Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influential nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

The coexistence of multiple types of interactions within social, technological and biological networks has moved the focus of the physics of complex systems towards a multiplex description of the interactions between their constituents. This novel approach has unveiled that the multiplex nature of complex systems has strong influence in the emergence of collective states and their critical properties. Here we address an important issue that is intrinsic to the coexistence of multiple means of interactions within a network: their competition. To this aim, we study a two-layer multiplex in which the activity of users can be localized in each of the layers or shared between them, favouring that neighbouring nodes within a layer focus their activity on the same layer. This framework mimics the coexistence and competition of multiple communication channels, in a way that the prevalence of a particular communication platform emerges as a result of the localization of user activity in one single interaction layer. Our results indicate that there is a transition from localization (use of a preferred layer) to delocalization (combined usage of both layers) and that the prevalence of a particular layer (in the localized state) depends on the structural properties.

Real-world complex systems exhibit multiple levels of relationships. In many cases, they require to be modeled by interconnected multilayer networks, characterizing interactions on several levels simultaneously. It is of crucial importance in many fields, from economics to biology, from urban planning to social sciences, to identify the most (or the less) influent nodes in a network. However, defining the centrality of actors in an interconnected structure is not trivial. In this paper, we capitalize on the tensorial formalism, recently proposed to characterize and investigate this kind of complex topologies, to show how several centrality measures -- well-known in the case of standard ("monoplex") networks -- can be extended naturally to the realm of interconnected multiplexes. We consider diagnostics widely used in different fields, e.g., computer science, biology, communication and social sciences, to cite only some of them. We show, both theoretically and numerically, that using the weighted monoplex obtained by aggregating the multilayer network leads, in general, to relevant differences in ranking the nodes by their importance.

Many complex systems can be represented as networks composed by distinct layers, interacting and depending on each others. For example, in biology, a good description of the full protein-protein interactome requires, for some organisms, up to seven distinct network layers, with thousands of protein-protein interactions each. A fundamental open question is then how much information is really necessary to accurately represent the structure of a multilayer complex system, and if and when some of the layers can indeed be aggregated. Here we introduce a method, based on information theory, to reduce the number of layers in multilayer networks, while minimizing information loss. We validate our approach on a set of synthetic benchmarks, and prove its applicability to an extended data set of protein-genetic interactions, showing cases where a strong reduction is possible and cases where it is not. Using this method we can describe complex systems with an optimal trade--off between accuracy and complexity.

We characterize the evolution of a dynamical system by combining two well-known complex systems' tools, namely, symbolic ordinal analysis and networks. From the ordinal representation of a time series we construct a network in which every node weight represents the probability of an ordinal pattern (OP) to appear in the symbolic sequence and each edge's weight represents the probability of transitions between two consecutive OPs. Several network-based diagnostics are then proposed to characterize the dynamics of different systems: logistic, tent, and circle maps. We show that these diagnostics are able to capture changes produced in the dynamics as a control parameter is varied. We also apply our new measures to empirical data from semiconductor lasers and show that they are able to anticipate the polarization switchings, thus providing early warning signals of abrupt transitions.

Recent advances in the study of networked systems have highlighted that our interconnected world is composed of networks that are coupled to each other through different layers that each represent one of many possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer networks into a single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also extremely problematic, as important information can be lost as a result. It is therefore important to develop multilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea of transitivity to multiplex networks. By focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept and computation of clustering coefficients to multiplex networks. We show how the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why one must take great care when generalizing standard network concepts to multiplex networks. We also derive analytical expressions for our clustering coefficients for ensemble averages of networks in a family of random multiplex networks. Our analysis illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer and that they thereby have a different type of multiplex transitivity from transportation networks, which do not exhibit such a tendency. These insights are invisible if one only studies aggregated networks.

The vertiginous increase of e-platforms for social communication has boosted the ways people use to interact each other. Micro-blogging and decentralized posts are used indistinctly for social interaction, usually by the same individuals acting simultaneously in the different platforms. Multiplex networks are the natural abstraction representation of such "layered" relationships and others, like co-authorship. Here, we re-define the betweenness centrality measure to account for the inherent structure of multiplex networks and propose an algorithm to compute it in an efficient way. To show the necessity and the advantage of the proposed definition, we analyze the obtained centralities for two real multiplex networks, a social multiplex of two layers obtained from Twitter and Instagram and a co-authorship network of four layers obtained from arXiv. Results show that the proposed definition provides more accurate results than the current approach of evaluating the classical betweenness centrality on the aggregated network, in particular for the middle ranked nodes. We also analyze the computational cost of the presented algorithm.

We study the evolution of scientific collaboration at Atapuerca’s archaeological
complex along its emergence as a large-scale research infrastructure (LSRI). Using
bibliometric and fieldwork data, we build and analyze co-authorship networks corresponding
to the period 1992–2011. The analysis of such structures reveals a stable core of
scholars with a long experience in Atapuerca’s fieldwork, which would control coauthorship-related
information flows, and a tree-like periphery mostly populated by ‘external’
researchers. Interestingly, this scenario corresponds to the idea of a Equipo de Investigacio´n
de Atapuerca, originally envisioned by Atapuerca’s first director 30 years ago. These
results have important systemic implications, both in terms of resilience of co-authorship
structures and of ‘oriented’ or ‘guided’ self-organized network growth. Taking into
account the scientific relevance of LSRIs, we expect a growing number of quantitative
studies addressing collaboration among scholars in this sort of facilities in general and,
particularly, emergent phenomena like the Atapuerca case.

A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems is very rich. Achieving a deep understanding of such systems necessitates generalizing "traditional" network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multi-layer complex systems. In this paper, we introduce a tensorial framework to study multi-layer networks, and we discuss the generalization of several important network descriptors and dynamical processes ---including degree centrality, clustering coefficients, eigenvector centrality, modularity, Von Neumann entropy, and diffusion--- for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multi-layer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.

One of the more challenging tasks in the understanding of dynamical properties of models on top of complex networks is to capture the precise role of multiplex topologies. In a recent paper, Gomez et al. [Phys. Rev. Lett. 101, 028701 (2013)] proposed a framework for the study of diffusion processes in such networks. Here, we extend the previous framework to deal with general configurations in several layers of networks, and analyze the behavior of the spectrum of the Laplacian of the full multiplex. We derive an interesting decoupling of the problem that allow us to unravel the role played by the interconnections of the multiplex in the dynamical processes on top of them. Capitalizing on this decoupling we perform an asymptotic analysis that allow us to derive analytical expressions for the full spectrum of eigenvalues. This spectrum is used to gain insight into physical phenomena on top of multiplex, specifically, diffusion processes and synchronizability.

Our current world is linked by a complex mesh of networks where information, people and goods
flow. These networks are interdependent each other, and present structural and dynamical features
different from those observed in isolated networks. While examples of such “dissimilar” properties
are becoming more abundant, for example diffusion, robustness and competition, it is not yet clear
where these differences are rooted in. Here we show that the composition of independent networks
into an interconnected network of networks undergoes a structurally sharp transition as the interconnections
are formed. Depending of the relative importance of inter and intra-layer connections,
we find that the entire interdependent system can be tuned between two regimes: in one regime, the
various layers are structurally decoupled and they act as independent entities; in the other regime,
network layers are indistinguishable and the whole system behave as a single-level network. We
analytically show that the transition between the two regimes is discontinuous even for finite size
networks. Thus, any real-world interconnected system is potentially at risk of abrupt changes in its
structure that may reflect in new dynamical properties.

Complex systems are usually represented as an intricate set of relations between their components forming a complex graph or network. The understanding of their functioning and emergent properties are strongly related to their structural properties. The finding of structural patterns is of utmost importance to reduce the problem of understanding the structure–function relationships. Here we propose the analysis of similarity measures between nodes using hierarchical clustering methods. The discrete nature of the networks usually leads to a small set of different similarity values, making standard hierarchical clustering algorithms ambiguous. We propose the use of multidendrograms, an algorithm that computes agglomerative hierarchical clusterings implementing a variable-group technique that solves the non-uniqueness problem found in the standard pair-group algorithm. This problem arises when there are more than two clusters separated by the same maximum similarity (or minimum distance) during the agglomerative process. Forcing binary trees in this case means breaking ties in some way, thus giving rise to different output clusterings depending on the criterion used. Multidendrograms solves this problem by grouping more than two clusters at the same time when ties occur.

In food webs, the degree of intervality of consumers' diets is an indicator of the number of dimensions
that are necessary to determine the niche of a species. Previous studies modeling food-web structure
have shown that real networks are compatible with a high degree of diet contiguity. However, current
models are also compatible with the opposite, namely that species' diets have relatively low contiguity.
This is particularly true when one takes species' body size as a proxy for niche value, in which case the
indeterminacy of diet contiguities provided by current models can be large. We propose a model that
enables us to narrow down the range of possible values of diet contiguity. According to this model, we
find that diet contiguity not only can be high, but must be high when species are ranked in ascending
order of body size.