
1

A "Message Oriented Middleware" approach to HYSYS extensibility

R. Rallo, J. Ferré-Giné, A. Arenas and Francesc Giralt#

Departament dEnginyeria Informàtica i Matemàtiques, ETSE
#Departament d’Enginyeria Química, ETSEQ
Universitat Rovira i Virgili
Ctra. De Salou, s/n
43001 Tarragona, Catalunya, SPAIN

Abstract and Scope of the Work
The present work is part of a research project that is currently in progress at Tarragona with
the main objective to develop an open and distributed architecture capable of supporting
applications of collaborative intelligent techniques to control chemical processing plants. In
this paper new ways to integrate external components with the HYSYS Process Simulator are
explored, so that applications designed by developers can be distributed across TCP/IP
based networks. The registration of applications with components generated by HYSYS
requires the development of a module that links the process simulator with an external
"Message Bus". To validate the proposed framework or architecture an intelligent control
application based on Radial Basis Functions (RBF) neural networks has been conceived and
implemented. This neuro-monitoring application based on Kohonen’s self-organizing maps
(SOM) registers with a dynamic simulation running on HYSYS and uses the simulated output
to learn the dynamics of the process. A third party library for the construction of intelligent
agent systems is also used to demonstrate that the proposed framework can be easily
integrated with other systems.

Keywords: neural networks, process monitoring, java, CORBA, DDE, intelligent control,
Kohonen maps.

1. Introduction and Specific Objectives
The goals of the process engineer when defining the operation conditions of a chemical plant
are usually directed towards pursuing a better yield, looking for better quality products, a
higher production rate, or an improved profit. Often, small variations in some process
conditions produce important changes on the whole dynamics of a chemical plant. In this
respect it would be very useful to develop tools to visualize the variables involved and the
state of the process, as well as to explore and learn its evolution.

The amount of data available in real-time (and at high sampling rates) about a chemical
process grows exponentially with factory automation. Usually, chemical plants incorporate a
large amount of sensors and field measurement devices (often ranging from hundreds to
thousands) acting as sources of huge data sets. Also, the popularization of the concept of
datawarehouse makes possible the storage of large historical data sets ready to be processed
for knowledge extraction. This implies that the old problem of having enough data records for
gaining a better and deeper understanding about the dynamics of a given process shifts to a
new one in which the main difficulty is how to exploit (use) the knowledge contained on these
data files.

Is under this situation that soft computing techniques, like neural networks and other
biologically inspired systems, may help engineers in the task of automatic (or human guided)

2

knowledge extraction from databases. This leads to the emergent concept of data mining,
which is embedded on the more general category of “knowledge discovery from databases
(KDD)” techniques, as the adequate methodology to perform these tasks.

Simultaneously, the fast development of high-speed and reliable communication technologies
and infrastructures causes that many companies involved in process re-engineering activities
also consider the objective of moving from their legacy applications to distributed applications
running on “open systems”. As a result of the above changes, usually a mixture of legacy,
client/server and intranet/internet applications forms the core of corporate information
systems. At the same time and mainly due to the grow and expansion of INTERNET, there
has been important developments related to open connectivity and application interoperability,
which resulted in "independent programming languages" such as JAVA and open
communication technologies such are CORBA and XML. On the other side, today’s corporate
information technology (IT) policies require that data from factory floor systems feed
enterprise applications and to implement control strategies on “open” systems. As a
consequence, there has been a boom in the use and implementation of open distributed
applications.

 It should be kept in mind that Chemical Manufacturers are one of the sectors with the highest
heterogeneous computing resources and applications. The integration and interoperability of
all these systems (see Fig. 1) is a difficult and expensive task. Advanced Process Control
(APC) applications are a paradigmatic example of that situation. As process control
technology moves towards artificial intelligence and soft computing areas, the emerging
applications need more and more resources. As a consequence, concepts such are real-time
collaboration, open connectivity, transparent data exchange and mobility are gaining
momentum. One of the key components of APC applications are process simulation systems,
because the “open” and “distributed” access to simulation data will play an important role in
the new corporate IT environment.

Control Room
Scalable Ethernet-based bus

(10/100/1000 Mb)
With redundancy

Legacy
Control Systems

& FieldBus

Enterprise Network (Intranet)
Other computer systems

Real Time Domains

 Figure 1. Integration of new APC applications and corporate IT systems

 The specific objective of the present work is the development of a core architecture and a
basic programming framework for achieving an "open and distributed" access to HYSYS to
integrate intelligent control or supervision systems with simulations. One way of achieving this
goal is by using the Java technology platform, because it offers a solution to meet the needs of
enterprise IT with low disruption on the existing factory environment. The proposed
architecture will also allow the implementation of the aforementioned intelligent systems
within factory communication and information systems.

3

2. Distributed Architecture

2.1. Access to HYSYS objects
 APC applications require frequent data transfers among them and, in the specific problem of
the current work, with the simulations running on HYSYS. The better known and frequently
used techniques applied to this end are based on OLE Automation with Visual Basic as
programming language. The main drawback of this approach resides in the lack of portability
of the code.

 The first step towards the design and implementation of an open interface to the HYSYS
simulator is to expose its internal objects to java applications. This could be done by using the
Java Native Interface (JNI) framework since it allows java codes running in a Java Virtual
machine (JVM) to access native libraries written in other languages (C, C++ or assembly) as if
they were native java objects. The process of embedding native codes into java applications
could be done in two different ways: the first one involves the access to the native source code
and its header files for its processing with JNI tools to create the appropriate java wrappers;
the second is based upon the use of a Java – COM bridge to access the native objects. In this
second model the bridge talks to COM objects using distributed COM (DCOM) layered over
Remote Procedure Calls (RPC), which in turn will reside on top of the TCP/IP protocol. This
second approach has been selected here because it is appropriate for users that will not have
direct access to the HYSYS source code. There are several commercial and open source
applications that perform the abovementioned bridging process; the LINAR’s J-Integra or
IBM’s Bridge2Java. For validation purposes the later has also been used in the example
application described in the section.

 IBM’s Bridge2Java allows the creation of Java objects through a typelib corresponding to a
COM enabled application. Once created these wrappers can be used to access methods and
properties of COM objects. Using these wrapper classes we have implemented a server
capable of talking to the HYSYS simulator (see Figure 2).

HYSYSServer
Interface

(IDL)

CORBA
ACCESS

HYSYSServer
Implementation

(JAVA)

Collector [Thread]
(ProcessMonitor)

DataCollector
(Interface)

ControllerDataCollector OBJECTDataCollector

bind()

 Figure 2. HYSYS Server Architecture

 Since in the current development the HYSYS server runs as a local application on the same
machine that is running the HYSYS simulator, it is necessary to provide remote access to

4

applications interacting with the simulator. This could be achieved with distributed object
technologies. In the current case either the Java Remote Method Invocation (RMI) or the
Common Request Broker Architecture (CORBA) can be used for accessing remote objects as
the server has been implemented using the Java programming language. CORBA has been
chosen as distributed object framework because with the RMI method only java objects are
allowed to interact and generality would be lost.

 The next step is how to transfer data back and forth from the simulator efficiently. To achieve
this bidirectional data transfer two different communication models can be adopted. The first
is based on the Dynamic Data Exchange protocol (DDE); HYSYS acts as a DDE client
through the DCS interface. For this model a DDE server has been designed and implemented.
The server is based on Neva Object Technology Inc. classes that implement the DDE protocol
using JNI; the server acts as a daemon that waits for DDE transactions and performs the
requested process through a transaction Handler interface, as shown in Figure 3.

HYSYSServer
Interface

(IDL)

CORBA
ACCESS
for HYSYS
control HYSYSServer

Implementation
(JAVA)

HYSYSDDEServer

TransactionHandler
(Interface)

ControllerHandler OBJECTHandler

HYSYS Data access

HYSYS

 Figure 3. DDE based HYSYS server

 The server supports both, tag-based and array-based clients. Bi-directional data
communications are achieved using either POKE or REQUEST transactions.

 The second communication model is based on CORBA method invocation (see Figure 4).
Since we have a set of wrapper classes that encapsulate the behavior of each HYSYS object,
the HYSYS server is capable of reading the values for each property of a HYSYS object.

 Both approaches require the start of a polling process from the server side, making thus
necessary the setting of a polling interval. Nevertheless, this polling policy could request
values of properties that have not changed, consuming an unnecessary amount of CPU cycles.
On the CORBA based model this effect can be reduced by using the Process Data Table object
of HYSYS and attaching to it an event handler that activates the reading of an object’s
property only when its value has changed.

5

HYSYSServer
Interface

(IDL)

CORBA
ACCESS

HYSYSServer
Implementation

(JAVA)

Collector [Thread]
(ProcessMonitor)

DataCollector
(Interface)

ControllerDataCollector OBJECTDataCollector

bind()

CORBAServer

Object Request Broker
(ORB) Server

Object Request Broker
(ORB) Server

Object BUS

Object Request Broker
(ORB) Client

Object Request Broker
(ORB) Client

 Figure 4. CORBA based HYSYS Server

2.2. Distributed access to HYSYS data
 Now, that the primary goal of open access to HYSYS has been achieved by the DDE based or
CORBA based HYSYS server design it is necessary to provide access to HYSYS data from
remote workstations. The main purpose of this access is to send new values of any variable to
all the external applications that are observing it. To perform this task a flexible, fast and
reliable architecture for distributed event notification is needed. In this case a Message
Oriented Middleware (MOM) approach is used.

 Message Oriented Middleware (MOM) is one of the categories of connectivity middleware
that provide program-to-program communications by message passing. MOM generally
supports multiple protocols and, thus, will support reliable and scalable high-performance
distributed application networks. Most Message Oriented Middleware are implemented with
queued message store-and-forward capability, which is Message Queuing Middleware
(MQM). Usually MOM applications support two modes of operation: The Point-to-Point
(producer/consumer) and Publish/Subscribe (broadcast). In the first mode, applications send
and retrieve messages from named message queues. In the second, applications publish
messages to named channels and listen asynchronously for arriving messages on selected
channels. There are many commercial and open source products that provide this functionality.
A group of companies that are producing MOM products have released a joint specification to
define a uniform interface from Java to MOM: The Java Message Service (JMS).

 In the current framework the publish/subscription mode, with the ANTS API that exposes an
easy interface to MOM systems, is used. In addition, the ELVIN system has been used as
MOM infrastructure.

2.3. Framework proposal
 As a starting point for the design of the present framework a layered model (see Figure 5) will
be adopted to represent information systems in a chemical plant.

6

Communication BUS (FieldBus)

Real-Time Control Layer

Supervisory Control Layer

Human Interface (P lant Operators)

sensors actuatorsField devices

Integration Layer

 Figure 5. Layered Model of Information Systems in Chemical Plants

 The main objective is to design a robust and generic framework for interfacing each of these
layers. Dynamic simulators, such as HYSYS, play an important role in this information
systems architecture because they can interact with low level layers (real-time control) as well
as with higher-level layers (supervisory control and operator interface). This is the reason why
the current framework for open and distributed access to HYSYS is the starting point for the
design of a more generic one.

 The proposed framework shown in Figure 6 is based on two key components: the HYSYS
Server and the Message Bus.

Message BusMessage Bus

HYSYS
Server

HYSYS
Server

APC
application

APC
application

CORBA
based

event

Data
Mining
Data

Mining

HYSYSHYSYS

COM

DDE

Neuro
controllers

Neuro
controllers

Advanced
Visualization
Advanced

Visualization

 Figure 6. Schema of the proposed framework.

 The HYSYS Server should interacts with the HYSYS simulator through a Java-COM bridge,
by using DDE or a combination of both techniques. The external control of the simulator is
carried out with CORBA, so that APC applications can control the simulation without the
need of any external interaction with HYSYS. Simultaneously, registered Data Collectors or
DDE Transaction Handlers, depending on the model used, acquire the simulation data at each
time step (or polling interval) and publish them to the message bus. This allows applications
interested on selected kinds of events to receive the data. Also, since all applications that

7

interact with the message use the publish and subscribe model the process of data exchange
between these applications is easily implemented.

3. Validation of the proposed architecture.

3.1. Problem Statement
Two problems have been considered to evaluate the “usability” of our approach and validate
the framework or architecture. The first is the monitoring (and visualization) of a simulated
chemical process by means of Kohonen’s self-organizing maps. The second is the training of a
neurocontroller based on HYSYS PID controller implementation.

Figure 7. Example of the dynamic simulation of a two-phase separator.

The test case selected, shown in Figure 7, is one of the simple separation examples taken from
HYSYS. It consists of a two-phase separator and a level controller measuring the liquid level
of the tank. The separator is feeded with a mixture (50%) of ethane and n-C20 at a
temperature of 25ºC and a pressure of 300 kPa.

3.2. Example of Monitoring
The main difficulty that a process engineer faces is the extremely high dimension of the state
space that characterizes the operation of a chemical plant. The usual solution to this problem
resides in the design and construction of more (or less) “ergonomic” control panels showing a
complete point-of-view of process data. Nevertheless, the problems inherent to visually
monitoring a large amount of data as well as establishing their relationships remain.

A Self-Organizing Map (SOM) performs a topology preserving mapping from the high
dimensional input space (the state space of the process being analyzed) onto map units so that

8

relative distances between data points are preserved and, thus, approximating the density
function of the input space in an ordered manner. In this way, data patterns lying near each
other in the input space will be mapped onto nearby map units, hence serving as a clustering
tool. Furthermore, because a well-constructed SOM will have good generalization capabilities,
it can be used also as a modeling tool.

The application of the SOM algorithm to process analysis and visualization is usually carried
out in four steps:

• Data preprocessing

• Map training

• Map validation and interpretation

• Visualization

When using the SOM for process analysis we several approaches can be adopted (Vesanto,
1999): (i) Analysis of structure and shape of the map, (ii) analysis of the codebook (or
prototype) vectors, and (iii) applying the map to the analysis of new data, i.e., data never seen
before by the neural network.

For the monitoring problem a set of variables representing the dynamics of the separation
process in Figure 7 have selected. During the training stage of the self-organizing several
disturbances to the whole dynamics of the system have been introduced to present to the
neural system inputs located at different points of the separator’s state space. After a self-
organization process using a “winner takes all” learning procedure (see Appendix), the map is
capable of classifying new inputs and associating them to a class over the map surface. By
using this procedure a dimensional reduction is achieved and a high dimensional input can be
mapped (in a non-linear fashion) into a two dimensional point. Furthermore, a set of
successive time steps can be represented as a trajectory over the map surface and, thus, the
dynamic behavior of the process can be easily pictured.

 We have developed a clusterer implementing algorithm for the Kohonen’s self organizing map.
Once implemented, the clustering algorithm has been embedded on a client application that
registers with the message BUS and receives from the HYSYS server the data from the
dynamic simulation. Using these data the map self-organizes in order to create a two-
dimensional projection of the separation process given in Figure 7. Once trained, the values of
selected process variables at each time step of the simulation could be represented over the
map, allowing plant operators to have an easily understandable image of the whole process
dynamics, without the need to monitor each process variable individually.

The main results concerning this validation phase will be presented during the conference.

3.3. Integration of third-party applications
The purpose of this validation test is twofold. First, To test further the integration capabilities
of the porposed framework and second to test the capabilities of a Radial basis Function
(RBF) to mimic the behavior of a HYSYS PID controller.

ABLE, the IBM’s Agent Building and Learning Environment, has been selected as the third-
party application. This is a public domain environment designed to build leaning agent
systems. For this test case a java component (JavaBean) that is capable of receiving the data
published on the message bus has been developed.

9

Figure 8. Sample application using ABLE Radial basis Functions

The training procedure of the neural network has been attained as follows. The main
parameters of the PID controller, the set point (SP), gain, control action (% of valve aperture)
and actual target value (% of liquid in the tanc), are published by the HYSYS Server. A RBF
network is trained to mimic the behavior of the controller, so that when the SP is changed the
trained network drives the valve aperture based on the actual liquid volume of the tank in
Figure 7 towards the desired SP.

3.4. Work in progress
 The first goal of developing and open and distributed access to HYSYS has been reached. The
developed framework is capable of allowing any java or CORBA enabled application to
interact with a simulation running on HYSYS. Also, as we have achieved a distributed access
to the simulator all the data can be accessible through Internet based services, such the World
Wide Web, with easily created web based interfaces to the simulator.

 The work in progress comprises the development of a set of intelligent control agents that will
be capable of fully interacting, within the proposed communication architecture, not only with
the HYSYS simulator but also with any device capable of publish its data on the message bus.
This approach will allow to advance towards intelligent collaborative control schemes that
will facilitate the automatic, real time optimization of the global plant operation based on high
level constrains, such are economic parameters, business rules, or environmental regulations,
that can be published in real time to the message bus.

10

Acknowledgments
 The work was supported by the “Dirección General de Investigación Cinetífica y Técnica”
(Spain), DGICYT project no. PB96-1011, and the “Programa de Grups de Recerca
Consolidats de la Generalitat de Catalunya”, CIRIT project no. 1998SGR-00102.

Selected references
 García, P., Skarmeta, A., Koch T. (2000) A generic collaboration bus for BSCW. Proceedings
of Intelligent Systems and Applications, Symposium of Interactive and Collaborative
computing.

 IBM Alphaworks. Bridge2Java. http://alphaworks.ibm.com

 Kennedy, J.P. (1999) Next Generation Plant Information Systems: Prepare for a web-centric
architecture. Hydrocarbon Processing, April, 95-100.

 Kohonen, T. (1990) The Self-Organizing Map, Proc. IEEE, 78(9), 1464-1480.

Kohonen, T. (1993) Physiological Interpretation of the Self-Organizing Map Algorithm,
Neural Networks, 6(7), 895-905

 Kohonen T. (1995/1997) Self-Organizing maps. Springer Verlag (1st & 2nd editions), Berlin.

 LINAR, Inc. Introducing J-Integra: Whitepaper. http://www.linar.com

 NEVA OBJECTS TECHNOLOGY, Inc. JavaDEE. http://www.nevaobject.com/java

Rallo, R. Arenas, A. Ferre-Gine, J and F. Giralt (2000) A neural virtual sensor for the
inferential prediction of product quality from process variables. Submitted to Computers and
Chemical Engineering.

 Spoelder, H.J.W. (1999) Virtual Instrumentation and Virtual Environments. IEEE
Instrumentation & Measurement Magazine, September, 14-19.

 Ultsch, A., Siemon, H.P. (1990) Kohonen’s Self-Organizing Feature Maps for exploratory
data analysis. Proc of INNC’90, Int. Neural Network Conf, 305-308.

Vesanto, J. (1999) SOM-based data visualization methods. Intelligent Data Analysis, 3(2),
111-126.

11

Appendix: Kohonen’s Self-Organizing Map.
This neural architecture has been applied to visualization and dimension reduction of high
dimensional data spaces, mainly due to its properties, related to topology and density of
probability preservation on the reduced dimension space (output space).

The SOM algorithm (Kohonen, 1990) performs a topology preserving mapping from a high-
dimensional input space onto a low dimensional output space formed by a regular grid of map
units. The lattice of the grid can be either rectangular or hexagonal. This neural model is
biologically plausible (Kohonen, 1993) and is present in various brain’s structures, being used
as an ordered low-dimension internal model of the external environment. From a functional
point-of-view, the SOM resembles Vector Quantization (VQ) algorithms. These algorithms
approximate, in an unsupervised way, to the probability density functions of vectorial variables
by finite sets of “codebook” or reference vectors. The only purpose of these methods is to
describe class borders using a nearest-neighbor rule, (see for example K-Means algorithm (ref.
del K-Means Alg.)). In contrast, SOM’s units are organized over the space spanned by the
regular grid and the whole neighborhood is adapted, not only the winner unit.

Each unit of the map is represented by a weight vector, []Tinii mmm ,...,1= where n is equal to
the dimension of the input space. As in vector quantization, every weight vector describing a
class is called a codebook. Each unit has a topological neighborhood Ni determined by the
form of the grid’s lattice, either rectangular or hexagonal. The number of units as well as their
topological relations are defined (and fixed) at the beginning of the training process. The
granularity (size) of the map will determine its subsequent accuracy and generalization
capabilities. During its training process, the SOM forms an elastic net that folds onto the cloud
formed by the input data, trying to approximate the probability density function of the original
data by placing more codebook vectors where the data are dense and few units where are
sparse.

The training of the SOM proceed as follows, at each training step, one sample pattern x is
randomly chosen from the training data, then similarities (distances) between x and the
codebook vectors are computed (usually, the euclidean distance is used), looking for the “best
matching unit” (BMU). This similarity matching can be expressed as:

{ }
i

ibmu mxmx −=− min (1)

After finding the BMU and its topological neighbor cells, their degree of matching is increased
by moving their codebook vectors in the proper direction in the input space. This competitive
learning process follows a winner-takes-all approach, that can be described by the following
rules:

[]

∉
∈−+

=+
)(),(
)(,)()()()(

)1(
tNitm
tNitmtxttm

tm
bmui

bmuii
i

α
(2)

where t denote time, Nbmu(t) is a decreasing neighborhood function around the best matching
unit, and a(t) is a monotonically decreasing learning rate. Concerning the variation of the
learning rate, we should consider two modes of operation of the SOM: an initial ordering
phase in which the map is formed, and a later convergence phase, were fine tunning of
codebook vectors is done. This approach corresponds to Hebbian learning on the topological
neighborhood and active forgetting

