Publications -- games theory

The information on this website are distributed only for academic and research purposes.

  Strategical incoherence regulates cooperation in social dilemmas on multiplex networks

Scientific Reports 5, 9519 - doi:10.1038/srep09519 - 2015

J. Matamalas, J. Poncela-Casasnovas, S. Gómez, and Alexandre Arenas

Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network structure within the population is known to affect the outcome of cooperative dynamics, as described by the Game Theory paradigm, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multilayered networks has yet again modified the expectations for the outcome of the Prisoner’s Dilemma game, compared to the monoplex case. However, much remains to be studied regarding other games in the plane of social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically and carefully study the evolution and outcome of all four games in the S − T plane (Prisoner’s Dilemma, Stag-Hung, Snow Drift and Harmony) on multiplex, as a function of the number of layers. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are at the root of the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don’t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected survival of cooperation in some regions of the other three social dilemmas.