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Synchronization reveals topological scales in complex networks
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We study the relationship between topological scales and dynamic time scales in complex networks.
The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators.
In the synchronization process, modular structures corresponding to well defined communities of
nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a
useful connection between synchronization dynamics, complex networks topology and spectral graph
analysis.
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The science of complex networks has been a subject of
attention of the physicists’ community in the recent years
[1–3]. Complex networks are found in fields as diverse as
the Internet, the World-Wide-Web, food-webs, and bi-
ological and social organizations (see [4] and references
therein). Although the main characteristics of complex
networks have been properly described at the microscale
level (node properties) and also at the macroscale level
(whole network properties) some of the characteristics of
the mesoscale are still elusive. In particular, the commu-
nity detection problem concerning the determination of
mesoscopic structures that have functional, relational or
even social entity is still controversial, starting from the
’a priori’ definition of what a community is [5, 6].

The community detection problem consists in finding
a ’good’ partition of the network in sub-graphs that rep-
resent communities according to a given definition. How-
ever, in many complex networks the organization of nodes
is not completely represented by a unique partition but
by a set of nested communities that appear at different
topological scales. Let us consider as a naive example
the network formed by all human acquaintances. Thus,
at some topological scale we can expect to find many
communities formed by families, friends and soon, be-
yond this scale the expected partitions into cities will
come up, beyond this regions, after that countries, and
finally probably continental areas. Here, we are aimed
at giving a method to reveal these different topological
scales.

In a completely different scenario, physicists have
largely studied the dynamics of complex biological sys-
tems, and in particular the paradigmatic analysis of large
populations of coupled oscillators [7–9]. The emergence
of synchronization patterns in these systems has been
shown to be closely related to the underlying topology
of interactions. In this letter we show that, for a suit-
able model, the dynamical process towards synchroniza-
tion shows different patterns over time intrinsically con-

nected with the hierarchical organization of communities
in complex networks. The ubiquity of synchronization
phenomena in real world makes appealing this approach
from a physical and biological perspective. Moreover we
will show that the connections with the spectral theory of
the Laplacian matrix of a graph spreads the possibilities
of the analysis to any complex network.

One of the most successful attempts to understand syn-
chronization phenomena was due to Kuramoto [9], who
analyzed a model of phase oscillators coupled through the
sine of their phase differences. The model is rich enough
to display a large variety of synchronization patterns and
sufficiently flexible to be adapted to many different con-
texts [10]. The Kuramoto model consists of a population
of N coupled phase oscillators where the phase of the i-th
unit, denoted by θi(t), evolves in time according to the
following dynamics

dθi

dt
= ωi +

∑

j

Kij sin(θj − θi) i = 1, ..., N (1)

where ωi stands for its natural frequency and Kij de-
scribes the coupling between units. The original model
studied by Kuramoto assumed mean-field interactions
Kij = K, ∀i, j. If the oscillators are identical (ωi = ω ∀i)
there is only one attractor of the dynamics: the fully syn-
chronized regime where θi = θ, ∀i. Recently, due to the
realization that many networks in nature have complex
topologies, these studies have been extended to complex
networks with local interaction [11–18].

In particular, it has been shown [19, 20] that high
densely interconnected sets of oscillators (motifs) syn-
chronize more easily that those with sparse connections.
This scenario suggests that for a complex network with
a non-trivial connectivity pattern, starting from random
initial conditions, those highly interconnected units form-
ing local clusters will synchronize first and then, in a se-
quential process, larger and larger spatial structures also
will do it up to the final state where the whole population
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should have the same phase. We expect this process to
occur at different time scales if a clear community struc-
ture exists. Thus, the dynamical route towards the global
attractor will reveal different topological structures, pre-
sumably those which represent communities. Therefore,
it is the complete dynamical process what unveils the
whole organization at all scales, from the microscale at a
very early stages up to the macroscale at the end of the
time evolution. On the contrary, those systems endowed
with a regular topological structure will display a trivial
dynamics with a single time scale for synchronization.

To study this phenomena, instead of considering a
global observable, we define a local order parameter mea-
suring the average of the correlation between pairs of os-
cillators

ρij(t) =< cos(θi(t) − θj(t)) > (2)

where the brackets stand for the average over initial ran-
dom phases. The main advantage of this approach is that
it allows to trace the time evolution of pairs of oscillators
and therefore to identify compact clusters reminiscent of
the existence of communities.

To give evidence of the aforementioned facts we have
analyzed the dynamics towards synchronization –time
evolution of ρij(t)– in computer-generated graphs with
a hierarchical community structure. In [21] the authors
proposed models of networks with a well defined commu-
nity structure, that have been used as a benchmark for
different community detection algorithms [6]. Here, we
propose a generalization of this model that includes two
hierarchical levels of communities. The graphs we gen-
erate are as follows: we prescribe, in a set of 256 nodes,
16 compartments that will represent our first community
organizational level, and four compartments containing
each one four different compartments of the above first
level, that define the second organizational level of the
network. The internal degree of nodes at first level zin1

and the internal degree of nodes at second level zin2
keep

an average degree zin1
+ zin2

+ zout = 18. From now
on, networks with two hierarchical levels are indicated as
zin1

- zin2
, e.g. a network with 13-4 means 13 links with

the nodes of its first hierarchical level community (more
internal), 4 links with the rest of communities that form
the second hierarchical level (more external) and 1 link
with any community of the rest of the network.

In Fig. 1 we represent ρij(t) at the same time t for two
slightly different hierarchical networks 13-4 and 15-2. In
the two figures we can identify the two levels of the hier-
archical distribution of communities. The network 13-4
(left) is very close to a state in which the four large groups
are almost synchronized whereas the network 15-2 (right)
still presents some of the smaller groups of synchronized
oscillators, and the larger group starting to synchronize,
coherently with their topological structure.

The visualization of the correlation matrix of the sys-
tem helps in elucidating the topology of the network. To

FIG. 1: Color on-line. Average of the correlation between
pairs of oscillators. The structure networks are 13-4 (left)
and 15-2 (right). See text for a description of the networks.
The colors are a gradation between blue (0) and red (1).

extract the quantitative information it is useful to intro-
duce some threshold T to convert the correlation matrix
into a binary matrix, that will be used to determine the
borders between different groups. We define a dynamic

connectivity matrix

Dt(T )ij =

{

1 if ρij(t) > T
0 if ρij(t) < T

(3)

that depends on both the underlying topology and the
collective dynamics. For a fixed time t, by moving the
threshold T , we obtain different representations of Dt(T )
that inform about the structure of the dynamic corre-
lations. When the threshold is large enough the repre-
sentation of Dt(T ) becomes a set of disconnected clumps
or communities. Decreasing T a hierarchical structure
of communities is devised. Note that since the function
ρij(t) is continuous and monotonic (because the existence
of a unique attractor of the dynamics), we can redefine
DT (t), i.e. fixing the threshold and evolving in time.
We obtain the same information about the structure of
the dynamic connectivity matrix at different time scales.
Let us show that these time scales unravel the topological
structure of the connectivity matrix at different topolog-
ical scales.

From the eigenvalue spectrum of DT (t), S(DT (t)), one
can extract the number of disconnected components of
the system as the number of null eigenvalues. The evo-
lution of S(DT (t)) traces the hierarchy of communities
as follows: at short times, all units are uncorrelated and
then we have N disconnected sets, being N the number of
nodes in the network; as time goes on, nodes become syn-
chronized in groups according to their topological struc-
ture. In Fig. 2 (top) we plot, for the two networks ana-
lyzed in Fig. 1, the number of disconnected components
as a function of time, for a fixed threshold T [22]. We can
observe the relative stability of the two partitions for the
two networks, corresponding to the two prescribed hier-
archical levels. For the 13-4 network the synchronization
of the 4 groups of 64 nodes each is much more stable than
the 16 groups of 16 nodes, i.e. the community structure
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FIG. 2: Color on-line. Top: Number of disconnected synchro-
nized components (equivalent to number of null eigenvalues
of S(DT (t))) as a function of time for the two networks of
Fig. 1 at T = 0.99. Bottom: Rank index i (see text) versus
the inverse of the corresponding eigenvalues of the Laplacian
matrix L. The shadow regions indicate the stability plateaus
for 16 (dark) and 4 (light) communities. The same repre-
sentation is used for the plateaus in the eigenvalue spectrum
corresponding to indices 16 and 4.

at the second hierarchical level is stronger, whereas the
opposite can be inferred for network 15-2.

Another interesting link between dynamics and topol-
ogy can be highlighted from the analysis of the whole
spectrum of the Laplacian matrix of the network graph L

[23]. The Laplacian matrix is defined as Lij = kiδij −aij ,
where ki is the degree of node i, δij is the Kronecker
delta and aij is the element of the adjacency matrix (1
if nodes i and j are connected and 0 otherwise). The
spectral information of the Laplacian matrix has been
used to understand the structure of complex networks
[24], and in particular to detect the community structure
[25, 26]. Recent studies have also focused on the spec-
tral information of the Laplacian matrix and the syn-
chronization dynamics [11–18]. The common approach
is to take advantage of the master stability equation [27]
to determine the relation between the relative stability
of the synchronized state (via the ratio λN/λ2) and the
heterogeneity of the topology, although sometimes some
language abuse appears and authors talk about better or
worse synchonizability instead of stability of the synchro-
nized state. Our approach differs from these works in the
following: we are interested in the transient towards syn-
chronization because it is this whole process which will
reveal the topological structure at different scales. For
this reason our analysis focus on the whole eigenvalue
spectrum of the Laplacian matrix S(L).

To characterize this spectrum, we rank the eigenvalues
of L using an index i in ascending order 0 = λ1 ≤ λ2 ≤

. . . λi . . . ≤ λN . The structure of this sequence brings to
light many aspects of the topological structure: (i) the
number of null eigenvalues gives trivially the number of
disconnected components, (ii) the gaps between consec-
utive eigenvalues tell us about the relative differences of
time scales, and (iii) large eigenvalues in the last part of
the series stands for the existence of hubs in the network
(we will turn to these points later). In Fig. 2 (bottom)
we have plotted the eigenvalues of the Laplacian matrix
for the 13-4 and 15-2 structures. We observe three groups
of eigenvalues separated by gaps. Each gap separates a
community either of 256 groups, 16 groups, 4 groups ele-
ments or the whole population. Notice that for the 13-4
graph the plateau of 16 communities is shorter than the
plateau for 4 communities and the contrary for the 15-2
case, indicating that the 16 clusters community is less
well defined in the former case. Indeed, the ratio be-
tween the eigenvalues is a good quantitative measure of
the stability of the structure (which is measured in terms
of modularity in other studies [6]) and is related to the
length of the plateaus observed in Fig. 2 (top).

We visualize the formation of the connected groups
of synchronized oscillators in time constructing a dendo-
gram in which we draw lines between groups of oscilla-
tors when they merge. Applying this technique to the
above defined networks we can see two different topo-
logical scales disclosed by synchronization and the rela-
tive stability of them. The networks investigated so far
are homogeneous in degree. At this point we ask about
the effect when inhomogeneities in degree are considered.
We have applied this procedure to the network structure
proposed by Ravasz and Barabasi [28] with a hierarchical
structure in two levels and a scale-free degree distribu-
tion. As can be seen from the dendogram depicted in
Fig. 3 the communities synchronize at different times,
depending on its role in the hierarchy, and it also shows
the remarkably effect of hubs in the synchronization pro-
cess.

Finally we would like to shed some light about the
intriguing relationship between the eigenvalues of the
Laplacian and the dynamic structures that emerge to-
wards synchronization. To understand this correspon-
dence let us analyze the linearized dynamics of the Ku-
ramoto model (i.e. the dynamics close to the attractor
of synchronization) in terms of the Laplacian matrix,

dθi

dt
= −k

∑

j

Lijθj i = 1, ..., N (4)

whose solution in terms of the normal modes ϕi(t) reads

ϕi(t) =
∑

j

Bijθj = ϕi(0)e−λit i = 1, ..., N (5)

whereλi are the eigenvalues of the Laplacian matrix, and
B is the eigenvectors matrix.
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FIG. 3: Left: RB network of 25 labeled nodes with two hier-
archical levels. Right: Time evolution of the synchronization
process between labeled oscillators. The length of the dendo-
gram branches indicate the relative stability of the different
structures.

This set of equations has to be satisfied at any time
t. If we rank the system of equations in descending or-
der of the eigenvalues (i.e. starting from λN ), the right
hand side system of Eq.(5) will approach zero in a hier-
archical way. This fact is equivalent in the dynamics to
group oscillators surpassing the synchronization thresh-
old forming communities. The gaps in the spectrum S(L)
represent clearly different time scales between modes re-
vealing different topological scales. The collective modes,
solution of the system represented by Eq.(5), denote two
types of behaviors. Some modes provide information
about reorganization of the phases in the whole network,
while the others inform about synchronization between
pairs or groups of oscillators. The presence of hubs in
the topology gives rise to large eigenvalues that decay
very fast and are related to the first type of modes, those
representing ”synchronization” between the hub and the
topological average of the phases of rest of oscillators. The
rest of modes relate oscillators that have similar projec-
tions on the corresponding eigenvectors thus giving rise
to communities at a given topological scale. Indeed, this
fact support the success of the identification of commu-
nities using spectral analysis [25].

Summarizing, we have analyzed the synchronization
dynamics in complex networks and show how this process
unravels its different topological scales. We have also
reported a connection between the spectral information
of the Laplacian matrix and the hierarchical process of
emergence of communities at different time scales.
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