n-dimensional generalizations of a Thébault conjecture

Q. H. Tran and B. Herrera

Abstract

This paper presents some generalizations to Thébault's conjecture, provides an analogy of Thébault's conjecture for the n-simplex, and also solves a conjecture in [6] Herrera and Tran (2022)] by using linear algebra.

Key words: Thébault's conjecture, n-simplex, Monge points, n-dimensional Euclidean space

1. INTRODUCTION

The geometry of n-dimensional simplices remains a current topic of research with numerous recent publications. Several results are inspired by geometric results for triangles and tetrahedrons, such as [7, Samet (2021)], [8, Ding Y (2008)], [9, Buba-Brzozowa(2005)], [10, Buba-Brzozowa (2004)], [11, Hajja (2005)], among others. Using classical techniques of linear algebra, this article presents new geometric results for the n-dimensional simplices. These results are inspired by a conjecture of the famous French problemist Victor Thébault (1882-1960) and by an analogous result of [6, Herrera and Tran (2022)].

Victor Thébault conjectured in [13, Thébault (1953)] the following geometric fact linking the radical center of four spheres with other elements of a tetrahedron:

Theorem 1. Let $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ be the altitudes of a tetrahedron $A B C D$ with feet A^{\prime}, B^{\prime}, C^{\prime} and D^{\prime}, respectively. Let P be the radical center of the spheres with centers A, B, C, and D and radii $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ respectively. Then each plane passing through the midpoint of the segment $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}, D^{\prime} A^{\prime}, D^{\prime} B^{\prime}$, and $D^{\prime} C^{\prime}$ which is orthogonal to the segment $B C$, $C A, A B, D A, D B$, and $D C$, respectively, contains the point P.

This conjecture remained open since 1953, but was proved in 2015 in [5, Herrera (2015)].
In [6, Herrera and Tran (2022)] a result was proved which is similar to the result of Thébault, but linking the radical center of four spheres with the insphere and the Monge point of a tetrahedron (the Monge point of a tetrahedron is the concurrence point of six planes through the midpoints of the edges of a tetrahedron and perpendicular to the opposite edges). The result is:

Theorem 2. Let ω be the insphere of a tetrahedron $A B C D$. This insphere ω, with its center at point I, touches the faces $(B C D),(C D A),(D A B)$, and $(A B C)$ at points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}, respectively. The spheres having centers A, B, C, and D and radii $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ are called $\omega_{a}, \omega_{b}, \omega_{c}$, and ω_{d}, respectively. Let M be the Monge point of the tetrahedron $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, and let P be the reflection of I with respect to M. Then point P is the radical center of the spheres $\omega_{a}, \omega_{b}, \omega_{c}$, and ω_{d}.

In paper [6, authors conjecture a generalization of Theorem 2 for n-dimensional Euclidean space. Here, in this paper, the conjecture is proven, and a generalization is obtained. Moreover, in this paper, new properties of the Monge point of the n-dimensional simplex are found.

