines in Fig. 28). Interestingly, the same
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scaling dependence but for the time needed to get back
into the fully synchronized state was obtained by Moreno
and Pacheco (2004) for a population of Kuramoto oscil-
lators, see Sect. III.A.4.

To round off this section, let us mention other works
about synchronizability in complex networks that make
use of linear criteria similar to the MSF (Chen, 2006;
Li and Chen, 2003; Wang and Chen, 2002). The analy-
sis of the global stability of the synchronized state, was
first carried out for general graphs (Wu and Chua, 1995)
and then followed for specific complex networks (Belykh
et al., 2006, 2004b; Chen, 2007; Li and Chen, 2006). The
global stability requires additional constraints on the dy-
namical properties of the individual oscillators. For ex-
ample, consider the form of coupling as in Eq. (52), the
requirement imposed by (Belykh et al., 2006, 2004b) is
that the following auxiliary system of the synchronization
difference Xij = xi − xj ,

Ẋij =

[
∫ 1

0

DF(βxj + (1 − β)xi)dβ − αDH

]

Xij ,

be globally stable at the fixed point Xij = 0 for α > αc.
With this requirement, the condition for global synchro-
nization of a network is

σ > σ∗ = max
l

(
αc

N
bl), (106)

where bl is the sum of the lengths of all chosen paths
that pass through a given link l in the network. Note
that bl is related to both the betweenness and the path
length of the link. The result, which is for undirected
networks, also holds for directed networks where the in-
put and output degrees are equal for every node of the
network. Finally, Belykh et al. (2006, 2004b) also derived
the condition needed for global synchronization in more
general cases where each link in the network may have
a different coupling strength that is allowed to vary in
time.

V. APPLICATIONS

The focus of the review up to now has been to revise
the main contributions, from theoretical and computa-
tional points of view, to our understanding of synchro-
nization processes in complex networks. In this section
we will overview the applications to specific problems in
such different scientific fields as biology and neuroscience,
engineering and computer science, and economy and so-
cial sciences. There are nowadays several problems where
the application of the ideas and techniques developed in
relation to synchronization in complex networks are very
clear and the results help to understand the interplay be-
tween topology and dynamics in very precise scenarios.
There are other cases, also included here for complete-
ness, for which most of the applications so far have been
developed in simple patterns of interaction, but exten-
sion to complex topologies is necessary because it is its
natural description.

A. Biological systems and neuroscience

In biology, complex networks are found at different
spatio-temporal scales: from the molecular level up to
the population level, passing through many intermediate
scales of biological systems. In some of these networks,
dynamical interactions between units, which are crucial
for our current understanding of living systems, can be
analyzed in the framework of synchronization phenomena
developed so far. Here we review some of these appli-
cation scenarios where synchronization in networks has
been shown to play an essential role. Thus, at the molec-
ular level we can analyze the evolution of genetic net-
works and at the population level the dynamics of popu-
lations of species coupled through diffusion along spatial
coordinates and through trophic interactions. Amongst
these two extremes we find a clear application in the anal-
ysis of circadian rhythms. On a different context, neu-
roscience offers applications also at two different levels,
one for the synchronization of individual spiking neurons
and the other for the coupling between cortical areas in
the brain.

1. Genetic networks

The finding that a few basic modules are the build-
ing blocks of large real regulatory networks has enabled
the design and construction of small synthetic regula-
tory circuits to implement particular tasks. One of the
most salient examples of a synthetic gene network is the
”repressilator”, that has become one of the best stud-
ied model systems of this kind. The repressilator is a
network of three genes, whose products (proteins) act as
repressors of the transcription of each other in a cyclic
way. This synthetic network was implemented experi-
mentally in the bacterium E. coli, so that it periodically
induces the synthesis of a green fluorescent protein as a
readout of the repressilator state (Elowitz and Leibler,
2000). It turns out that the temporal fluctuations in the
concentration of each of the three components of the re-
pressilator can be reproduced by a system of six ordinary
differential equations,

d[xi]

dt
= −[xi] +

α

1 + [yj ]n
, (107)

d[yi]

dt
= −β([yi] − [xi]), (108)

where the couples (i, j) assume the values (1, 3), (2, 1)
and (3, 2). The variable [xi] is the mRNA concentration
encoded by gene xi, and [yi] is the concentration of its
translated protein yi. The parameter α is the promoter
rate, the parameter β is the ratio of the protein decay rate
to the mRNA decay rate, and time has been rescaled in
units of the mRNA lifetime. This system has a unique
steady state which can be stable or unstable depending
on the parameter values and constitutes an illustrative
example of the experience gained by identifying network
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FIG. 29 Dependency of the order parameter R on the the
coupling strength Q, which is linearly proportional to the cell
density. The two curves correspond to different values of the
ratio between mRNA and protein lifetimes variance ∆β. From
Garćıa-Ojalvo et al. (2004).

modules and modeling its dynamical behavior in real net-
works.

Not surprisingly, the repressilator has called much at-
tention from experts on biological synchronization, since
it offers good prospectives for further insights into the
nature of diverse biological rhythms -whose mechanisms
remain to be understood- which are generated by thou-
sands of cellular oscillators that operate synchronously.
Garćıa-Ojalvo et al. (2004) recently proposed a simple
modular addition of two proteins to the repressilator orig-
inal design that could be used to describe the metabolic
oscillations observed in a well mixed suspension of yeast
cells. In the new setting, one of the new proteins can
diffuse through the cell membrane, thus providing a cou-
pling mechanism between cells containing repressilator
networks. This inter-cell communication couples the dy-
namics of the different cell oscillators (with different re-
pressilator periods) and thus allows us to study the tran-
sition to synchronization of coupled phase oscillators in
a biological system. In particular, in the limit of infinite
cell dilution, the system is made up of a population of un-
coupled limit-cycle oscillators. This is not anymore the
case when the cell density increases, as now extracellular
diffusion provides a mechanism of intercell coupling. As
a result, the system shows partial frequency locking of
the cells. Finally, if the cell density is large enough, com-
plete locking and synchronized oscillations are observed.
Garćıa-Ojalvo et al. (2004) proposed an order parameter
to measure the degree of synchronization of oscillatory
behavior. The dependence of this order parameter R de-
fined as the ratio of the standard deviation of the time se-
ries of the average signal to the standard deviation of each
individual signal [xi] averaged over all signals i, as a func-
tion of the coupling strength, is shown in Fig. 29 for dif-
ferent values of the ratio between the mRNA and protein
lifetimes width distribution (δβ). Note that the phase di-
agram of the coupled repressilators can be explained by

the very same mechanism involved in the transition to
synchronization for systems of coupled oscillators (e.g.,
Kuramoto oscillators) studied in Sec. III.A. What is
relevant here is that the transition from an unsynchro-
nized to a synchronized regime is caused by an increase
in cell density and therefore the experimental observation
of a synchronizing transition in biological phase oscilla-
tors might be achieved. In fact, Wagemakers et al. (2006)
have recently designed a simple electronic circuit analogy
of a population of globally coupled repressilators. They
show that coupling is more efficient than externally forc-
ing for the achievement of synchronization. In contrast
to the existence of a unified rhythm that gives rise to
synchronization, Koseska et al. (2007) analyze the mech-
anisms of intercell communication that can be respon-
sible for multirhythmicity in coupled genetic units. We
foresee that works on this line of research will incorpo-
rate more genetical interactions in the near future, being
the complex network substrate and the synchronization
dynamics key aspects of the whole problem.

2. Circadian rhythms

A circadian rhythm is a roughly 24-hour cycle in the
physiological processes of living systems; usually endoge-
nous, or when it is exogenous it is mainly driven by
daylight. Understanding circadian rhythms is crucial
for some physiological and psychological disorders. A
nice description of experiments carried out in human be-
ings, in which their circadian rhythms are altered, can
be found in the books by Strogatz (2003b) and Pikovsky
et al. (2001). Circadian rhythms are known to be de-
pendent on the network of interactions between different
subsystems. For example, daylight sensed by eyes and
processed by the brain develops a chain of interactions
that affects even the behavior of certain groups of cells.
On a different scenario, the work by Chialvo and Jal-
ife (1987) reports how non-oscillatory cardiac conduct-
ing tissues, when driven rhythmically by repetitive stim-
uli from their surroundings, produce temporal patterns
including phase locking, period-doubling bifurcation and
irregular activity.

Synchronization phenomena in complex networks of
coupled circadian oscillators has been recently inves-
tigated experimentally (Fukuda et al., 2007) on plant
leaves. The vein system is in this case the complex net-
work substrate of the synchronization process. Plant cells
are coupled via the diffusion of materials along two types
of connections: one type that directly connects nearest-
neighboring cells and the other type that spreads over
the whole plant to transport material among all tissues
quickly. Analyzing the phase of circadian oscillations, the
phase-wave propagations and the phase delay caused by
the vein network, the authors describe how global syn-
chronization of circadian oscillators in the leaf can be
attained. As we have seen throughout this review, the
role of the topology of interactions is again fundamental
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in the development of synchronization. This work is rep-
resentative of the new type of applications we can find in
the very recent literature about synchronization in com-
plex networks. This particular case of circadian rhythms
in plants might be extended to other living systems, in-
cluding humans.

3. Ecology

It is a well known observation in nature that fluctu-
ations in animal and plant populations display complex
dynamics. Mainly irregular, but some of them can show a
remarkably cyclical behavior and take place over vast ge-
ographical areas in a synchronized manner (Keith, 1963).
One of the best documented cases of such situation are
the population fluctuations in the Canadian lynx, ob-
tained from the records of the fur trade between 1821 and
1939 in Canada. Fluctuations in lynx populations show a
10-year periodic behavior from three different regions in
Canada (Blasius et al., 1999; Ranta et al., 1999; Stenseth
et al., 1999). On the other hand, there are some evidences
that the existence of conservation corridors favoring the
dispersal of species and enhancing the synchronization
over time increases the danger of global extinctions (Earn
et al., 2000).

One of the first explanations for such types of behavior
was that of synchronous environmental forcing, this is the
so-called Moran effect (Moran, 1953). There are, how-
ever, other explanations for this phenomenon (Ripa and
Ranta, 2007), but in any case the problem highlights the
importance of integrating explicitly spatial and trophic
couplings into current metacommunity theories (Leibold
et al., 2004; Maser et al., 2007). Some efforts along these
lines have already been made by considering very simple
trophic interaction in spatially extended systems. For
example, Blasius et al. (1999) analyze a three-level sys-
tem (vegetation, herbivores, and predators), where dif-
fusive migration between neighboring patches is taken
into account. They find that small amounts of migra-
tion are required to induce broad-scale synchronization.
Another interesting study is performed by Vandermeer
(2004), who, again in an extremely simple model, find
that changing the patterns of interaction between con-
sumers and resources can lead to either in-phase syn-
chrony or antiphase synchrony.

Nowadays we know, however, about the inherent com-
plexity of food-webs (Dunne, 2006). Food webs have been
studied as paradigmatic examples of complex networks,
because they show many of their non-trivial topological
features. Furthermore, the existence of conservation cor-
ridors affecting the migration between regions adds an-
other ingredient to the structure of the spatial pattern.
It is precisely this complexity in the trophic interactions
coupled to the spatial dependence that must to be consid-
ered in detail in the future to get a deeper understanding
of ecological evolution.

4. Neuronal networks

Synchronization has been shown to be of special rele-
vance in neural systems. The brain is composed of bil-
lions of neurons coupled in a hierarchy of complex net-
work connectivity. The first issue concerns neural net-
works at the cellular level. In the last years, significant
progress has been made in the studies about the detailed
interconnections of different types of neurons at the level
of cellular circuits (Binzegger et al., 2004; Markram et al.,
2004; Silberberg et al., 2005). At this level, the neu-
ronal networks of mammalian cortex also possess com-
plex structure, sharing SW and SF features. Here are
two basic neuron types: excitatory principal cells and
inhibitory interneurons. In contrast to the more homo-
geneous principal cell population, interneurons are very
diverse in terms of morphology and function. There is
an apparently inverse relationship between the number
of neurons in various interneuron classes and the spatial
extent of their axon trees–most of the neurons have only
local connections, while a small number of neurons have
long-range axons (Buzsáki et al., 2004). These properties
of neuronal networks reflects a compromise between com-
putational needs and wiring economy (Chklovskii et al.,
2002; Karbowski, 2001).

On the one hand, the establishment and maintenance
of neuronal connections require a significant metabolic
cost that should be reduced, and consequently the wiring
length should be globally minimized. Indeed, the wiring
economy is apparent in the distributions of projection
length in neural systems, which show that most neuronal
projections are short (Braitenberg and Schüz, 1998; Sik
et al., 1995). However, there also exists a significant
number of long-distance projections (Kaiser and Hilge-
tag, 2006; Sik et al., 1994).

Large-scale synchronization of oscillatory neural activ-
ity has been believed to play a crucial role in the infor-
mation and cognitive processing (Fries, 2005). At the
level of cellular circuits, oscillatory timing can transform
unconnected principal cell groups into temporal coali-
tions, providing maximal flexibility and economic use of
their spikes (Konig et al., 1996). Brains have developed
mechanisms for keeping time by inhibitory interneuron
networks (Buzsáki and Chrobak, 1995). The wiring will
be the most economic if the connections were all local.
However, in this case physically distant neurons are not
connected, and synaptic path length and synaptic de-
lays become exceedingly long for synchronization in large
networks. From previous analysis of synchronization of
random networks, we know that synchronizability (sta-
bility of the synchronized state) is optimal in fully ran-
dom networks with a uniform connectivity per node, in-
dependent of the network size (Zhou, Motter and Kurths,
2006). The same happens if interneuronal oscillators are
coupled (Buzsáki et al., 2004). However, fully random
connections irrespective of physical distance are not eco-
nomic if wiring cost is taken into account.

In Buzsáki et al. (2004), it was shown with a model of
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interneuronal networks containing local neurons (Gaus-
sian distribution of projection length) and a fraction of
long-range neurons (power law distribution of projection
length), that the ratio of synchrony to wiring length is
optimized in the SW regime with a small fraction of long-
range neurons. Thus, most wiring is local and neurons
with long-range connectivity and large global impact are
rare, as consistent with observations. It was argued that
the complex wiring of diverse interneuron classes could
represent an economic solution for supporting global syn-
chrony and oscillations at multiple time scales with min-
imum axon length (Buzsáki et al., 2004). While such
mathematical consideration can predict the scaling re-
lationship among the interneuron classes in brain struc-
tures of varying sizes, understanding the role of complex
neuronal connectivity, most likely mediated by synchro-
nization, is still one of the main challenges in neuro-
science. The theory reviewed in this article will surely
contribute to their understanding when more systematic
information of neuronal connectivity becomes available
in the future.

5. Cortical networks

On a larger neurophysiological scale, the activity ob-
served experimentally by electroencephalographs or func-
tional magnetic resonance imaging, is characterized by
oscillations occurring over a broad spectrum and by syn-
chronization phenomena over a wide range of spatial and
temporal scales. Reliable databases are available now
for large-scale systems level connectivity formed by long-
range projections among cortical areas in the brains of
several animals (Scannell et al., 1999; Sporns et al., 2004).
Large-scale brain networks are found to be densely con-
nected, with very complex and heterogeneous connectiv-
ity patterns (Hilgetag and Kaiser, 2004; Hilgetag et al.,
2000; Sporns and Zwi, 2004). In parallel, the investiga-
tion of brain activity has also put significant emphasis
on large-scale functional interactions, characterized by
coherence and synchronization between the activity of
cortical regions (Bassett et al., 2006; Eguiluz et al., 2005;
Salvador et al., 2005; Stam, 2004). Both the structural
and functional connectivity of the brain display SW and
SF features. The relationship between structural and
functional connectivity remains an important open prob-
lem in neuroscience.

Recent simulations of synchronization dynamics of
brain networks have shed light on this challenging prob-
lem. In a series of papers (Zemanová et al., 2006; Zhou,
Zemanová, Zamora, Hilgetag and Kurths, 2006; Zhou
et al., 2007) the dynamics of a realistic cortico-cortical
projection network of the cat has been modeled at the
level of functional areas (Scannell et al., 1999). At this
level, the network (see Fig. 30) displays a hierarchical
cluster organization (Hilgetag and Kaiser, 2004). There
are four prominent clusters that agree broadly with the
four functional subsystems: visual (V), auditory (A), so-

matomotor (SM), and frontolimbic (FL). They simulated
the network dynamics by a 2-level model: each node (cor-
tical area) is represented by a SW subnetwork of neurons
(network of networks). It was shown that the model pos-
sesses two distinguished regimes, weak and strong syn-
chronization. In the weak synchronization regime, the
model displays biologically plausible dynamical clusters.
The functional connectivity, obtained by passing the cor-
relation matrix through various thresholds, exhibits var-
ious levels of organization. The clusters with the highest
levels of synchronization are from respective functional
subsystems (Fig. 31 (a,b)) and are related to special-
ized functions of the subsystems. The specialized clus-
ters are integrated into larger clusters through brain ar-
eas having many inter-community connections (Fig. 31
(c,d)). As a whole, the functional connectivity reveals
the hierarchical organization of the structural connec-
tivity (Zhou, Zemanová, Zamora, Hilgetag and Kurths,
2006). The dynamics forms four major clusters (Fig. 32),
in excellent agreement with the four functional subsys-
tems (Zemanová et al., 2006). Furthermore, brain ar-
eas that bridge different dynamical clusters are found to
be the areas involved in multisensory associations. In
a comparative study (Zhou et al., 2007), it was shown
that representing the brain areas with a periodic, low-
dimensional neuronal mass oscillator describing alpha
waves (da Silva et al., 1974) cannot resolve these four
clusters. The detailed network topology becomes rather
irrelevant to the dynamical patterns which is not very
much changed when the network is randomized. This
is the same for the strong synchronization regime in the
2-level model which resembles epileptic-like activity (Ze-
manová et al., 2006).). This can be understood recall-
ing previous analysis based on random networks where is
shown that synchronization is mainly determined by the
node intensity (Zhou, Motter and Kurths, 2006; Zhou
and Kurths, 2006a) (see Section IV 6). Furthermore, the
transition from the weak to the strong synchronization
regime shares a similar picture with the Kuramoto model
in complex networks (Gómez-Gardeñes et al., 2007a,b)
(see Section III 4).

Shortly after these works, a very similar structure-
function relationship was observed (Honey et al., 2007).
Each area of the macaque neocortex was represented by
a neural mass model in the regime of spontaneous activ-
ity with complicated temporal patterns. It was shown
that the functional connectivity, measured over a very
long time, is closely shaped by the underlying structural
connectivity as described by Zhou, Zemanová, Zamora,
Hilgetag and Kurths (2006), Zemanová et al. (2006), and
Zhou et al. (2007). On short time-scales, the functional
connectivity changes, forming two anticorrelated clus-
ters, similar to functional networks obtained from brain
imaging data (Fox et al., 2005).

These findings support the idea that the brain is an ac-
tive network, and it can generate activity by itself in the
absence of external signals. Classical theories in cogni-
tive neuroscience viewed the brain as a passive, stimulus-
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FIG. 30 (Color online) Connection matrix MA of the cortical
network of the cat brain. The different symbols represent
different connection weights: 1 (◦ sparse), 2 (• intermediate)
and 3 (∗ dense). The organization of the system into four
topological communities (functional sub-systems, V, A, SM,
FL) is indicated by the solid lines. From Zhou, Zemanová,
Zamora, Hilgetag and Kurths (2006)).
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FIG. 31 (Color online) The functional networks (◦) at various
thresholds: Rth = 0.070 (a), Rth = 0.065 (b), Rth = 0.055 (c)
and Rth = 0.019 (d). The small dots indicate the anatomical
connections. From Zhou, Zemanová, Zamora, Hilgetag and
Kurths (2006).

driven device and the spontaneous on-going activity of
the brain had been regarded as background noise (Engel
et al., 2001). It is still customary in data analysis to take
the average signals over many trials of electroencephalo-
graphs as the event-related activation and associate them
with cognitive processes. In the view of active dynamical
brain networks, it has been shown that the spontaneous
on-going activity imposes significant impact on the selec-
tive responses to stimuli (Engel et al., 2001; Fries, 2005).
The intricate relationship between large-scale structural
and functional networks revealed in these works ( Honey
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FIG. 32 (Color online) Four major dynamical clusters (◦) in
the weak synchronization regime, compared to the underlying
anatomical connections (·). From Zemanová et al. (2006).

et al. (2007); Zemanová et al. (2006); Zhou, Zemanová,
Zamora, Hilgetag and Kurths (2006); Zhou et al. (2007))
will contribute to this reorientation of concepts in neuro-
science. On the other hand, excessive activation and syn-
chronization of neural networks have been found to asso-
ciate with dysfunctions and disorders of the brain, such
as the epileptic seizure (Stam, 2005) and the Parkinso-
nian disease (Tass et al., 1998). Understanding synchro-
nization in neuronal networks of various level, especially
studying the role played by the complex network topol-
ogy, is crucial to elucidate how normal brains can main-
tain desirable levels of synchronization. It will also con-
tribute significantly to biomedical data analysis of patho-
logical brain activities (Lai et al., 2007), for example, the
challenging task of detecting precursors that can make
prediction much before the clear onset of seizures , and
design suitable methods for treatments of neural diseases
(Popovych et al., 2006).

B. Computer science and engineering

Complex networks and synchronization dynamics are
relevant in many computer science and engineering prob-
lems. For example, in computer science, synchronization
is desirable for an efficient performance of distributed
systems. Sometimes, the goal of the distributed system
is to achieve a global common state (consensus). Nowa-
days these systems are becoming larger and larger and
their topologies more and more complex. On the other
hand, some engineering problems also face the need of
maintaining coordination at the level of large scale com-
plex networks, for example in problems of distribution of
information, energy or materials.
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1. Parallel/Distributed computation

The simulation of large systems are, nowadays, mainly
implemented as parallel distributed simulations where
parts of the system are allocated and simulated on dif-
ferent processors. A large class of interacting systems
including financial markets, epidemic spreading, traffic,
and dynamics of physical systems in general, can be de-
scribed by a set of local state variables allowing a fi-
nite number of possible values. As the system evolves
in time, the values of the local state variables change at
discrete instants, either synchronously or asynchronously,
depending on the dynamics of the system. The instan-
taneous changes in the local configuration are called dis-
crete events, forming what has been coined as a parallel
discrete-event simulation (PDES) (Nicol and Fujimoto,
1994). The main difficulty of PDES is the absence of a
global pacemaker when dealing with asynchronous up-
dates. This imposes serious problems because causality
and reproducibility of experimental results are desired.
In a conservative scheme, processes modeling physical en-
tities are connected via channels that represent physical
links in the target system. Since PDES events are not
synchronized via a global clock, they must synchronize
by communication between nodes.

The essentials of a PDES are: a set of local simulated
times of the processors and a synchronization schedule.
As the grid-computing networks with millions of proces-
sors emerge, fundamental questions of the scalability of
the underlying algorithms must be addressed. The prop-
erties of a PDES to be scalable are: (i) the virtual time

horizon {τi(t)}Np

i , a set of time simulated instants in Np

processors after t parallel steps, should progress on aver-
age with a non-zero rate, and (ii) the width of the time
horizon should be bounded when Np → ∞.

Korniss et al. (2000) studied the asymptotic scaling
properties of a conservative synchronization algorithm in
massive PDESs where the discrete events are Poisson ar-
rivals. They found an interesting analogy between the
evolution of the simulated time horizon and the growth of
a nonequilibrium surface.8 They showed that the steady-
state behavior of the macroscopic landscape of the simu-
lated time horizon, in one dimension, is governed by the
Edwards-Wilkinson Hamiltonian (Edwards and Wilkin-
son, 1982).

The analogy becomes clear by interpreting the virtual
times τi as the height of a surface, and defining the width
of the simulated times surface as the mean root square of
the virtual times with respect to the mean τ . This width

8 Note that the first analogy between synchronization processes
and the theory of surface growth appeared in Grinstein et al.
(1993), posteriorly revisited in Muñoz and Pastor-Satorras
(2003) (see Pikovsky et al. (2001) for a comprehensive review).

FIG. 33 (Color online) Virtual time horizon snapshots in the
steady state for 10000 sites in one dimension. (a) For a regular
network. The lateral correlation length ξ and width w are
shown for illustration in the graph. (b) For the SW network
with p = 0.1, the heights are effectively decorrelated and both
the correlation length and the width are reduced. From Guclu
et al. (2006).

provides a measure for de-synchronization

〈w2〉 = 〈 1

Np

Np
∑

1

[τi(t) − τ̄ (t)]2〉. (109)

The problem that now is faced is how the width of
the synchronization landscape scales with the number of
processors. If the scaling diverges, it means that the
synchronization is hardly achievable. In one- and two-
dimensional regular lattices, the width of the synchro-
nization landscape diverges with the number of proces-

sors as w ∼ N
1/d
p where d is the dimension. This ef-

fect can be traced back to the lateral correlation length
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ξ of the surface that also diverges with the number of
processors ξ ∼ N (Barabási and Stanley, 1995). An in-
teresting solution to this problem has been proposed by
Korniss et al. (2003) and Guclu et al. (2006). It consists
of adding a few random links to the regular lattices re-
sulting in a SW structure. This structure has the effect of
de-correlating the lateral length, suppressing large fluc-
tuations in the synchronization surface (roughness), and
producing finite average values of w in the large system-
size limit, see Fig. 33. Moreover, the extreme height
diverges only logarithmically in this limit. This latter
property ensures synchronization in a practical sense in
a SW topology of processors.

2. Data mining

The term data mining refers to the process of auto-
matically searching large volumes of data for patterns
that provide some useful information for classification.
Miyano and Tsutsui (2007) have proposed a new method
of data mining based on spontaneous data clustering us-
ing a network of locally coupled limit-cycle phase oscilla-
tors. The method is closely related to the determination
of community structure via synchronization processes de-
vised by several authors (Arenas et al., 2006b; Boccaletti
et al., 2007). The idea is to encode multivariate data
vectors (that are the elements of the database) into vec-
tors of natural frequencies for an oscillators’ dynamical
model, akin to the KM, expecting that the dynamics of
the system will group similar data in clusters of synchro-
nization. More precisely, given nmultivariate data points
with m degrees of freedom, ~xi = (xi(1), xi(2), ..., xi(m)),
i = 1, . . . , n, they write the dynamical model:

θ̇i(l) = xi(l) +
σ

ki

n
∑

j=1

H(di,j) sin(θj(l) − θi(l)) (110)

where θi(l) is the l-th component of the phase vector
~θi = (θi(1), θi(2), ..., θi(m)), H(di,j) is a function that

determines the neighborhood of ~θi based on the distance
di,j = |~xi − ~xj |. The determination of the neighbor-
hood provides the network of interactions between oscil-
lators. The proposal by the authors is a neighborhood
centered at ~xi defined by the hyper-sphere of radius d0,
being d0 = α|~xi| and α a tuning parameter. The function
H(di,j) = 1 if di,j ≤ d0 and 0 otherwise. The applica-
tion of the method in a database of aging status in frail
elderly reported in Miyano and Tsutsui (2007) shows a
good performance of the method, and gives a nice expec-
tative of exploitation of the concepts of synchronization
in the area of data mining.

3. Consensus problems

Consensus problems, understood as the ability of an
ensemble of dynamic agents to reach a unique and com-
mon value in an asymptotically stable stationary state,

have a long history in the field of computer science, par-
ticularly in automata theory and distributed computa-
tion. In many applications, like for instance cooperative
control on unmanned air vehicles, formation control or
distributed sensor networks, groups of agents need to
agree upon certain quantities of interest (Olfati-Saber
and Murray, 2004). As a result, it is important to address
these problems of agreement within the assumption that
agents form a complex pattern of interactions. These in-
teractions can be directed or undirected, fixed or mobile,
constant or weighted, keeping then many of the ingre-
dients we have been discussing in this review. Another
interesting fact in this sort of problems is the existence
of time delays in the communication process.

Olfati-Saber and Murray (2004) define consensus prob-
lems on general graphs. Let us consider a dynamic graph
in which the connectivity pattern of the nodes can change
in time. At each node, a dynamical agent evolves in time
according to the dynamics

ẋi = f(xi, ui), (111)

where f(xi, ui) is a function that depends on the state of
the unit xi, and on ui that describes the influence from
the neighbors. The χ-consensus problem in a dynamical
graph is a distributed way to reach an asymptotically
stable equilibrium x∗ satisfying x∗i = χ(x(0)), ∀i, where
χ(x(0)) is a prescribed function of the initial values (e.g.,
the average or the minimum values).

They present two protocols that solve consensus prob-
lems in a network of agents:

1. fixed or switching topology and zero communica-
tion time-delay:

ẋi =

N
∑

i,j=1

aij(t)(xj(t) − xi(t)), (112)

2. fixed topology and non-zero communication time-
delay τij > 0

ẋi =

N
∑

i,j=1

aij(xj(t− τij) − xi(t− τij)). (113)

We note that the analysis of the asymptotic behavior
of such linear system is similar to the stability analysis
performed in the framework of the MSF (Sect. IV).

They find very interesting results in terms of network
properties. For instance, a network with fixed topology
that is a strongly connected digraph (a subgraph con-
nected via a path that follows the direction of the edges
of the graph). solves the average consensus problem if
and only if all the nodes of the network have the same
indegree as the outdegree, i.e. kin

i = kout
i , ∀i, as the

balanced networks discussed by Belykh et al. (2006) (see
Sect. IV.C). Furthermore, the performance of the net-
work measured in terms of the speed in which the global
asymptotic equilibrium state is reached, is proportional
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to λ2(Ĝ) where Ĝ is the mirror graph induced by G, which
is defined as an undirected graph with symmetric adja-
cency matrix âij = (aij + aji)/2.

For a switching topology, they find that if the dynam-
ics of the network is such that any graph along the time
evolution is strongly connected and balanced then the
switching system asymptotically converges to an aver-
age consensus. Concerning time communication-delays,
the important result is that if all links have the same
time-delay τ > 0, and the network is fixed, undirected
and connected, the system solves the average consensus
if τ ∈ (0, π/2λN ). In this case, in a similar way as dis-
cussed in previous applications, there are two tradeoff
issues that can be related to problems of network design;
one concerns the robustness of the protocol with respect
to time-delays, and the other to communication cost.

When applying this framework to a certain class of
networks, Olfati-Saber (2005) finds that the speed of
convergence, as the inverse of λ2 (as was also found in
synchronization problems (Almendral and Dı́az-Guilera,
2007)), can be increased by orders of magnitude by sim-
ply rewiring a regular lattice, while this change has a
negligible effect on λN , which measures the robustness
to delays of the system. This can be understood by the
eigenvalues of the SW network in Eq. (67) as compared
to the regular networks in Eq. (64). Some other vari-
ations can be found in the recent literature; e.g., Wu
et al. (2007) analyze several network models with physi-
cal neighborhood connectivity and depending on the pre-
cise rules they discuss on the performance and the robust-
ness of the system.

Due to its importance as an application in computer
science, consensus problems are interesting by them-
selves. But understanding its linear dynamics can be
also of great importance in the behavior of complex pop-
ulations of units that evolve according to more complex
non-linear dynamics, as it happens in many synchroniza-
tion problems.

4. Communication networks

Another emerging line of research can be found in
the field of synchronizing wireless communication net-
works. Wireless ad-hoc networks are telecommunication
networks that are created by devices equipped with a
short-range wireless technology, such as WiFi or Blue-
tooth. Unlike wired networks, these networks can be
created on the fly to perform a task, such as information
routing, environmental sensing, etc. (Hekmat, 2006) Fur-
thermore, the topology of these networks can be changed
dynamically to achieve a desired functionality. With
the rapid growth of the number of portable devices and
the increased popularity of wireless communication, it
is expected that these types of networks will play a key
role as a building block of the next generation Internet.
On the other hand, from the perspective of fundamental
research, these systems provide a clear-cut example of

highly dynamic, self-organizing complex networks.

Synchronization processes in wireless systems natu-
rally arise in two problems. On the one hand, routing
and information flow algorithms require synchronization
of the clocks of the nodes of the wireless network to es-
tablish a universal coordinated time. In a very recent
work, Dı́az-Guilera et al. (2008) study synchronization of
Kuramoto oscillators in random geometric graphs. They
consider a wireless system in which the connections vary
at a time scale much shorter than the time scale associ-
ated to the dynamics, and hence the network is static.
Nodes correspond to devices that have a finite trans-
mission range, and are linked to those nodes that are
located within the range. This procedure gives rise to
a two-dimensional random geometric graph, which are
characterized by a high clustering coefficient and a very
large average shortest path length, as compared to ER
graphs with the same number of nodes and links. The
remarkable result is that this type of network is very
hard to synchronize, both in terms of the stability of
the synchronized state and in terms of the time needed
to reach the completely synchronized state. Although
they are very homogeneous, the smallest non-zero eigen-
value of the Laplacian matrix is very low. However, just
by rewiring a small fraction of the links at random syn-
chronizability is clearly improved, which from a practical
point of view is a very interesting issue.

On the other hand, communication channels have a fi-
nite bandwidth so that the access times of different users
should be desynchronized when their number is large.
The latter, on its turn, depends on the density of wireless
devices accessing the available resources, which is deter-
mined by the topology of the underlying ad-hoc network,
and on the dynamical details of the signal transmission
process. Given the entangled structural and dynamical
complexity of synchronization phenomena in these wire-
less settings, it is expected that the network formalism
and some of the techniques reviewed here will greatly
contribute to the development and deploying of more ef-
ficient algorithms and protocols for wireless communi-
cations in the near future. This is what can be found
in the model proposed by Degesys et al. (2007), a bi-
ologically inspired algorithm for desynchronization in a
single-hop network. They consider a set of N nodes (os-
cillators) that generate events with a common period.
The nodes rearrange their phases, just considering the
times in which neighboring (in time) units fire, in such
a way that the events become spaced at intervals T/N .
The final state then corresponds to what is usually called
a round-robin schedule. In this way, the use of the band-
width without collisions between messages is optimized.
Inspired by this result, (Dı́az-Guilera and Arenas, 2008)
considered the units to be Kuramoto oscillators with a
common frequency. Introducing some dephase angle in
the sinus function and coupling pairs of units along a
closed chain, the authors find new stable configurations
different from the completely synchronized state. Some
of these configurations correspond also to the round-robin
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schedule, which turns out to be very robust under the
addition or deletion of nodes from the system. In this
simple setting we can see how important is the local pat-
tern of connections. There is no doubt that extension
of the proposed models to more complex topologies, as
for example within some transmission range as consid-
ered in the previous paragraph, gives rise to much more
complex, and interesting, global behaviors of the system
of oscillators.

5. Material and traffic flow

In our globalized and connected world not only infor-
mation flows, but also material transportation is an im-
portant issue that needs to be performed in an efficient
way. In many material flow systems coordination of tasks
in a parallel way is essential for a proper functioning but
difficult to achieve. Typical examples of this are cross-
roads in road traffic (Nagatani, 2002) and supply chains
in production processes (Helbing, 2003). Recent work on
supply networks has shown how to treat them as physical
transport problems governed by balance equations and
equations for the adaptation of production speeds. Al-
though the nonlinear behavior is different, the linearized
set of coupled differential equations is formally related
to those of mechanical or electrical oscillator networks
(Helbing et al., 2004). Whereas traditional optimization
techniques can be used to setup single nodes, the inherent
topological complexity makes maintenance of coordina-
tion at network-wide level to be practically unsolvable by
these methods. Furthermore, robustness and flexibility,
due to continuous changes in demand and failures, are
also required for an efficient transportation.

It is obvious that there is an analogy between material
transportation in networks and the flow of chemical sub-
stances and nutrients in biological organisms, where syn-
chronization dynamics plays an important role. Lämmer
et al. (2006) have proposed a decentralized control model
for material flow networks with transportation delays and
setup-times, based on phase-synchronization of oscilla-
tory services at the network nodes.

A material transport network is a directed and
weighted graph where the flow of material at nodes is
conserved. Subsets of links are active at different times,
and this makes that the activity of the node is periodic
and one can map a continuous phase variable θ(t) to a
discrete service state M : θ(t) → s(t). While the phase
angle θ of the oscillator modeling the intersection varies
from 0 to 2π at a rate ω, all states s are sequentially
activated. To achieve a coordination of the switching
states on a network-wide level, they propose a suitable
synchronization mechanism.

The authors apply this formalism to the control of traf-
fic lights at intersections of road networks. A single traffic
light intersection is modeled by an oscillator where the
continuous phase maps to a set of states corresponding
to green lights (see Fig. 34). The maximum frequency
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FIG. 34 (Color online) A single intersection adjusts the map-
ping of the phase-angle θ to the switching states s locally.
Within a complete cycle, each state s is sequentially acti-
vated for a period ∆θs, during which the corresponding non-
conflicting traffic lights are set to green. While switching from
one state to another, all traffic lights are set to red for a period

of ∆θsetup. The phase-angle, at which a new cycle starts, is
denoted by θ0. From Lämmer et al. (2006).

of the oscillator dynamics is calculated in terms of the
load at the different lanes and the setup-time. Global
coordination of the network is achieved by synchroniz-
ing the local phases and frequencies, requiring to reach
a phase-locked state where the phase difference between
neighboring sites is fixed. They suggest a coupling on
two different time scales:

• Adaptation of the phase θ a la Kuramoto:

θ̇i = min







ωmax
i , ωi(t) +

1

Tθ

∑

j∈Γi

sin (θj(t) − θi(t))







(114)
where ωi is the intrinsic frequency. As long as ωi <
ωmax

i , θi tries to adjust to the neighboring phases.
The constant Tθ corresponds to the typical time
scale for this adaptation.

• A second decentralized coupling can be used to in-
crease the intrinsic frequencies to approach the pos-
sible maximum within a slow time scale:

ω̇i =
1

Tω

(

min
j∈Γi

{ωj(t)} + ∆ω − ωi(t)

)

. (115)

Here the constant parameter ∆ω provides a linear
drift towards higher frequencies.

Under these assumptions two dynamical regimes are
possible (see Fig. 35). Starting with a random initial
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FIG. 35 Simulation results for a regular lattice road network,
where the intersections are defined as oscillators with (a) a
frequency ωi and (b) a phaseθi. From Lämmer et al. (2006).

condition (left), the system quickly settles into a state
with growing common frequency and vanishing phase-
differences. As soon as the maximum common frequency
is found, the system enters the other state with a locked
common frequency and phase-differences exponentially
converging towards constant values (right).

The extension of the analysis performed on such a sim-
ple setting to more realistic complex transportation net-
works is very promising but challenging (Helbing et al.,
2005).

6. Power-grids

Finally, we mention an engineering problem that might
seem at the first sight unrelated to synchronization phe-
nomena. Power grids are physical networks of electri-
cal power distribution lines of generators and consumers.
In the pioneering paper by Watts and Strogatz (1998)
it was already reported that the power-grid constitutes
one of the examples of a self-organized topology that has
grown without a clear central controller. This topology
is indeed very sensitive to attacks and failures. From its
topological point of view there are several analyses on
power-grids in different areas of the world (Chassin and
Posse, 2005; Crucitti et al., 2004a) and some models have
been proposed to deal with the cascading process of fail-
ures (Crucitti et al., 2004b; Sachtjen et al., 2000; Scirè
et al., 2005).

The principles of electricity generation and distribu-
tion are well known. Synchronization of the system, i.e.
every station and every piece of equipment run on the
same clock, is crucial for its proper operation. Cascading
failures related to de-synchronization can lead to massive
power blackouts (Symetricom, 2003).

Then power production, transmission, and consump-
tion represents a dynamical problem and the power grid
can be seen as an example of a system of oscillators (Stro-
gatz, 2003b). Along this line, Filatrella et al. (2007)
proposed to study synchronization of the various com-
ponents of the power grid by means of coupled phase

oscillators:

θ̈i = −αθ̇i + Pi +
∑

j∈Γ(i)

Pmax
ij sin(θj − θi), (116)

where Pij accounts for the type of coupling between the
different units (generators, consumers, . . . ). They ana-
lyze under which conditions the system is able to restore
to a stable operation after a perturbation in simple net-
works of machines and generators. We believe that the
principles summarized in this review will be very use-
ful for the understanding of the impact of the complex
topology of the power grids on their synchronization and
robustness.

C. Social sciences and economy

In the last decades, social sciences and economy have
become one of the favorite applications for physicists. In
particular, tools and models from statistical physics can
be implemented on what some people has called social
atoms, (Buchanan, 2007) i.e. unanimated particles are
replaced by agents that take decisions, trade stocks or
play games. Simple rules lead to interesting collective
behaviors and synchronization is one of them, because
some of the activities that individual agents do can be-
come correlated in time due to its interaction pattern,
which, in turn, is clearly another example of the complex
topologies considered along the review.

1. Opinion formation

One of such problems is the study of opinion forma-
tion in society. The underlying idea is that individuals
(or agents) have opinions that change under the influ-
ence of other individuals giving rise to a sort of collective
behavior, grouping together a macroscopic part of the
whole population with similar social features (Boccaletti
et al., 2006). Therefore, the main goal is to figure out
whether and when a complete or partial consensus can
emerge out of initially different opinions, no matter how
long it takes for the consensus to be reached.

In general, the formation of a collective opinion about
a certain matter is not equivalent to a transition to some
kind of synchrony, but rather to a transition to an absorb-
ing state. However, a recently proposed model (Pluchino
et al., 2005) makes explicit use of a modified KM (see
Sect. III) and thus in this case the formation of groups
of opinions can be thought of a synchronization process.
Agreement models deal with N individuals characterized
by an opinion xi (either an integer or real number) and a
network of contacts that drives the dynamics of opinion
formation through deterministic rules (Boccaletti et al.,
2006). Pluchino et al. (2005) considered the case in which
opinions are neither bounded nor periodic, but that two
initially different opinions can also diverge when time
goes on. Moreover, they also take into account that two
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quite different individuals tend to interact less by assum-
ing that the coupling between these two individuals is a
decreasing function of their opinion differences. Finally,
Pluchino et al. (2005) considered the situation in which
the main source of heterogeneity is not given by the initial
positions, but by different rates of changing individuals’
opinions.

Taking all the previous statements into account,
Pluchino et al. (2005) proposed the following governing
equations for the dynamics of the rate of change of opin-
ions

ẋi = ωi +
σ

N

N
∑

j=1

α sin(xj − xi)e
−α|xj−xi| , (117)

where xi(t) ∈ (−∞,+∞) is the opinion of the ith indi-
vidual at time t and the ωi’s are the natural or intrinsic
opinion changing rates. Note that the interactions are
assumed to be all-to-all, though the model can be di-
rectly generalized to any other topology. Moreover, the
ω’s are drawn from a distribution g(ω) centered at ω0

with the same properties as in the KM case (Sect. III).
On the other hand, as opposite to the KM, opinions are
not periodic anymore, so that a new order parameter is
introduced as

R(t) = 1 −

√

√

√

√

1

N

N
∑

1

(ẋj(t) − Ẋ(t))2 , (118)

with Ẋ(t) being the average of ẋj(t) over all individu-
als. From Eq. (118), it follows that R = 1 if complete
synchronization is achieved and R < 1 when only partial
synchronization occurs.

Numerical simulations of the model show that there
is a phase transition from incoherence to synchrony at a
well defined critical coupling σc. Pluchino et al. (2005)
argued that when σ < σc, the society can be thought
of as being formed by isolated, non-interacting cultures
or groups of opinions, since mixture or agreement is not
achievable. On the contrary, when σ ≫ σc, the system
fully synchronizes, giving rise in a social context to a
polarized or globalized society where social and cultural
differences are constrained into a single way of thinking,
notwithstanding the different tendencies to changes of
the individuals. Finally, the authors reported that bipo-
larity is only possible if σ ∼ σc, although in this case the
model shows a rich behavior depending on the way initial
opinions are assigned (Pluchino et al., 2005).

2. Finance

When reading the economic news, it is not difficult to
identify the existence of economic cycles in which Gross
Domestic Products (GDP’s), economic sectors, or stock
options raise and fall. Most of the time this does not
happen for isolated countries, sectors or options but it

occurs in quite a synchronized way, although some delays
are noticeable.

Within the framework of the current review, we are
focusing on synchronization in complex networks, and
this is what we can identify in many economical sectors:
there exists a complicated pattern of interactions among
companies or countries and the dynamics of each one is
quite complex. But, in contrast to many networks with a
physical background, here we neither know in detail the
node dynamics nor its connectivity pattern. In this situ-
ation it is useful to look at the problem from a different
angle. By analyzing some macroscopic outcomes, we get
some insight into the agents’ interactions.

The application of networks concepts, mainly that of
trees, to economical systems dates back to the pioneering
work by Mantegna (1999), who found a hierarchical ar-
rangement of stocks through the study of the correlation
returns.

Recently, Onnela et al. (2003) have taken a similar
approach to analyze the dynamics of markets. They look
at the daily closure prices for a total of N = 477 stocks
traded by the New York Stock Exchange over a period of
20 years, from Jan 02, 1980 to Dec 31, 1999. The data
is smoothed by looking at time windows of given width.
As is usually done in the analysis of financial data, the
measured quantity is the logarithmic return of the stocks,
defined as

ri(t) = lnPi(t) − lnPi(t− 1), (119)

where Pi(t) is the closure price of stock i at time t. To
quantify the degree of synchronization of the data, they
use the equal time correlation between assets

ρij(t) =
〈ri(t)rj(t)〉 − 〈ri(t)〉〈rj(t)〉

√

[〈r2i (t)〉 − 〈ri(t)〉2]
[

〈r2j (t)〉 − 〈rj(t)〉2
]

(120)

where 〈. . .〉 stands for a time average over the consecutive
trading days.

From these correlations the asset tree is constructed.
The distance between assets is defined as

dij(t) =
√

2(1 − ρij(t)). (121)

The minimum spanning tree is a simply connected graph
with N − 1 edges, such that the sum of all the distances
between connected nodes in the graph

∑

dij(t) is mini-
mum.

This procedure generates a time sequence of asset trees
that can be interpreted as a sequence of evolutionary
steps of a single dynamics asset tree. For instance, one
can identify the leading asset, that, in most instances,
corresponds to General Electric.

Such a reduction of the whole set of data retains most
of the salient features of the stock market. It is a re-
markable fact that during crisis periods the markets are
very strongly correlated. In terms of the tree its average
length is reduced and the tree is very tightly packed. By
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reducing the time window, the location of the smallest
tree converges to the Black Monday (October 19, 1987).

It is clear that a hidden pattern of interactions be-
tween the assets is responsible for such a synchronized
behavior and that during crashes the interactions are
strengthened. The message here is that the degree of
synchronization, quantitatively described in terms of the
asset correlation, is an indirect measure of the existence
of strongly connected agents in financial markets.

3. World Trade Web

The World Trade Web (WTW) is another example of
an empirically known network in economy constructed by
collecting data from available databases. There are sev-
eral studies that have focused on the static complex na-
ture of the links between countries (Serrano and Boguñá,
2003) and also the evolution of the statistical properties
of the network (Garlaschelli and Loffredo, 2005). But, as
expected, the trade volume between countries strongly
depends on the internal state of the nodes that form the
network. In this case the state of the nodes corresponds
to the GDP of the countries. Garlaschelli et al. (2007)
have analyzed the interplay between the topology of the
WTW and the dynamics of the GDP’s.

In none of the previous studies any reference is made
to the precise dynamics of the countries economies. As
we have stated before, we find what are usually called
economic cycles. Economies rise and fall, although they
mainly raise, but without a constant rate, following
rather unpredictable evolutions in time. Due to global-
ization effects, all economies are strongly correlated and
they will tend to follow a common trend. In our frame-
work, we can say that following a similar time evolution,
economies are synchronized. This cycle synchronization
of economies is a topic of current interest in the economic
literature; Calderón et al. (2007) perform a compara-
tive analysis between developing and industrial countries,
finding that the correlations within the first group are
positive but smaller than within the second group. An-
other example is found in Li et al. (2003) where corre-
lations between countries are measured in a similar way
as the financial series reported above. By taking into ac-
count that the US is the largest economy, and also the
biggest node in the WTW, they look at the degree of
synchronization between 22 developed countries and the
USA (see Fig. 36).

Another clear effect is that particular economies are
tightly connected because of economical agreements or
dependence on particular sectors. In the language of
communities this stronger relation can be understood as
the existence of communities in the overall structure of
the world economy.

Along these lines we have observed that there is a tight
relationship between synchronization of economic cycles
in terms of the GDP and the topological structure of
the WTW. The important question raised here is if the

FIG. 36 Twenty-two developed countries’ economic cycles
synchronization phenomena. The positive real GDP corre-
lation means synchronous economic cycles with the US. From
Li et al. (2003).

structure of the network that can be constructed from
the empirical data on the cycles correlations, as is done
with the finance data, can be mapped into the WTW
also empirically constructed from the world trade trans-
actions.

D. Perspectives

Despite the number of applications revised so far, there
is no doubt that synchronization phenomena on complex
topologies is still a new emerging field in which many ef-
forts will be invested in the future. We have mentioned
some problems where the tools and methodologies re-
vised in the first Sections have not been applied yet. It
will perhaps take more time to transfer the acquired theo-
retical knowledge to the application level. In other cases,
the available studies deal with networks of just a few ele-
ments. An important question for the near future is how
to extend these results to systems of many elements and
how the entangled structural and dynamical complexity
inherent to such systems contribute to the synchroniza-
tion of the system’s elements.

On more general grounds, given that complex networks
have become a far-reaching interdisciplinary topic and
that synchronization processes are present in a wide va-
riety of fields, it would not be surprising that new applica-
tions emerge guided by further theoretical developments
in the subject. For instance, many real systems may not
operate at the fully synchronized state, where most of
the theoretical approaches revised are effective. In this
sense, an important unsolved challenge is how to char-
acterize partial synchronization and how to exploit and
control partially synchronized states in contexts such as
wireless communication systems, where the information
transfer capacity is regulated by these states.



47

VI. CONCLUSIONS

Through the current review we have outlined the state
of the art towards a theory of synchronization in com-
plex networks. We emphasize the word theory, because,
up to now, physicists have made an effort of characteri-
zation that certainly deepened our understanding of the
complex connectivity of natural and manmade networks,
however, we cannot yet state that we have a theory of
complex networks. The topological characterization may
not be useful to make actual predictions which can be
contrasted with experiments. To this specific end, the
complex network substrate must be enriched and entan-
gled to the functioning of the system, i.e., to the dynam-
ics run on top of it.

The phenomenon of synchronization is one of the
paradigmatic observations in different dynamical sys-
tems. It is at the heart of some biological processes, and
according to the wide variety of applications presented
here, it is a plausible abstraction for many other pro-
cesses in different contexts. The natural approximation
to synchronization, from the simplicity of the Kuramoto
model, has been explored, and even in this case an in-
tricate set of questions concerning the uniformity of the
equations proposed, or the nature of the critical behav-
ior at the onset of synchronization still have to be def-
initely settled. The main results, however, have helped
to understand the nature of the relationship between the
topology of interactions and the synchronization of phase
oscillators. We foresee the importance of these results in
the basis of a theory of neural dynamics of the brain. Al-
though neural dynamics is far more complex than the
phase representation reviewed, main features that de-
scribe the path towards synchrony in complex networks
have been already stated and can thus be considered as
a good starting point. However, regarding the subjects
revised here, one easily realizes that the work is far from
complete and many questions are in the air, e.g. the
evolution of synchronization in evolving topologies, the
effect on the phenomenon of several kind of disorder, time
delays, the presence of noise, etc.

The other main contribution to the problem comes
from the MSF formalism. The elegant structure of the
formalism, designed for linear systems or nonlinear sys-
tems close to the synchronization state, allows us to make
theoretical predictions independent of the specificities of
the dynamics. This general framework has been deeply
studied recently, and provides one of the few mechanisms
that allow to make predictions about the evolution of syn-
chronized systems as a function of its specific topology.

We think that the exploration of new mathematical ob-
jects, able to merge the information provided by specific
dynamics (as for example the Kuramoto model) along to
the whole process towards synchronization, together with
the fine description of the dynamics near the synchroniza-
tion manifold, should be the focus of intense research if
we aim to provide a general theory of synchronization
processes in complex networks. On the other hand, the

myriad of applications that can be cast into mathemati-
cal models equivalent to those presented along the review,
indicates an explosion of activity in different disciplines
that will use the conceptual framework of synchroniza-
tion processes in networked systems as a fundamental
playground for understanding its dynamical behavior.
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2000, Phys. Rev. E 62, 5565–5570.

Guclu, H., G. Korniss, M. A. Novotny, Z. Toroczkai, and Z.
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