Self-similar community structure in a network of human interactions

R. Guimerà,1,2 L. Danon,3,4 A. Díaz-Guilera,3,1 F. Giralt,1 and A. Arenas4

1Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Catalunya, Spain
2Department of Chemical Engineering, Northwestern University, 60208 Evanston, IL, USA
3Departament de Física Fonamental, Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain
4Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Catalunya, Spain

We propose a novel procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from e-mail communications within a medium sized university with about 1700 employees. E-mail networks provide an accurate and non intrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as for instance river networks, could also be the underlying driving force in the formation and evolution of social networks.

Signatures of complex systems appear in disciplines as diverse as biology, chemistry, economy and computer science, to name just a few. More specifically, the study of the complex networks of interactions in such systems has received a lot of attention from the statistical physics community [1–5]. The structure of these complex networks is a reflection of the dynamics of their formation and evolution, and can be partially characterized using statistical observables such as the average distance between nodes [1], the clustering coefficient [1], and the degree distribution [2, 3]. Even though these measures are very useful in some situations, often they are not sufficient to describe key features of networks. In the specific field of social sciences, a more detailed description of human interactions is crucial to understand the formation and evolution of complex social networks.

In this Letter we describe a novel procedure to characterize the structure of networks, based on a recently proposed algorithm to identify communities in graphs [6]. Our procedure allows to study quantitatively the hierarchical structure of nested communities in networks. Moreover we apply the procedure to a real social network. We define and analyze the complex e-mail network of an organization with about 1700 employees and determine its community structure. Our results reveal that this network self-organizes into a self-similar structure, suggesting that some universal mechanism could be the underlying driving force in the formation and evolution of social networks, as happens in other complex systems [7, 8].

Apart from work related reasons, ties between individuals in any organization arise, without an external influence, due to personal, political and cultural reasons, among others. The rapid development of electronic communications provides a powerful tool to analyze the informal self-organized social network arising as a result of the formation of such ties. Indeed, every time that an e-mail is sent, the addresses of the sender and the receiver are routinely registered in a server. Therefore, an e-mail network can be built regarding each e-mail address as a node and linking two nodes if there is an e-mail communication between them. We take as a case study the e-mail network of University Rovira i Virgili (URV) in Tarragona, Spain, containing 1669 users including faculty, researchers, technicians, managers, administrators, and graduate students.

Bulk e-mails provide little or no information about how individuals or teams interact, so to minimize their effect: (i) we eliminate e-mails that are sent to more than 50 different recipients and (ii) we disregard links that are unidirectional, that is, we consider that two nodes A and B are connected only if A has sent an e-mail to B and B has also sent an e-mail to A. With this restrictions, the network is an undirected graph [26].

The cumulative degree distribution $P(k)$ of the e-mail network—representing the probability that a node has k or more links to other nodes—is exponential

$$P(k) \propto \exp(-k/k^*)$$

for $k \geq 2$, with $k^* = 9.2$. This result is in contrast with recent findings indicating that some technology based social networks—such as rough e-mail networks [9], the Instant Messaging Network [10] or the PGP encryption network [11]—which show heavily skewed degree distributions, but is consistent with the proposal of Amaral and coworkers that the truncation of the scale-free behavior in real world networks is due to the existence of limitations or costs in the establishment of connections [3, 12]. Indeed, it seems plausible that there are costs to maintaining active social acquaintances and therefore active communications. However, it is relatively easy to keep many electronic acquaintances open, although most of them are probably inactive from a social point of view.

Out of the total 1669 nodes, 1133 belong to the giant component. The rest are isolated or, at most, connected by pairs. In the following, we focus on this giant component, that can be characterized by statistical properties such as its clustering coefficient $C = 0.254$ and its average shortest path length $d = 3.606$ [1]. For comparison, we construct a random network with exactly the same exponential degree distribution as the e-mail network following the procedure proposed in Ref. [13] (from now on we will call it random exponential network). The clustering of the exponential network is approximately 10 times smaller $C = 0.028$ while the average shortest path length is very similar $d = 3.317$, as happens in small world networks [1].
To understand the structure of the social network of the organization, we are interested in determining how individuals interact and form groups that, in turn, interact with each other giving rise to higher order groups, that is, groups of groups. In other words, we want to unravel the community structure of the network. To do so we use the algorithm proposed recently by Girvan and Newman (GN) [6] to identify communities in complex networks (see Fig. 1).

The GN algorithm proceeds as follows [6]. The betweenness of an edge is defined as the number of minimum paths connecting pairs of nodes that go through that edge [14, 15]. The key idea is that the edges that connect highly clustered communities have a higher edge betweenness—edge BE in Fig. 1.a—and therefore cutting these edges should separate communities. The algorithm identifies and removes the link with the highest betweenness in the network. After every removal, the betweenness of the edges is recalculated and the process is repeated until the ‘parent’ network splits, producing two separate ‘offspring’ networks. The offspring can be split recursively in the same way until they comprise of only one individual.

In order to describe the entire splitting process, we generate a binary tree, in which bifurcations (white nodes) depict communities and leaves (black nodes) represent individual addresses of the e-mail network (Fig. 1.b). At the beginning of the process, the network in Fig. 1.a is a single entity, represented by node 1 in the tree. After the removal of the edge BE, the network is split into two subnetworks, 2 and 3, containing nodes A to D and E to I respectively. Since the two offspring networks have no further internal community structure all the links within each have the same betweenness. In this case, one of them will be selected at random for removal. Iterating the link removal procedure, nodes will be separated randomly one by one by the GN algorithm, in such a way that each community will appear as a branch in the binary tree. It is important to note that central nodes, such as node E, will be separated last. This particular characteristic of the GN algorithm can be used with managerial purposes to detect those persons that act like hubs in the organization.

Summarizing, the information about the community structure of the original network can be deduced from the topology of the binary tree that represents this splitting procedure and which leaves correspond to addresses of the e-mail network. The different communities of the original network appear as branches in this tree, which are easily identified by visual inspection.

The community binary tree for URV is shown in Fig. 2. Each color in Fig. 2a corresponds to one center of the university, that is to a department or college, or to management units such as the office of the Rector of the university. Two properties of the tree are worth noting. First, a clear branching structure emerges, with branches essentially containing nodes of the same color. This shows that the identification of communities is successful, despite the complexity of the interactions in the original e-mail network. Second, the branching structure is far from simple. Indeed, each branch is formed, in general, by a system of nested smaller subbranches that give
rise to a complicated structure that visually resembles some self-similar systems in nature such as river networks [16] or diffusion-limited aggregates [17]. For comparison, we also show the tree generated by the GN algorithm from the random exponential network (Fig. 2c). In contrast to the tree for the URV e-mail network, the branching structure is almost trivial with most of the branches containing only one or two nodes. This is the expected result for a network that does not have any sort of community structure.

FIG. 3: Self-similarity in the community structure. (a) Calculation of the community size distribution for a binary tree generated by the community identification algorithm. Black nodes represent the actual nodes of the original graph while white nodes are just graphical representations of communities that arise as a result of the splitting procedure. Nodes A and B belong to a community of size 2, and together with E form a community of size 3. Similarly, C, D and F form another community of size 3. These two groups together form a higher level community of size 6. Note that a single node belongs to different communities i.e. different hierarchical levels. (b) Calculation of the Horton-Strahler index. In this case, there are 10 branches with index 1, 3 branches with index 2, and 1 branch with index 3. (d) Comparison between the distribution of community sizes in the email network, in the random exponential network and in the hierarchical network model proposed by Ravasz and Barabasi (RB), with $n = 4$ and 5 levels [18]. (c) Calculation of the Horton-Strahler index. In this case, there are 10 branches with index 1, 3 branches with index 2, and 1 branch with index 3. (d) Comparison between the distribution of community sizes in the email network, in the random exponential network and in the hierarchical network model proposed by Ravasz and Barabasi (RB), with $n = 4$ and 5 levels [18]. (e) Calculation of the Horton-Strahler index. In this case, there are 10 branches with index 1, 3 branches with index 2, and 1 branch with index 3. (d) Comparison between the distribution of community sizes in the email network, in the random exponential network and in the hierarchical network model proposed by Ravasz and Barabasi (RB), with $n = 4$ and 5 levels [18].

Once the binary tree has been obtained, we look for a quantitative characterization of the community structure. First we consider the cumulative community size distribution, $P(s)$, that is, the probability of a community having a size larger or equal to s. Each node i of the binary tree represents a community—or a single e-mail address. Its community size s_i is just the summation of the sizes of its two offspring j_1 and j_2: $s_i = s_{j_1} + s_{j_2}$. Fig. 3a shows how to compute the sizes of all the communities in a simple binary tree and the corresponding probability distribution $P(s)$, that is, the probability that a community has size larger or equal to s. The community size distribution for the e-mail network is presented in Fig. 3d. The distribution is heavily skewed, following a power law behavior $P(s) \propto s^{-\alpha}$ with $\alpha = 0.48$ between $s = 2$ and $s \approx 100$. Beyond this value, the distribution shows a sharp decay and, at $s \approx 1000$, a cutoff that corresponds to the size of the system. The power law of the community size distribution suggests that there is no characteristic community size in the network (up to $s \approx 100$). To rule out the possibility that this behavior is due to the community identification algorithm, we also consider the community size distribution for a random exponential network and for a hierarchical network as proposed by Ravasz and Barabasi (RB) [18]. While the community size distribution of the random exponential network is completely different—with essentially no communities of sizes between 2 and 100—, the behavior of the RB model is similar to the scaling presented by the e-mail network. Therefore, it seems that the self replicating structure of RB networks, which is implicit by construction, is a reasonable first approximation to the structure of the e-mail network.

The characterization of the community binary tree using the cumulative size distribution has its analogy in the river network literature [16, 20, 21]. The equivalent measure is the distribution of drainage areas, that represents the amount of water that is generated upstream of a given point (see Fig. 3b). The drainage area of a given point is the number of nodes upstream of it plus one. For a point i with offspring j_1 and j_2, the drainage area s_i is therefore $s_i = s_{j_1} + s_{j_2} + 1$. The similitude between the community size distribution of the current e-mail network in Fig. 3d and the area distribution of the Fella river network in Italy reported in Fig. 2 of Ref. [21] is striking. The exponent $\alpha = 0.45$ for the power law region of this river and the average exponent for several rivers $\alpha_{\text{river}} = 0.43 \pm 0.03$ respectively reported by [21] and [20], are very close to the current $\alpha = 0.48$. Moreover, the behavior shown in Fig. 3d with first a sharp decay and then a final cutoff is also shared by river networks, which are known to evolve to a state where the total energy expenditure is minimized [20, 22, 23]. The possibility that communities within organizations might also spontaneously self-organize into a form in which some quantity is optimized is very appealing and deserves further investigation.

To further understand this point, it is pertinent to ask whether there are other emergent properties shared by both. To answer this question we consider a standard measure for categorizing binary trees: the Horton-Strahler (HS) index, originally introduced for the study of river networks by Horton [24], and later refined by Strahler [25]. Consider the binary tree depicted in Fig. 3c. The leaves of the tree are assigned a HS index $i = 1$. For any other branch that ramifies into two branches with HS indices i_1 and i_2, the index is cal-
calculated as follows:

\[
i = \begin{cases}
 i_1 + 1 & \text{if } i_1 = i_2, \\
 \max(i_1, i_2) & \text{if } i_1 \neq i_2.
\end{cases}
\]

(2)

Note that the index of a branch changes when it meets a branch with higher index, or when it meets a branch with the same value and both of them join forming a branch with higher index. In terms of communities, the interpretation of the HS index is the following. The index of a community changes when it joins a community of the same index. Consider, for instance, the lowest levels: individuals \(i = 1\) join to form a group (or team, with \(i = 2\), which in turn will join other groups to form a second level group (or department, \(i = 3\)). Therefore, the index reflects the level of aggregation of communities. The number of branches \(N_i\) with index \(i\) can be determined once the HS index of each branch is known. The bifurcation ratios \(B_i\) are then defined by

\[
B_j = \frac{N_j}{N_{j+1}}
\]

(3)

(by definition \(B_i \geq 2\)).

When \(B_i \approx B\) for all \(i\), the structure is said to be topologically self-similar, because the overall tree can be viewed as being comprised of \(B\) sub-trees, which in turn are comprised of \(B\) smaller sub-trees with similar structures and so forth for all scales [17]. River networks are found to be topologically self-similar with \(3 < B < 5\) [17].

As a measure of topological self-similarity one can calculate the standard deviation \(\sigma_{B_i}\) of the bifurcation ratios \(B_i\), that tends to 0 when topologically self-similarity holds. In Fig. 3e, we compare the \(\sigma_{B_i}\) of the e-mail network with that of several model networks. We find that the community tree of the e-mail network is topologically self-similar with \(B \approx 5.8\) and \(\sigma_B \approx 0.05\). All other network models significantly deviate from topological self-similarity. In particular, the hierarchical RB model [18], that has a similar scaling behavior as the e-mail network (Fig. 3d), does not show topological self-similarity. The lack of topological self-similarity in this case is related, paradoxically, to scale-free connectivity distributions of the RM model, that makes the central units different from the peripheral ones.

By revealing the structure of the e-mail network, the proposed methodology leads us to realize that community structure is self-similar. Self-similarity is a fingerprint of the replication of the structure at different levels of the social network, and could be the result of a trade-off between the need for cooperation and the costs of keeping active connections. Moreover, the emergence of scaling, as well as the similarity with river networks, raises important questions about the mechanisms underlying the interactions between individuals. As pointed out in a recent article [8], the scaling properties of river networks are ubiquitous. By using the same argument, one can expect that the scaling behavior we obtain should be observable in any human social network. At the same time, the similarity with river networks suggests that a common principle of optimization—of flow of information in organizations or of flow of water in rivers—could be the underlying driving force in the formation and evolution of social networks.

We thank L.A.N. Amaral, M. Buchanan, X. Guardiola, and J. Ottino for helpful comments and suggestions. We also thank J. Tomas, O. Lorenzo, C. Lorach, J. Clavero and F. Salvador for collecting the e-mail data. This work has been supported by DGES of the Spanish Government (Grants No. PPQ2001-1519, No. BFM2000-0626, No. BEC2000-1029, and No. BEC2001-0980) and EC-Fet Open project (Grant No. IST-2001-33555), R.G. and L.D. also acknowledge financial support from the Generalitat de Catalunya.